References
0003, Mu Li, David G. Andersen, Alexander J. Smola, and Kai Yu. 2014.
“Communication Efficient Distributed Machine Learning with the
Parameter Server.” In Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, edited by Zoubin Ghahramani, Max Welling, Corinna Cortes,
Neil D. Lawrence, and Kilian Q. Weinberger, 19–27. https://proceedings.neurips.cc/paper/2014/hash/1ff1de774005f8da13f42943881c655f-Abstract.html.
Abadi, Martín, Ashish Agarwal, Paul Barham, et al. 2015.
“TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems.” Google Brain.
Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, et al. 2016. “TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed
Systems.” arXiv Preprint arXiv:1603.04467, March. http://arxiv.org/abs/1603.04467v2.
Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, et al. 2016. “TensorFlow: A System
for Large-Scale Machine Learning.” In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), 265–83.
USENIX Association. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi.
Abadi, Martin, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. 2016. “Deep Learning with
Differential Privacy.” In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 308–18. CCS
’16. New York, NY, USA: ACM. https://doi.org/10.1145/2976749.2978318.
Abdelkader, Ahmed, Michael J. Curry, Liam Fowl, Tom Goldstein, Avi
Schwarzschild, Manli Shu, Christoph Studer, and Chen Zhu. 2020.
“Headless Horseman: Adversarial Attacks on Transfer Learning
Models.” In ICASSP 2020 - 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 3087–91. IEEE.
https://doi.org/10.1109/icassp40776.2020.9053181.
Addepalli, Sravanti, B. S. Vivek, Arya Baburaj, Gaurang Sriramanan, and
R. Venkatesh Babu. 2020. “Towards Achieving Adversarial Robustness
by Enforcing Feature Consistency Across Bit Planes.” In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 1020–29. IEEE. https://doi.org/10.1109/cvpr42600.2020.00110.
Adolf, Robert, Saketh Rama, Brandon Reagen, Gu-yeon Wei, and David
Brooks. 2016. “Fathom: Reference Workloads for Modern Deep
Learning Methods.” In 2016 IEEE International Symposium on
Workload Characterization (IISWC), 1–10. IEEE; IEEE. https://doi.org/10.1109/iiswc.2016.7581275.
Agarwal, Alekh, Alina Beygelzimer, Miroslav Dudík, John Langford, and
Hanna M. Wallach. 2018. “A Reductions Approach to Fair
Classification.” In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, edited by Jennifer G. Dy and Andreas
Krause, 80:60–69. Proceedings of Machine Learning Research. PMLR. http://proceedings.mlr.press/v80/agarwal18a.html.
Agnesina, Anthony, Puranjay Rajvanshi, Tian Yang, Geraldo Pradipta,
Austin Jiao, Ben Keller, Brucek Khailany, and Haoxing Ren. 2023.
“AutoDMP: Automated DREAMPlace-Based Macro Placement.” In
Proceedings of the 2023 International Symposium on Physical
Design, 149–57. ACM. https://doi.org/10.1145/3569052.3578923.
Agrawal, Dakshi, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and
Berk Sunar. 2007. “Trojan Detection Using IC
Fingerprinting.” In 2007 IEEE Symposium on Security and
Privacy (SP ’07), 296–310. Springer; IEEE. https://doi.org/10.1109/sp.2007.36.
Ahmadilivani, Mohammad Hasan, Mahdi Taheri, Jaan Raik, Masoud
Daneshtalab, and Maksim Jenihhin. 2024. “A Systematic Literature
Review on Hardware Reliability Assessment Methods for Deep Neural
Networks.” ACM Computing Surveys 56 (6): 1–39. https://doi.org/10.1145/3638242.
Ahmed, Reyan, Greg Bodwin, Keaton Hamm, Stephen Kobourov, and Richard
Spence. 2021. “On Additive Spanners in Weighted Graphs with Local
Error.” arXiv Preprint arXiv:2103.09731 64 (12): 58–65.
https://doi.org/10.1145/3467017.
Akidau, Tyler, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, et al. 2015. “The
Dataflow Model: A Practical Approach to Balancing Correctness, Latency,
and Cost in Massive-Scale, Unbounded, Out-of-Order Data
Processing.” Proceedings of the VLDB Endowment 8 (12):
1792–1803. https://doi.org/10.14778/2824032.2824076.
Alghamdi, Wael, Hsiang Hsu, Haewon Jeong, Hao Wang 0063, Peter Michalák,
Shahab Asoodeh, and Flávio P. Calmon. 2022. “Beyond Adult and
COMPAS: Fair Multi-Class Prediction via Information Projection.”
In NeurIPS, 35:38747–60. http://papers.nips.cc/paper_files/paper/2022/hash/fd5013ea0c3f96931dec77174eaf9d80-Abstract-Conference.html.
Altayeb, Moez, Marco Zennaro, and Marcelo Rovai. 2022.
“Classifying Mosquito Wingbeat Sound Using TinyML.” In
Proceedings of the 2022 ACM Conference on Information Technology for
Social Good, 132–37. ACM. https://doi.org/10.1145/3524458.3547258.
Amershi, Saleema, Andrew Begel, Christian Bird, Robert DeLine, Harald
Gall, Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas
Zimmermann. 2019. “Software Engineering for Machine Learning: A
Case Study.” In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 291–300. IEEE. https://doi.org/10.1109/icse-seip.2019.00042.
Amiel, Frederic, Christophe Clavier, and Michael Tunstall. 2006.
“Fault Analysis of DPA-Resistant Algorithms.” In Fault
Diagnosis and Tolerance in Cryptography, 223–36. Springer; Springer
Berlin Heidelberg. https://doi.org/10.1007/11889700\_20.
Amodei, Dario, Danny Hernandez, et al. 2018. “AI and
Compute.” OpenAI Blog. https://openai.com/research/ai-and-compute.
Andrae, Anders, and Tomas Edler. 2015. “On Global Electricity
Usage of Communication Technology: Trends to 2030.”
Challenges 6 (1): 117–57. https://doi.org/10.3390/challe6010117.
Anthony, Lasse F. Wolff, Benjamin Kanding, and Raghavendra Selvan. 2020.
ICML Workshop on Challenges in Deploying and monitoring Machine Learning
Systems.
Antonakakis, Manos, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, et al. 2017.
“Understanding the Mirai Botnet.” In 26th USENIX
Security Symposium (USENIX Security 17), 1093–1110.
Ardila, Rosana, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer,
Michael Henretty, Reuben Morais, Lindsay Saunders, Francis Tyers, and
Gregor Weber. 2020. “Common Voice: A Massively-Multilingual Speech
Corpus.” In Proceedings of the Twelfth Language Resources and
Evaluation Conference, 4218–22. Marseille, France: European
Language Resources Association. https://aclanthology.org/2020.lrec-1.520.
Arifeen, Tooba, Abdus Sami Hassan, and Jeong-A Lee. 2020.
“Approximate Triple Modular Redundancy: A Survey.” IEEE
Access 8: 139851–67. https://doi.org/10.1109/access.2020.3012673.
Asonov, D., and R. Agrawal. n.d. “Keyboard Acoustic
Emanations.” In IEEE Symposium on Security and Privacy, 2004.
Proceedings. 2004, 3–11. IEEE; IEEE. https://doi.org/10.1109/secpri.2004.1301311.
Ateniese, Giuseppe, Luigi V. Mancini, Angelo Spognardi, Antonio Villani,
Domenico Vitali, and Giovanni Felici. 2015. “Hacking Smart
Machines with Smarter Ones: How to Extract Meaningful Data from Machine
Learning Classifiers.” International Journal of Security and
Networks 10 (3): 137. https://doi.org/10.1504/ijsn.2015.071829.
Attia, Zachi I., Alan Sugrue, Samuel J. Asirvatham, Michael J. Ackerman,
Suraj Kapa, Paul A. Friedman, and Peter A. Noseworthy. 2018.
“Noninvasive Assessment of Dofetilide Plasma Concentration Using a
Deep Learning (Neural Network) Analysis of the Surface
Electrocardiogram: A Proof of Concept Study.” PLOS ONE
13 (8): e0201059. https://doi.org/10.1371/journal.pone.0201059.
Aygun, Sercan, Ece Olcay Gunes, and Christophe De Vleeschouwer. 2021.
“Efficient and Robust Bitstream Processing in Binarised Neural
Networks.” Electronics Letters 57 (5): 219–22. https://doi.org/10.1049/ell2.12045.
Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016.
“Layer Normalization.” arXiv Preprint
arXiv:1607.06450, July. http://arxiv.org/abs/1607.06450v1.
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2014. “Neural
Machine Translation by Jointly Learning to Align and Translate.”
arXiv Preprint arXiv:1409.0473, September. http://arxiv.org/abs/1409.0473v7.
Bai, Tao, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. 2021.
“Recent Advances in Adversarial Training for Adversarial
Robustness.” arXiv Preprint arXiv:2102.01356, February.
http://arxiv.org/abs/2102.01356v5.
Bains, Sunny. 2020. “The Business of Building Brains.”
Nature Electronics 3 (7): 348–51. https://doi.org/10.1038/s41928-020-0449-1.
Bamoumen, Hatim, Anas Temouden, Nabil Benamar, and Yousra Chtouki. 2022.
“How TinyML Can Be Leveraged to Solve Environmental Problems: A
Survey.” In 2022 International Conference on Innovation and
Intelligence for Informatics, Computing, and Technologies (3ICT),
338–43. IEEE; IEEE. https://doi.org/10.1109/3ict56508.2022.9990661.
Banbury, Colby, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat
Jeffries, Csaba Kiraly, Pietro Montino, et al. 2021. “MLPerf Tiny
Benchmark.” arXiv Preprint arXiv:2106.07597, June. http://arxiv.org/abs/2106.07597v4.
Bannon, Pete, Ganesh Venkataramanan, Debjit Das Sarma, and Emil Talpes.
2019. “Computer and Redundancy Solution for the Full Self-Driving
Computer.” In 2019 IEEE Hot Chips 31 Symposium (HCS),
1–22. IEEE Computer Society; IEEE. https://doi.org/10.1109/hotchips.2019.8875645.
Barenghi, Alessandro, Guido M. Bertoni, Luca Breveglieri, Mauro
Pellicioli, and Gerardo Pelosi. 2010. “Low Voltage Fault Attacks
to AES.” In 2010 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), 7–12. IEEE; IEEE. https://doi.org/10.1109/hst.2010.5513121.
Barroso, Luiz André, Jimmy Clidaras, and Urs Hölzle. 2013. The
Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines. Springer International Publishing. https://doi.org/10.1007/978-3-031-01741-4.
Barroso, Luiz André, and Urs Hölzle. 2007a. “The Case for
Energy-Proportional Computing.” Computer 40 (12): 33–37.
https://doi.org/10.1109/mc.2007.443.
———. 2007b. “The Case for Energy-Proportional Computing.”
Computer 40 (12): 33–37. https://doi.org/10.1109/mc.2007.443.
Barroso, Luiz André, Urs Hölzle, and Parthasarathy Ranganathan. 2019.
The Datacenter as a Computer: Designing Warehouse-Scale
Machines. Springer International Publishing. https://doi.org/10.1007/978-3-031-01761-2.
Bau, David, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba.
2017. “Network Dissection: Quantifying Interpretability of Deep
Visual Representations.” In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 3319–27. IEEE. https://doi.org/10.1109/cvpr.2017.354.
Baydin, Atilim Gunes, Barak A. Pearlmutter, Alexey Andreyevich Radul,
and Jeffrey Mark Siskind. 2017a. “Automatic Differentiation in
Machine Learning: A Survey.” J. Mach. Learn. Res. 18:
153:1–43. https://jmlr.org/papers/v18/17-468.html.
———. 2017b. “Automatic Differentiation in Machine Learning: A
Survey.” J. Mach. Learn. Res. 18 (153): 153:1–43. https://jmlr.org/papers/v18/17-468.html.
Beaton, Albert E., and John W. Tukey. 1974. “The Fitting of Power
Series, Meaning Polynomials, Illustrated on Band-Spectroscopic
Data.” Technometrics 16 (2): 147. https://doi.org/10.2307/1267936.
Beck, Nathaniel, and Simon Jackman. 1998. “Beyond Linearity by
Default: Generalized Additive Models.” American Journal of
Political Science 42 (2): 596. https://doi.org/10.2307/2991772.
Bender, Emily M., Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. “On the Dangers of Stochastic Parrots: Can
Language Models Be Too Big? 🦜.” In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency,
610–23. ACM. https://doi.org/10.1145/3442188.3445922.
Berger, Vance W., and YanYan Zhou. 2014. “Kolmogorov–Smirnov Test:
Overview.” Wiley Statsref: Statistics Reference Online.
Wiley. https://doi.org/10.1002/9781118445112.stat06558.
Bergstra, James, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley,
and Yoshua Bengio. 2010. “Theano: A CPU and GPU Math Compiler in
Python.” In Proceedings of the 9th Python in Science
Conference, 4:18–24. 1. SciPy. https://doi.org/10.25080/majora-92bf1922-003.
Beyer, Lucas, Olivier J. Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and
Aäron van den Oord. 2020. “Are We Done with ImageNet?”
arXiv Preprint arXiv:2006.07159, June. http://arxiv.org/abs/2006.07159v1.
Bhagoji, Arjun Nitin, Warren He, Bo Li, and Dawn Song. 2018.
“Practical Black-Box Attacks on Deep Neural Networks Using
Efficient Query Mechanisms.” In Computer Vision – ECCV
2018, 158–74. Springer International Publishing. https://doi.org/10.1007/978-3-030-01258-8_10.
Bhamra, Ran, Adrian Small, Christian Hicks, and Olimpia Pilch. 2024.
“Impact Pathways: Geopolitics, Risk and Ethics in Critical
Minerals Supply Chains.” International Journal of Operations
&Amp; Production Management, September. https://doi.org/10.1108/ijopm-03-2024-0228.
Bhardwaj, Kshitij, Marton Havasi, Yuan Yao, David M. Brooks, José Miguel
Hernández-Lobato, and Gu-Yeon Wei. 2020. “A Comprehensive
Methodology to Determine Optimal Coherence Interfaces for
Many-Accelerator SoCs.” In Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design,
145–50. ACM. https://doi.org/10.1145/3370748.3406564.
Biega, Asia J., Peter Potash, Hal Daumé, Fernando Diaz, and Michèle
Finck. 2020. “Operationalizing the Legal Principle of Data
Minimization for Personalization.” In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in
Information Retrieval, edited by Jimmy Huang, Yi Chang, Xueqi
Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu, 399–408.
ACM. https://doi.org/10.1145/3397271.3401034.
Biggio, Battista, Blaine Nelson, and Pavel Laskov. 2012.
“Poisoning Attacks Against Support Vector Machines.” In
Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1,
2012. icml.cc / Omnipress. http://icml.cc/2012/papers/880.pdf.
Biggs, John, James Myers, Jedrzej Kufel, Emre Ozer, Simon Craske, Antony
Sou, Catherine Ramsdale, Ken Williamson, Richard Price, and Scott White.
2021. “A Natively Flexible 32-Bit Arm Microprocessor.”
Nature 595 (7868): 532–36. https://doi.org/10.1038/s41586-021-03625-w.
Binkert, Nathan, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, et al. 2011. “The Gem5
Simulator.” ACM SIGARCH Computer Architecture News 39
(2): 1–7. https://doi.org/10.1145/2024716.2024718.
Bishop, Christopher M. 2006. Pattern Recognition and Machine
Learning. Springer.
Blackwood, Jayden, Frances C. Wright, Nicole J. Look Hong, and Anna R.
Gagliardi. 2019. “Quality of DCIS Information on the Internet: A
Content Analysis.” Breast Cancer Research and Treatment
177 (2): 295–305. https://doi.org/10.1007/s10549-019-05315-8.
Bohr, Adam, and Kaveh Memarzadeh. 2020. “The Rise of Artificial
Intelligence in Healthcare Applications.” In Artificial
Intelligence in Healthcare, 25–60. Elsevier. https://doi.org/10.1016/b978-0-12-818438-7.00002-2.
Bolchini, Cristiana, Luca Cassano, Antonio Miele, and Alessandro Toschi.
2023. “Fast and Accurate Error Simulation for CNNs Against Soft
Errors.” IEEE Transactions on Computers 72 (4): 984–97.
https://doi.org/10.1109/tc.2022.3184274.
Bondi, Elizabeth, Ashish Kapoor, Debadeepta Dey, James Piavis, Shital
Shah, Robert Hannaford, Arvind Iyer, Lucas Joppa, and Milind Tambe.
2018. “Near Real-Time Detection of Poachers from Drones in
AirSim.” In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, edited by Jérôme Lang,
5814–16. International Joint Conferences on Artificial Intelligence
Organization. https://doi.org/10.24963/ijcai.2018/847.
Bourtoule, Lucas, Varun Chandrasekaran, Christopher A. Choquette-Choo,
Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas
Papernot. 2021. “Machine Unlearning.” In 2021 IEEE
Symposium on Security and Privacy (SP), 141–59. IEEE; IEEE. https://doi.org/10.1109/sp40001.2021.00019.
Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, et al. 2018. “JAX:
Composable Transformations of Python+NumPy Programs.” http://github.com/google/jax.
Breier, Jakub, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang
Liu. 2018. “DeepLaser: Practical Fault Attack on Deep Neural
Networks.” ArXiv Preprint abs/1806.05859 (June). http://arxiv.org/abs/1806.05859v2.
Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
and et al. 2020. “Language Models Are Few-Shot Learners.”
Advances in Neural Information Processing Systems (NeurIPS) 33:
1877–1901.
Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, et al. 2020. “Language
Models Are Few-Shot Learners.” arXiv Preprint
arXiv:2005.14165, May. http://arxiv.org/abs/2005.14165v4.
Brynjolfsson, Erik, and Andrew McAfee. 2014. The Second Machine Age:
Work, Progress, and Prosperity in a Time of Brilliant Technologies, 1st
Edition. W. W. Norton Company.
Buolamwini, Joy, and Timnit Gebru. 2018a. “Gender Shades:
Intersectional Accuracy Disparities in Commercial Gender
Classification.” In Conference on Fairness, Accountability
and Transparency, 77–91. PMLR. http://proceedings.mlr.press/v81/buolamwini18a.html.
———. 2018b. “Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification.” In Conference on Fairness,
Accountability and Transparency, 77–91. PMLR. http://proceedings.mlr.press/v81/buolamwini18a.html.
Burnet, David, and Richard Thomas. 1989. “Spycatcher: The
Commodification of Truth.” Journal of Law and Society 16
(2): 210. https://doi.org/10.2307/1410360.
Burr, Geoffrey W., Matthew J. BrightSky, Abu Sebastian, Huai-Yu Cheng,
Jau-Yi Wu, Sangbum Kim, Norma E. Sosa, et al. 2016. “Recent
Progress in Phase-Change<?pub _Newline ?>memory
Technology.” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems 6 (2): 146–62. https://doi.org/10.1109/jetcas.2016.2547718.
Bushnell, Michael L, and Vishwani D Agrawal. 2002. “Built-in
Self-Test.” Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits, 489–548.
Buyya, Rajkumar, Anton Beloglazov, and Jemal Abawajy. 2010.
“Energy-Efficient Management of Data Center Resources for Cloud
Computing: A Vision, Architectural Elements, and Open
Challenges,” June. http://arxiv.org/abs/1006.0308v1.
Cai, Carrie J., Emily Reif, Narayan Hegde, Jason Hipp, Been Kim, Daniel
Smilkov, Martin Wattenberg, et al. 2019. “Human-Centered Tools for
Coping with Imperfect Algorithms During Medical Decision-Making.”
In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, edited by Jennifer G. Dy and Andreas Krause,
80:1–14. Proceedings of Machine Learning Research. ACM. https://doi.org/10.1145/3290605.3300234.
Cai, Han, Chuang Gan, Ligeng Zhu, and Song Han 0003. 2020.
“TinyTL: Reduce Memory, Not Parameters for Efficient on-Device
Learning.” In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, Virtual, edited by Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin. https://proceedings.neurips.cc/paper/2020/hash/81f7acabd411274fcf65ce2070ed568a-Abstract.html.
Cai, Han, Ligeng Zhu, and Song Han. 2019. “ProxylessNAS: Direct
Neural Architecture Search on Target Task and Hardware.” In
7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net. https://openreview.net/forum?id=HylVB3AqYm.
Calvo, Rafael A., Dorian Peters, Karina Vold, and Richard M. Ryan. 2020.
“Supporting Human Autonomy in AI Systems: A Framework for Ethical
Enquiry.” In Ethics of Digital Well-Being, 31–54.
Springer International Publishing. https://doi.org/10.1007/978-3-030-50585-1_2.
Carey, Alycia N., Karuna Bhaila, and Xintao Wu. 2023. “Randomized
Response Has No Disparate Impact on Model Accuracy.” In 2023
IEEE International Conference on Big Data (BigData), 35:5460–65.
IEEE. https://doi.org/10.1109/bigdata59044.2023.10386574.
Carlini, Nicolas, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash
Sehwag, Florian Tramer, Borja Balle, Daphne Ippolito, and Eric Wallace.
2023. “Extracting Training Data from Diffusion Models.” In
32nd USENIX Security Symposium (USENIX Security 23), 5253–70.
Carta, Salvatore, Alessandro Sebastian Podda, Diego Reforgiato Recupero,
and Roberto Saia. 2020. “A Local Feature Engineering Strategy to
Improve Network Anomaly Detection.” Future Internet 12
(10): 177. https://doi.org/10.3390/fi12100177.
Cavoukian, Ann. 2009. “Privacy by Design.” Office of
the Information and Privacy Commissioner.
Cenci, Marcelo Pilotto, Tatiana Scarazzato, Daniel Dotto Munchen, Paula
Cristina Dartora, Hugo Marcelo Veit, Andrea Moura Bernardes, and Pablo
R. Dias. 2021. “Eco‐friendly Electronics—a Comprehensive
Review.” Advanced Materials Technologies 7 (2): 2001263.
https://doi.org/10.1002/admt.202001263.
Chandola, Varun, Arindam Banerjee, and Vipin Kumar. 2009. “Anomaly
Detection: A Survey.” ACM Computing Surveys 41 (3):
1–58. https://doi.org/10.1145/1541880.1541882.
Chapelle, O., B. Scholkopf, and A. Zien Eds. 2009.
“Semi-Supervised Learning (Chapelle, o. Et Al., Eds.; 2006) [Book
Reviews].” IEEE Transactions on Neural Networks 20 (3):
542–42. https://doi.org/10.1109/tnn.2009.2015974.
Chen, Chaofan, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and
Jonathan Su. 2019. “This Looks Like That: Deep Learning for
Interpretable Image Recognition.” In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, edited by Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, 8928–39. https://proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html.
Chen, Emma, Shvetank Prakash, Vijay Janapa Reddi, David Kim, and Pranav
Rajpurkar. 2023. “A Framework for Integrating Artificial
Intelligence for Clinical Care with Continuous Therapeutic
Monitoring.” Nature Biomedical Engineering, November. https://doi.org/10.1038/s41551-023-01115-0.
Chen, H.-W. 2006. “Gallium, Indium, and Arsenic Pollution of
Groundwater from a Semiconductor Manufacturing Area of Taiwan.”
Bulletin of Environmental Contamination and Toxicology 77 (2):
289–96. https://doi.org/10.1007/s00128-006-1062-3.
Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, et al. 2021.
“Evaluating Large Language Models Trained on Code.”
arXiv Preprint arXiv:2107.03374, July. http://arxiv.org/abs/2107.03374v2.
Chen, Mia Xu, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang
Macherey, George Foster, Llion Jones, et al. 2018. “The Best of
Both Worlds: Combining Recent Advances in Neural Machine
Translation.” In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long
Papers), 30:5998–6008. Association for Computational Linguistics.
https://doi.org/10.18653/v1/p18-1008.
Chen, Tianqi, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015.
“MXNet: A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems.” arXiv Preprint
arXiv:1512.01274, December. http://arxiv.org/abs/1512.01274v1.
Chen, Tianqi, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, et al. 2018. “TVM: An Automated
End-to-End Optimizing Compiler for Deep Learning.” In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), 578–94.
Chen, Tianqi, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016.
“Training Deep Nets with Sublinear Memory Cost.”
CoRR abs/1604.06174 (April). http://arxiv.org/abs/1604.06174v2.
Chen, Zhiyong, and Shugong Xu. 2023. “Learning
Domain-Heterogeneous Speaker Recognition Systems with Personalized
Continual Federated Learning.” EURASIP Journal on Audio,
Speech, and Music Processing 2023 (1): 33. https://doi.org/10.1186/s13636-023-00299-2.
Chen, Zitao, Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben.
2019. “<I>BinFI</i>: An Efficient Fault Injector for
Safety-Critical Machine Learning Systems.” In Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis, 1–23. SC ’19. New York, NY, USA: ACM. https://doi.org/10.1145/3295500.3356177.
Chen, Zitao, Niranjhana Narayanan, Bo Fang, Guanpeng Li, Karthik
Pattabiraman, and Nathan DeBardeleben. 2020. “TensorFI: A Flexible
Fault Injection Framework for TensorFlow Applications.” In
2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE), 426–35. IEEE; IEEE. https://doi.org/10.1109/issre5003.2020.00047.
Cheng, Eric, Shahrzad Mirkhani, Lukasz G. Szafaryn, Chen-Yong Cher,
Hyungmin Cho, Kevin Skadron, Mircea R. Stan, et al. 2016. “CLEAR:
<U>c</u> Ross <u>-l</u> Ayer
<u>e</u> Xploration for <u>a</u> Rchitecting
<u>r</u> Esilience - Combining Hardware and Software
Techniques to Tolerate Soft Errors in Processor Cores.” In
Proceedings of the 53rd Annual Design Automation Conference,
1–6. ACM. https://doi.org/10.1145/2897937.2897996.
Cheng, Yu, Duo Wang, Pan Zhou, and Tao Zhang. 2018. “Model
Compression and Acceleration for Deep Neural Networks: The Principles,
Progress, and Challenges.” IEEE Signal Processing
Magazine 35 (1): 126–36. https://doi.org/10.1109/msp.2017.2765695.
Chetlur, Sharan, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. “cuDNN:
Efficient Primitives for Deep Learning.” arXiv Preprint
arXiv:1410.0759, October. http://arxiv.org/abs/1410.0759v3.
Chi, Ping, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu,
Yu Wang, and Yuan Xie. 2016. “PRIME: A Novel Processing-in-Memory
Architecture for Neural Network Computation in ReRAM-Based Main
Memory.” ACM SIGARCH Computer Architecture News 44 (3):
27–39. https://doi.org/10.1145/3007787.3001140.
Cho, Kyunghyun, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua
Bengio. 2014. “On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches.” In Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation (SSST-8),
103–11. Association for Computational Linguistics.
Chollet, François et al. 2015. “Keras.” GitHub
Repository. https://github.com/fchollet/keras.
Chollet, François. 2018. “Introduction to Keras.” March
9th.
Christiano, Paul F., Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg,
and Dario Amodei. 2017. “Deep Reinforcement Learning from Human
Preferences.” In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, edited by Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S.
V. N. Vishwanathan, and Roman Garnett, 4299–4307. https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html.
Chu, Grace, Okan Arikan, Gabriel Bender, Weijun Wang, Achille Brighton,
Pieter-Jan Kindermans, Hanxiao Liu, Berkin Akin, Suyog Gupta, and Andrew
Howard. 2021. “Discovering Multi-Hardware Mobile Models via
Architecture Search.” In 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 3016–25. IEEE. https://doi.org/10.1109/cvprw53098.2021.00337.
Chua, L. 1971. “Memristor-the Missing Circuit Element.”
IEEE Transactions on Circuit Theory 18 (5): 507–19. https://doi.org/10.1109/tct.1971.1083337.
Chung, Jae-Won, Yile Gu, Insu Jang, Luoxi Meng, Nikhil Bansal, and
Mosharaf Chowdhury. 2023. “Reducing Energy Bloat in Large Model
Training.” ArXiv Preprint abs/2312.06902 (December). http://arxiv.org/abs/2312.06902v3.
Cohen, Maxime C., Ruben Lobel, and Georgia Perakis. 2016. “The
Impact of Demand Uncertainty on Consumer Subsidies for Green Technology
Adoption.” Management Science 62 (5): 1235–58. https://doi.org/10.1287/mnsc.2015.2173.
Coleman, Cody, Edward Chou, Julian Katz-Samuels, Sean Culatana, Peter
Bailis, Alexander C. Berg, Robert Nowak, Roshan Sumbaly, Matei Zaharia,
and I. Zeki Yalniz. 2022. “Similarity Search for Efficient Active
Learning and Search of Rare Concepts.” Proceedings of the
AAAI Conference on Artificial Intelligence 36 (6): 6402–10. https://doi.org/10.1609/aaai.v36i6.20591.
Constantinescu, Cristian. 2008. “Intermittent Faults and Effects
on Reliability of Integrated Circuits.” In 2008 Annual
Reliability and Maintainability Symposium, 370–74. IEEE; IEEE. https://doi.org/10.1109/rams.2008.4925824.
Cooper, Tom, Suzanne Fallender, Joyann Pafumi, Jon Dettling, Sebastien
Humbert, and Lindsay Lessard. 2011. “A Semiconductor Company’s
Examination of Its Water Footprint Approach.” In Proceedings
of the 2011 IEEE International Symposium on Sustainable Systems and
Technology, 1–6. IEEE; IEEE. https://doi.org/10.1109/issst.2011.5936865.
Cope, Gord. 2009. “Pure Water, Semiconductors and the
Recession.” Global Water Intelligence 10 (10).
Corporation, Thinking Machines. 1992. CM-5 Technical Summary.
Thinking Machines Corporation.
Courbariaux, Matthieu, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. 2016. “Binarized Neural Networks: Training Deep
Neural Networks with Weights and Activations Constrained to +1 or
-1.” arXiv Preprint arXiv:1602.02830, February. http://arxiv.org/abs/1602.02830v3.
Crankshaw, Daniel, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E
Gonzalez, and Ion Stoica. 2017. “Clipper: A {Low-Latency} Online Prediction Serving System.”
In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), 613–27.
Curnow, H. J. 1976. “A Synthetic Benchmark.” The
Computer Journal 19 (1): 43–49. https://doi.org/10.1093/comjnl/19.1.43.
Cybenko, G. 1992. “Approximation by Superpositions of a Sigmoidal
Function.” Mathematics of Control, Signals, and Systems
5 (4): 455–55. https://doi.org/10.1007/bf02134016.
D’Ignazio, Catherine, and Lauren F. Klein. 2020. “Seven
Intersectional Feminist Principles for Equitable and Actionable COVID-19
Data.” Big Data &Amp; Society 7 (2):
2053951720942544. https://doi.org/10.1177/2053951720942544.
Dally, William J., Stephen W. Keckler, and David B. Kirk. 2021.
“Evolution of the Graphics Processing Unit (GPU).” IEEE
Micro 41 (6): 42–51. https://doi.org/10.1109/mm.2021.3113475.
Darvish Rouhani, Bita, Azalia Mirhoseini, and Farinaz Koushanfar. 2017.
“TinyDL: Just-in-Time Deep Learning Solution for Constrained
Embedded Systems.” In 2017 IEEE International Symposium on
Circuits and Systems (ISCAS), 1–4. IEEE. https://doi.org/10.1109/iscas.2017.8050343.
Davarzani, Samaneh, David Saucier, Purva Talegaonkar, Erin Parker, Alana
Turner, Carver Middleton, Will Carroll, et al. 2023. “Closing the
Wearable Gap: Foot–Ankle Kinematic Modeling via Deep Learning Models
Based on a Smart Sock Wearable.” Wearable Technologies
4. https://doi.org/10.1017/wtc.2023.3.
David, Robert, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat
Jeffries, Jian Li, Nick Kreeger, et al. 2021. “Tensorflow Lite
Micro: Embedded Machine Learning for Tinyml Systems.”
Proceedings of Machine Learning and Systems 3: 800–811.
Davies, Martin. 2011. “Endangered Elements: Critical
Thinking.” In Study Skills for International
Postgraduates, 111–30. Macmillan Education UK. https://doi.org/10.1007/978-0-230-34553-9\_8.
Davies, Mike, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,
Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, et al. 2018.
“Loihi: A Neuromorphic Manycore Processor with on-Chip
Learning.” IEEE Micro 38 (1): 82–99. https://doi.org/10.1109/mm.2018.112130359.
Davies, Mike, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya,
Gabriel A. Fonseca Guerra, Prasad Joshi, Philipp Plank, and Sumedh R.
Risbud. 2021. “Advancing Neuromorphic Computing with Loihi: A
Survey of Results and Outlook.” Proceedings of the IEEE
109 (5): 911–34. https://doi.org/10.1109/jproc.2021.3067593.
Davis, Jacqueline, Daniel Bizo, Andy Lawrence, Owen Rogers, and Max
Smolaks. 2022. “Uptime Institute Global Data Center Survey
2022.” Uptime Institute.
Dayarathna, Miyuru, Yonggang Wen, and Rui Fan. 2016. “Data Center
Energy Consumption Modeling: A Survey.” IEEE Communications
Surveys &Amp; Tutorials 18 (1): 732–94. https://doi.org/10.1109/comst.2015.2481183.
Dean, Jeffrey, and Sanjay Ghemawat. 2008. “MapReduce: Simplified
Data Processing on Large Clusters.” Communications of the
ACM 51 (1): 107–13. https://doi.org/10.1145/1327452.1327492.
Deng, Jia, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009.
“ImageNet: A Large-Scale Hierarchical Image Database.” In
2009 IEEE Conference on Computer Vision and Pattern
Recognition, 248–55. Ieee; IEEE. https://doi.org/10.1109/cvprw.2009.5206848.
Desai, Tanvi, Felix Ritchie, Richard Welpton, et al. 2016. “Five
Safes: Designing Data Access for Research.” Economics Working
Paper Series 1601: 28.
Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018.
“BERT: Pre-Training of Deep Bidirectional Transformers for
Language Understanding,” October, 4171–86. http://arxiv.org/abs/1810.04805v2.
Dhar, Sauptik, Junyao Guo, Jiayi (Jason) Liu, Samarth Tripathi, Unmesh
Kurup, and Mohak Shah. 2021. “A Survey of on-Device Machine
Learning: An Algorithms and Learning Theory Perspective.” ACM
Transactions on Internet of Things 2 (3): 1–49. https://doi.org/10.1145/3450494.
Domingos, Pedro. 2016. “The Master Algorithm: How the Quest for
the Ultimate Learning Machine Will Remake Our World.” Choice
Reviews Online 53 (07): 53–3100. https://doi.org/10.5860/choice.194685.
Dong, Xin, Barbara De Salvo, Meng Li, Chiao Liu, Zhongnan Qu, H. T.
Kung, and Ziyun Li. 2022. “SplitNets: Designing Neural
Architectures for Efficient Distributed Computing on Head-Mounted
Systems.” In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 12549–59. IEEE. https://doi.org/10.1109/cvpr52688.2022.01223.
Dongarra, Jack J. 2009. “The Evolution of High Performance
Computing on System z.” IBM J. Res. Dev. 53: 3–4.
Dongarra, Jack J., Jeremy Du Croz, Sven Hammarling, and Richard J.
Hanson. 1988. “An Extended Set of FORTRAN Basic Linear Algebra
Subprograms.” ACM Transactions on Mathematical Software
14 (1): 1–17. https://doi.org/10.1145/42288.42291.
Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al.
2021. “An Image Is Worth 16x16 Words: Transformers for Image
Recognition at Scale.” International Conference on Learning
Representations.
Duarte, Javier, Nhan Tran, Ben Hawks, Christian Herwig, Jules Muhizi,
Shvetank Prakash, and Vijay Janapa Reddi. 2022. “FastML Science
Benchmarks: Accelerating Real-Time Scientific Edge Machine
Learning.” ArXiv Preprint abs/2207.07958 (July). http://arxiv.org/abs/2207.07958v1.
Duisterhof, Bardienus P., Shushuai Li, Javier Burgues, Vijay Janapa
Reddi, and Guido C. H. E. de Croon. 2021. “Sniffy Bug: A Fully
Autonomous Swarm of Gas-Seeking Nano Quadcopters in Cluttered
Environments.” In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 9099–9106. IEEE; IEEE. https://doi.org/10.1109/iros51168.2021.9636217.
Dwork, Cynthia. n.d. “Differential Privacy: A Survey of
Results.” In Theory and Applications of Models of
Computation, 1–19. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-79228-4\_1.
Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006.
“Calibrating Noise to Sensitivity in Private Data
Analysis.” In Theory of Cryptography, edited by Shai
Halevi and Tal Rabin, 265–84. Berlin, Heidelberg: Springer Berlin
Heidelberg. https://doi.org/10.1007/11681878\_14.
Dwork, Cynthia, and Aaron Roth. 2013. “The Algorithmic Foundations
of Differential Privacy.” Foundations and Trends® in
Theoretical Computer Science 9 (3-4): 211–407. https://doi.org/10.1561/0400000042.
Ebrahimi, Khosrow, Gerard F. Jones, and Amy S. Fleischer. 2014. “A
Review of Data Center Cooling Technology, Operating Conditions and the
Corresponding Low-Grade Waste Heat Recovery Opportunities.”
Renewable and Sustainable Energy Reviews 31 (March): 622–38. https://doi.org/10.1016/j.rser.2013.12.007.
Egwutuoha, Ifeanyi P., David Levy, Bran Selic, and Shiping Chen. 2013.
“A Survey of Fault Tolerance Mechanisms and Checkpoint/Restart
Implementations for High Performance Computing Systems.” The
Journal of Supercomputing 65 (3): 1302–26. https://doi.org/10.1007/s11227-013-0884-0.
Eisenman, Assaf, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere,
Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyanskiy, and
Murali Annavaram. 2022. “Check-n-Run: A Checkpointing System for
Training Deep Learning Recommendation Models.” In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22),
929–43. https://www.usenix.org/conference/nsdi22/presentation/eisenman.
Eldan, Ronen, and Mark Russinovich. 2023. “Who’s Harry Potter?
Approximate Unlearning in LLMs.” ArXiv Preprint
abs/2310.02238 (October). http://arxiv.org/abs/2310.02238v2.
Elman, Jeffrey L. 2002. “Finding Structure in Time.” In
Cognitive Modeling, 14:257–88. 2. The MIT Press. https://doi.org/10.7551/mitpress/1888.003.0015.
El-Rayis, A. O. 2014. “Reconfigurable Architectures for the Next
Generation of Mobile Device Telecommunications Systems.” :
https://www.researchgate.net/publication/292608967.
Elsken, Thomas, Jan Hendrik Metzen, and Frank Hutter. 2019.
“Neural Architecture Search.” In Automated Machine
Learning, 20:63–77. 55. Springer International Publishing. https://doi.org/10.1007/978-3-030-05318-5\_3.
Eshraghian, Jason K., Max Ward, Emre O. Neftci, Xinxin Wang, Gregor
Lenz, Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu.
2023. “Training Spiking Neural Networks Using Lessons from Deep
Learning.” Proceedings of the IEEE 111 (9): 1016–54. https://doi.org/10.1109/jproc.2023.3308088.
Esteva, Andre, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M.
Swetter, Helen M. Blau, and Sebastian Thrun. 2017.
“Dermatologist-Level Classification of Skin Cancer with Deep
Neural Networks.” Nature 542 (7639): 115–18. https://doi.org/10.1038/nature21056.
Everingham, Mark, Luc Van Gool, Christopher K. I. Williams, John Winn,
and Andrew Zisserman. 2009. “The Pascal Visual Object Classes
(VOC) Challenge.” International Journal of Computer
Vision 88 (2): 303–38. https://doi.org/10.1007/s11263-009-0275-4.
Eykholt, Kevin, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2017.
“Robust Physical-World Attacks on Deep Learning Models.”
ArXiv Preprint abs/1707.08945 (July). http://arxiv.org/abs/1707.08945v5.
Fahim, Farah, Benjamin Hawks, Christian Herwig, James Hirschauer, Sergo
Jindariani, Nhan Tran, Luca P. Carloni, et al. 2021. “Hls4ml: An
Open-Source Codesign Workflow to Empower Scientific Low-Power Machine
Learning Devices,” March. http://arxiv.org/abs/2103.05579v3.
Farah, Martha J. 2005. “Neuroethics: The Practical and the
Philosophical.” Trends in Cognitive Sciences 9 (1):
34–40. https://doi.org/10.1016/j.tics.2004.12.001.
Farwell, James P., and Rafal Rohozinski. 2011. “Stuxnet and the
Future of Cyber War.” Survival 53 (1): 23–40. https://doi.org/10.1080/00396338.2011.555586.
Feldman, Andrew, Sean Lie, Michael James, et al. 2020. “The
Cerebras Wafer-Scale Engine: Opportunities and Challenges of Building an
Accelerator at Wafer Scale.” IEEE Micro 40 (2): 20–29.
https://doi.org/10.1109/MM.2020.2975796.
Ferentinos, Konstantinos P. 2018. “Deep Learning Models for Plant
Disease Detection and Diagnosis.” Computers and Electronics
in Agriculture 145 (February): 311–18. https://doi.org/10.1016/j.compag.2018.01.009.
Fowers, Jeremy, Kalin Ovtcharov, Michael Papamichael, Todd Massengill,
Ming Liu, Daniel Lo, Shlomi Alkalay, et al. 2018. “A Configurable
Cloud-Scale DNN Processor for Real-Time AI.” In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture
(ISCA), 1–14. IEEE; IEEE. https://doi.org/10.1109/isca.2018.00012.
Francalanza, Adrian, Luca Aceto, Antonis Achilleos, Duncan Paul Attard,
Ian Cassar, Dario Della Monica, and Anna Ingólfsdóttir. 2017. “A
Foundation for Runtime Monitoring.” In Runtime
Verification, 8–29. Springer; Springer International Publishing. https://doi.org/10.1007/978-3-319-67531-2\_2.
Frankle, Jonathan, and Michael Carbin. 2019. “The Lottery Ticket
Hypothesis: Finding Sparse, Trainable Neural Networks.” In
7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net. https://openreview.net/forum?id=rJl-b3RcF7.
Friedman, Batya. 1996. “Value-Sensitive Design.”
Interactions 3 (6): 16–23. https://doi.org/10.1145/242485.242493.
Furber, Steve. 2016. “Large-Scale Neuromorphic Computing
Systems.” Journal of Neural Engineering 13 (5): 051001.
https://doi.org/10.1088/1741-2560/13/5/051001.
Fursov, Ivan, Matvey Morozov, Nina Kaploukhaya, Elizaveta Kovtun,
Rodrigo Rivera-Castro, Gleb Gusev, Dmitry Babaev, Ivan Kireev, Alexey
Zaytsev, and Evgeny Burnaev. 2021. “Adversarial Attacks on Deep
Models for Financial Transaction Records.” In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery &Amp; Data
Mining, 2868–78. ACM. https://doi.org/10.1145/3447548.3467145.
Gale, Trevor, Erich Elsen, and Sara Hooker. 2019. “The State of
Sparsity in Deep Neural Networks.” ArXiv Preprint
abs/1902.09574 (February). http://arxiv.org/abs/1902.09574v1.
Gandolfi, Karine, Christophe Mourtel, and Francis Olivier. 2001.
“Electromagnetic Analysis: Concrete Results.” In
Cryptographic Hardware and Embedded Systems — CHES 2001,
251–61. Springer; Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-44709-1\_21.
Gannot, G., and M. Ligthart. n.d. “Verilog HDL Based FPGA
Design.” In International Verilog HDL Conference, 86–92.
IEEE. https://doi.org/10.1109/ivc.1994.323743.
Gao, Yansong, Said F. Al-Sarawi, and Derek Abbott. 2020. “Physical
Unclonable Functions.” Nature Electronics 3 (2): 81–91.
https://doi.org/10.1038/s41928-020-0372-5.
Gates, Byron D. 2009. “Flexible Electronics.”
Science 323 (5921): 1566–67. https://doi.org/10.1126/science.1171230.
Gebru, Timnit, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman
Vaughan, Hanna Wallach, Hal Daumé III, and Kate Crawford. 2021b.
“Datasheets for Datasets.” Communications of the
ACM 64 (12): 86–92. https://doi.org/10.1145/3458723.
———. 2021a. “Datasheets for Datasets.” Communications
of the ACM 64 (12): 86–92. https://doi.org/10.1145/3458723.
Geiger, Atticus, Hanson Lu, Thomas Icard, and Christopher Potts. 2021.
“Causal Abstractions of Neural Networks.” In Advances
in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
Virtual, edited by Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, 9574–86. https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html.
Ghojogh, Benyamin, and Ali Ghodsi. 2024. “Neural Network
Compression and Knowledge Distillation: Tutorial and Survey.”
Center for Open Science. https://doi.org/10.31219/osf.io/4n2cb.
Gholami, Amir, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney,
and Kurt Keutzer. 2021. “A Survey of Quantization Methods for
Efficient Neural Network Inference.” ArXiv Preprint
abs/2103.13630 (March). http://arxiv.org/abs/2103.13630v3.
Ghosh, Tapabrata. 2017. “Towards a New Interpretation of Separable
Convolutions.” In 2017 Intelligent Systems Conference
(IntelliSys), 112–16. IEEE. https://doi.org/10.1109/intellisys.2017.8324241.
Gnad, Dennis R. E., Fabian Oboril, and Mehdi B. Tahoori. 2017.
“Voltage Drop-Based Fault Attacks on FPGAs Using Valid
Bitstreams.” In 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), 1–7. IEEE; IEEE. https://doi.org/10.23919/fpl.2017.8056840.
Goodfellow, Ian J., Aaron Courville, and Yoshua Bengio. 2013.
“Scaling up Spike-and-Slab Models for Unsupervised Feature
Learning.” IEEE Transactions on Pattern Analysis and Machine
Intelligence 35 (8): 1902–14. https://doi.org/10.1109/tpami.2012.273.
Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020.
“Generative Adversarial Networks.” Communications of
the ACM 63 (11): 139–44. https://doi.org/10.1145/3422622.
Gordon, Ariel, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang,
and Edward Choi. 2018. “MorphNet: Fast &Amp; Simple
Resource-Constrained Structure Learning of Deep Networks.” In
2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 1586–95. IEEE. https://doi.org/10.1109/cvpr.2018.00171.
Gräfe, Ralf, Qutub Syed Sha, Florian Geissler, and Michael Paulitsch.
2023. “Large-Scale Application of Fault Injection into PyTorch
Models -an Extension to PyTorchFI for Validation Efficiency.” In
2023 53rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks - Supplemental Volume (DSN-s), 56–62. IEEE;
IEEE. https://doi.org/10.1109/dsn-s58398.2023.00025.
Greengard, Samuel. 2021. The Internet of Things. The MIT Press.
https://doi.org/10.7551/mitpress/13937.001.0001.
Groeneveld, Dirk, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney,
Oyvind Tafjord, Ananya Harsh Jha, et al. 2024. “OLMo: Accelerating
the Science of Language Models.” arXiv Preprint
arXiv:2402.00838, February. http://arxiv.org/abs/2402.00838v4.
Grossman, Elizabeth. 2007. High Tech Trash: Digital Devices, Hidden
Toxics, and Human Health. Island press.
Gruslys, Audrunas, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex
Graves. 2016. “Memory-Efficient Backpropagation Through
Time.” In Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, edited by Daniel D. Lee,
Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
4125–33. https://proceedings.neurips.cc/paper/2016/hash/a501bebf79d570651ff601788ea9d16d-Abstract.html.
Gu, Ivy. 2023. “Deep Learning Model Compression (Ii) by Ivy Gu
Medium.” https://ivygdy.medium.com/deep-learning-model-compression-ii-546352ea9453.
Gudivada, Venkat N., Dhana Rao Rao, et al. 2017. “Data Quality
Considerations for Big Data and Machine Learning: Going Beyond Data
Cleaning and Transformations.” IEEE Transactions on Knowledge
and Data Engineering.
Gujarati, Arpan, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann,
Ymir Vigfusson, and Jonathan Mace. 2020. “Serving DNNs Like
Clockwork: Performance Predictability from the Bottom Up.” In
14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), 443–62. https://www.usenix.org/conference/osdi20/presentation/gujarati.
Gulshan, Varun, Lily Peng, Marc Coram, Martin C. Stumpe, Derek Wu,
Arunachalam Narayanaswamy, Subhashini Venugopalan, et al. 2016.
“Development and Validation of a Deep Learning Algorithm for
Detection of Diabetic Retinopathy in Retinal Fundus Photographs.”
JAMA 316 (22): 2402. https://doi.org/10.1001/jama.2016.17216.
Guo, Yutao, Hao Wang, Hui Zhang, Tong Liu, Zhaoguang Liang, Yunlong Xia,
Li Yan, et al. 2019. “Mobile Photoplethysmographic Technology to
Detect Atrial Fibrillation.” Journal of the American College
of Cardiology 74 (19): 2365–75. https://doi.org/10.1016/j.jacc.2019.08.019.
Gupta, Maanak, Charankumar Akiri, Kshitiz Aryal, Eli Parker, and
Lopamudra Praharaj. 2023. “From ChatGPT to ThreatGPT: Impact of
Generative AI in Cybersecurity and Privacy.” IEEE Access
11: 80218–45. https://doi.org/10.1109/access.2023.3300381.
Gupta, Maya R., Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin
Robert Canini, Alexander Mangylov, Wojtek Moczydlowski, and Alexander
Van Esbroeck. 2016. “Monotonic Calibrated Interpolated Look-up
Tables.” J. Mach. Learn. Res. 17 (1): 109:1–47. https://jmlr.org/papers/v17/15-243.html.
Gupta, Udit, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee,
David Brooks, and Carole-Jean Wu. 2022. “ACT: Designing
Sustainable Computer Systems with an Architectural Carbon Modeling
Tool.” In Proceedings of the 49th Annual International
Symposium on Computer Architecture, 784–99. ACM. https://doi.org/10.1145/3470496.3527408.
Gwennap, Linley. n.d. “Certus-NX Innovates General-Purpose
FPGAs.”
Haensch, Wilfried, Tayfun Gokmen, and Ruchir Puri. 2019. “The Next
Generation of Deep Learning Hardware: Analog Computing.”
Proceedings of the IEEE 107 (1): 108–22. https://doi.org/10.1109/jproc.2018.2871057.
Hamming, R. W. 1950. “Error Detecting and Error Correcting
Codes.” Bell System Technical Journal 29 (2): 147–60. https://doi.org/10.1002/j.1538-7305.1950.tb00463.x.
Han, Song, Huizi Mao, and William J. Dally. 2015. “Deep
Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding.” arXiv Preprint
arXiv:1510.00149, October. http://arxiv.org/abs/1510.00149v5.
Handlin, Oscar. 1965. “Science and Technology in Popular
Culture.” Daedalus-Us., 156–70.
Hardt, Moritz, Eric Price, and Nati Srebro. 2016. “Equality of
Opportunity in Supervised Learning.” In Advances in Neural
Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, edited by Daniel D. Lee, Masashi Sugiyama, Ulrike von
Luxburg, Isabelle Guyon, and Roman Garnett, 3315–23. https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html.
Hawks, Benjamin, Javier Duarte, Nicholas J. Fraser, Alessandro
Pappalardo, Nhan Tran, and Yaman Umuroglu. 2021. “Ps and Qs:
Quantization-Aware Pruning for Efficient Low Latency Neural Network
Inference.” Frontiers in Artificial Intelligence 4
(July). https://doi.org/10.3389/frai.2021.676564.
Hazan, Avi, and Elishai Ezra Tsur. 2021. “Neuromorphic Analog
Implementation of Neural Engineering Framework-Inspired Spiking Neuron
for High-Dimensional Representation.” Frontiers in
Neuroscience 15 (February): 627221. https://doi.org/10.3389/fnins.2021.627221.
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016a.
“Deep Residual Learning for Image Recognition.” In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
770–78. IEEE. https://doi.org/10.1109/cvpr.2016.90.
———. 2016b. “Deep Residual Learning for Image Recognition.”
In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 770–78. IEEE. https://doi.org/10.1109/cvpr.2016.90.
He, Yi, Prasanna Balaprakash, and Yanjing Li. 2020. “FIdelity:
Efficient Resilience Analysis Framework for Deep Learning
Accelerators.” In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 270–81. IEEE; IEEE. https://doi.org/10.1109/micro50266.2020.00033.
He, Yi, Mike Hutton, Steven Chan, Robert De Gruijl, Rama Govindaraju,
Nishant Patil, and Yanjing Li. 2023. “Understanding and Mitigating
Hardware Failures in Deep Learning Training Systems.” In
Proceedings of the 50th Annual International Symposium on Computer
Architecture, 1–16. IEEE; ACM. https://doi.org/10.1145/3579371.3589105.
Hébert-Johnson, Úrsula, Michael P. Kim, Omer Reingold, and Guy N.
Rothblum. 2018. “Multicalibration: Calibration for the
(Computationally-Identifiable) Masses.” In Proceedings of the
35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, edited by
Jennifer G. Dy and Andreas Krause, 80:1944–53. Proceedings of Machine
Learning Research. PMLR. http://proceedings.mlr.press/v80/hebert-johnson18a.html.
Henderson, Peter, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky,
and Joelle Pineau. 2020. “Towards the Systematic Reporting of the
Energy and Carbon Footprints of Machine Learning.” CoRR
abs/2002.05651 (1): 10039–81. http://arxiv.org/abs/2002.05651v2.
Hendrycks, Dan, and Thomas Dietterich. 2019. “Benchmarking Neural
Network Robustness to Common Corruptions and Perturbations.”
arXiv Preprint arXiv:1903.12261, March. http://arxiv.org/abs/1903.12261v1.
Hennessy, John L., and David A. Patterson. 2019. “A New Golden Age
for Computer Architecture.” Communications of the ACM 62
(2): 48–60. https://doi.org/10.1145/3282307.
Hennessy, John L, and David A Patterson. 2003. “Computer
Architecture: A Quantitative Approach.” Morgan Kaufmann.
Hernandez, Danny, Tom B. Brown, et al. 2020. “Measuring the
Algorithmic Efficiency of Neural Networks.” OpenAI Blog.
https://openai.com/research/ai-and-efficiency.
Hernandez, Danny, and Tom B. Brown. 2020. “Measuring the
Algorithmic Efficiency of Neural Networks.” arXiv Preprint
arXiv:2007.03051, May. https://doi.org/10.48550/arxiv.2005.04305.
Heyndrickx, Wouter, Lewis Mervin, Tobias Morawietz, Noé Sturm, Lukas
Friedrich, Adam Zalewski, Anastasia Pentina, et al. 2023.
“Melloddy: Cross-Pharma Federated Learning at Unprecedented Scale
Unlocks Benefits in Qsar Without Compromising Proprietary
Information.” Journal of Chemical Information and
Modeling 64 (7): 2331–44. https://pubs.acs.org/doi/10.1021/acs.jcim.3c00799.
Himmelstein, Gracie, David Bates, and Li Zhou. 2022. “Examination
of Stigmatizing Language in the Electronic Health Record.”
JAMA Network Open 5 (1): e2144967. https://doi.org/10.1001/jamanetworkopen.2021.44967.
Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. 2015a. “Distilling
the Knowledge in a Neural Network,” March. https://doi.org/10.1002/0471743984.vse0673.
———. 2015b. “Distilling the Knowledge in a Neural Network.”
arXiv Preprint arXiv:1503.02531, March. http://arxiv.org/abs/1503.02531v1.
Hirschberg, Julia, and Christopher D. Manning. 2015. “Advances in
Natural Language Processing.” Science 349 (6245):
261–66. https://doi.org/10.1126/science.aaa8685.
Hochreiter, Sepp. 1998. “The Vanishing Gradient Problem During
Learning Recurrent Neural Nets and Problem Solutions.”
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 06 (02): 107–16. https://doi.org/10.1142/s0218488598000094.
Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term
Memory.” Neural Computation 9 (8): 1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.
Hong, Sanghyun, Nicholas Carlini, and Alexey Kurakin. 2023.
“Publishing Efficient on-Device Models Increases Adversarial
Vulnerability.” In 2023 IEEE Conference on Secure and
Trustworthy Machine Learning (SaTML), abs 1603 5279:271–90. IEEE;
IEEE. https://doi.org/10.1109/satml54575.2023.00026.
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989.
“Multilayer Feedforward Networks Are Universal
Approximators.” Neural Networks 2 (5): 359–66. https://doi.org/10.1016/0893-6080(89)90020-8.
Horowitz, Mark. 2014. “1.1 Computing’s Energy Problem (and What We
Can Do about It).” In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC). IEEE. https://doi.org/10.1109/isscc.2014.6757323.
Hosseini, Hossein, Sreeram Kannan, Baosen Zhang, and Radha Poovendran.
2017. “Deceiving Google’s Perspective API Built for Detecting
Toxic Comments.” ArXiv Preprint abs/1702.08138
(February). http://arxiv.org/abs/1702.08138v1.
Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017a.
“MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications.” ArXiv Preprint abs/1704.04861
(April). http://arxiv.org/abs/1704.04861v1.
———. 2017b. “MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications,” April. http://arxiv.org/abs/1704.04861v1.
Howard, Jeremy, and Sylvain Gugger. 2020. “Fastai: A Layered API
for Deep Learning.” Information 11 (2): 108. https://doi.org/10.3390/info11020108.
Hsiao, Yu-Shun, Zishen Wan, Tianyu Jia, Radhika Ghosal, Abdulrahman
Mahmoud, Arijit Raychowdhury, David Brooks, Gu-Yeon Wei, and Vijay
Janapa Reddi. 2023. “MAVFI: An End-to-End Fault Analysis Framework
with Anomaly Detection and Recovery for Micro Aerial Vehicles.”
In 2023 Design, Automation &Amp; Test in Europe Conference
&Amp; Exhibition (DATE), 1–6. IEEE; IEEE. https://doi.org/10.23919/date56975.2023.10137246.
Hsu, Liang-Ching, Ching-Yi Huang, Yen-Hsun Chuang, Ho-Wen Chen, Ya-Ting
Chan, Heng Yi Teah, Tsan-Yao Chen, Chiung-Fen Chang, Yu-Ting Liu, and
Yu-Min Tzou. 2016. “Accumulation of Heavy Metals and Trace
Elements in Fluvial Sediments Received Effluents from Traditional and
Semiconductor Industries.” Scientific Reports 6 (1):
34250. https://doi.org/10.1038/srep34250.
Huang, Tsung-Ching, Kenjiro Fukuda, Chun-Ming Lo, Yung-Hui Yeh, Tsuyoshi
Sekitani, Takao Someya, and Kwang-Ting Cheng. 2011. “Pseudo-CMOS:
A Design Style for Low-Cost and Robust Flexible Electronics.”
IEEE Transactions on Electron Devices 58 (1): 141–50. https://doi.org/10.1109/ted.2010.2088127.
Hutter, Frank, Lars Kotthoff, and Joaquin Vanschoren. 2019.
Automated Machine Learning: Methods, Systems, Challenges.
Automated Machine Learning. Springer International Publishing.
https://doi.org/10.1007/978-3-030-05318-5.
Hutter, Michael, Jorn-Marc Schmidt, and Thomas Plos. 2009.
“Contact-Based Fault Injections and Power Analysis on RFID
Tags.” In 2009 European Conference on Circuit Theory and
Design, 409–12. IEEE; IEEE. https://doi.org/10.1109/ecctd.2009.5275012.
Iandola, Forrest N., Song Han, Matthew W. Moskewicz, Khalid Ashraf,
William J. Dally, and Kurt Keutzer. 2016a. “SqueezeNet:
AlexNet-Level Accuracy with 50x Fewer Parameters and <0.5MB Model
Size.” ArXiv Preprint abs/1602.07360 (February). http://arxiv.org/abs/1602.07360v4.
———. 2016b. “SqueezeNet: AlexNet-Level Accuracy with 50x Fewer
Parameters and <0.5MB Model Size,” February. http://arxiv.org/abs/1602.07360v4.
Ignatov, Andrey, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim
Hartley, and Luc Van Gool. 2019. “AI Benchmark: Running Deep
Neural Networks on Android Smartphones.” In Computer Vision –
ECCV 2018 Workshops, 288–314. Springer International Publishing. https://doi.org/10.1007/978-3-030-11021-5\_19.
Imani, Mohsen, Abbas Rahimi, and Tajana S. Rosing. 2016.
“Resistive Configurable Associative Memory for Approximate
Computing.” In Proceedings of the 2016 Design, Automation
&Amp; Test in Europe Conference &Amp; Exhibition (DATE),
1327–32. IEEE; Research Publishing Services. https://doi.org/10.3850/9783981537079\_0454.
Inmon, W. H. 2005. Building the Data Warehouse. John Wiley
Sons.
Ioffe, Sergey, and Christian Szegedy. 2015. “Batch Normalization:
Accelerating Deep Network Training by Reducing Internal Covariate
Shift.” International Conference on Machine Learning,
448–56.
Ippolito, Daphne, Florian Tramer, Milad Nasr, Chiyuan Zhang, Matthew
Jagielski, Katherine Lee, Christopher Choquette Choo, and Nicholas
Carlini. 2023. “Preventing Generation of Verbatim Memorization in
Language Models Gives a False Sense of Privacy.” In
Proceedings of the 16th International Natural Language Generation
Conference, 28–53. Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.inlg-main.3.
Irimia-Vladu, Mihai. 2014. “‘Green’ Electronics:
Biodegradable and Biocompatible Materials and Devices for Sustainable
Future.” Chem. Soc. Rev. 43 (2): 588–610. https://doi.org/10.1039/c3cs60235d.
Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018a.
“Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference.” In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2704–13.
IEEE. https://doi.org/10.1109/cvpr.2018.00286.
———. 2018b. “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference.” In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2704–13. IEEE. https://doi.org/10.1109/cvpr.2018.00286.
Jaech, Aaron, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky,
Aiden Low, Alec Helyar, et al. 2024. “OpenAI O1 System
Card.” CoRR. https://doi.org/10.48550/ARXIV.2412.16720.
Janapa Reddi, Vijay et al. 2022. “MLPerf Mobile V2. 0: An
Industry-Standard Benchmark Suite for Mobile Machine Learning.”
In Proceedings of Machine Learning and Systems, 4:806–23.
Janapa Reddi, Vijay, Alexander Elium, Shawn Hymel, David Tischler,
Daniel Situnayake, Carl Ward, Louis Moreau, et al. 2023. “Edge
Impulse: An MLOps Platform for Tiny Machine Learning.”
Proceedings of Machine Learning and Systems 5.
Jha, A. R. 2014. Rare Earth Materials: Properties and
Applications. CRC Press. https://doi.org/10.1201/b17045.
Jha, Saurabh, Subho Banerjee, Timothy Tsai, Siva K. S. Hari, Michael B.
Sullivan, Zbigniew T. Kalbarczyk, Stephen W. Keckler, and Ravishankar K.
Iyer. 2019. “ML-Based Fault Injection for Autonomous Vehicles: A
Case for Bayesian Fault Injection.” In 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 112–24. IEEE; IEEE. https://doi.org/10.1109/dsn.2019.00025.
Jia, Xianyan, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu
Zhou, Liqiang Xie, et al. 2018. “Highly Scalable Deep Learning
Training System with Mixed-Precision: Training ImageNet in Four
Minutes.” arXiv Preprint arXiv:1807.11205, July. http://arxiv.org/abs/1807.11205v1.
Jia, Yangqing, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.
“Caffe: Convolutional Architecture for Fast Feature
Embedding.” In Proceedings of the 22nd ACM International
Conference on Multimedia, 675–78. ACM. https://doi.org/10.1145/2647868.2654889.
Jia, Zhe, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza.
2018. “Dissecting the NVIDIA Volta GPU Architecture via
Microbenchmarking.” ArXiv Preprint abs/1804.06826
(April). http://arxiv.org/abs/1804.06826v1.
Jia, Zhihao, Matei Zaharia, and Alex Aiken. 2019. “Beyond Data and
Model Parallelism for Deep Neural Networks.” In Proceedings
of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA, USA,
March 31 - April 2, 2019, edited by Ameet Talwalkar, Virginia
Smith, and Matei Zaharia. mlsys.org. https://proceedings.mlsys.org/book/265.pdf.
Jiang, Weiwen, Xinyi Zhang, Edwin H. -M. Sha, Lei Yang, Qingfeng Zhuge,
Yiyu Shi, and Jingtong Hu. 2019. “Accuracy Vs. Efficiency:
Achieving Both Through FPGA-Implementation Aware Neural Architecture
Search,” January, 351–75. https://doi.org/10.1002/9783527829026.ch13.
Jin, Yilun, Xiguang Wei, Yang Liu, and Qiang Yang. 2020. “Towards
Utilizing Unlabeled Data in Federated Learning: A Survey and
Prospective.” arXiv Preprint arXiv:2002.11545, February.
http://arxiv.org/abs/2002.11545v2.
Johnson-Roberson, Matthew, Charles Barto, Rounak Mehta, Sharath Nittur
Sridhar, Karl Rosaen, and Ram Vasudevan. 2017. “Driving in the
Matrix: Can Virtual Worlds Replace Human-Generated Annotations for Real
World Tasks?” In 2017 IEEE International Conference on
Robotics and Automation (ICRA), 746–53. Singapore, Singapore: IEEE.
https://doi.org/10.1109/icra.2017.7989092.
Jouppi, Norman P., Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho,
Thomas B. Jablin, George Kurian, James Laudon, et al. 2021. “Ten
Lessons from Three Generations Shaped Google’s TPUv4i : Industrial
Product.” In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 64:1–14. 5. IEEE. https://doi.org/10.1109/isca52012.2021.00010.
Jouppi, Norman P., Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, et al. 2017b. “In-Datacenter
Performance Analysis of a Tensor Processing Unit.” In
Proceedings of the 44th Annual International Symposium on Computer
Architecture, 1–12. ISCA ’17. New York, NY, USA: ACM. https://doi.org/10.1145/3079856.3080246.
———, et al. 2017c. “In-Datacenter Performance Analysis of a Tensor
Processing Unit.” In Proceedings of the 44th Annual
International Symposium on Computer Architecture, 1–12. ISCA ’17.
New York, NY, USA: ACM. https://doi.org/10.1145/3079856.3080246.
———, et al. 2017d. “In-Datacenter Performance Analysis of a Tensor
Processing Unit.” In Proceedings of the 44th Annual
International Symposium on Computer Architecture, 1–12. ACM. https://doi.org/10.1145/3079856.3080246.
———, et al. 2017a. “In-Datacenter Performance Analysis of a Tensor
Processing Unit.” In Proceedings of the 44th Annual
International Symposium on Computer Architecture, 1–12. ACM. https://doi.org/10.1145/3079856.3080246.
Jouppi, Norm, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng
Nai, Nishant Patil, et al. 2023. “TPU V4: An Optically
Reconfigurable Supercomputer for Machine Learning with Hardware Support
for Embeddings.” In Proceedings of the 50th Annual
International Symposium on Computer Architecture, 1–14. ISCA ’23.
New York, NY, USA: ACM. https://doi.org/10.1145/3579371.3589350.
Joye, Marc, and Michael Tunstall. 2012. Fault Analysis in
Cryptography. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29656-7.
Kairouz, Peter, Sewoong Oh, and Pramod Viswanath. 2015. “Secure
Multi-Party Differential Privacy.” In Advances in Neural
Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, edited by Corinna Cortes, Neil D. Lawrence, Daniel
D. Lee, Masashi Sugiyama, and Roman Garnett, 2008–16. https://proceedings.neurips.cc/paper/2015/hash/a01610228fe998f515a72dd730294d87-Abstract.html.
Kao, Sheng-Chun, Geonhwa Jeong, and Tushar Krishna. 2020.
“ConfuciuX: Autonomous Hardware Resource Assignment for DNN
Accelerators Using Reinforcement Learning.” In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 622–36. IEEE; IEEE. https://doi.org/10.1109/micro50266.2020.00058.
Kao, Sheng-Chun, and Tushar Krishna. 2020. “GAMMA: Automating the
HW Mapping of DNN Models on Accelerators via Genetic Algorithm.”
In Proceedings of the 39th International Conference on
Computer-Aided Design, 1–9. ACM. https://doi.org/10.1145/3400302.3415639.
Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario
Amodei. 2020. “Scaling Laws for Neural Language Models.”
ArXiv Preprint abs/2001.08361 (January). http://arxiv.org/abs/2001.08361v1.
Karargyris, Alexandros, Renato Umeton, Micah J. Sheller, Alejandro
Aristizabal, Johnu George, Anna Wuest, Sarthak Pati, et al. 2023.
“Federated Benchmarking of Medical Artificial Intelligence with
MedPerf.” Nature Machine Intelligence 5 (7): 799–810. https://doi.org/10.1038/s42256-023-00652-2.
Kaur, Harmanpreet, Harsha Nori, Samuel Jenkins, Rich Caruana, Hanna
Wallach, and Jennifer Wortman Vaughan. 2020. “Interpreting
Interpretability: Understanding Data Scientists’ Use of Interpretability
Tools for Machine Learning.” In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, edited by Regina
Bernhaupt, Florian ’Floyd’Mueller, David Verweij, Josh Andres, Joanna
McGrenere, Andy Cockburn, Ignacio Avellino, et al., 1–14. ACM. https://doi.org/10.1145/3313831.3376219.
Kawazoe Aguilera, Marcos, Wei Chen, and Sam Toueg. 1997.
“Heartbeat: A Timeout-Free Failure Detector for Quiescent Reliable
Communication.” In Distributed Algorithms, 126–40.
Springer; Springer Berlin Heidelberg. https://doi.org/10.1007/bfb0030680.
Khan, Mohammad Emtiyaz, and Siddharth Swaroop. 2021.
“Knowledge-Adaptation Priors.” In Advances in Neural
Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
Virtual, edited by Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, 19757–70. https://proceedings.neurips.cc/paper/2021/hash/a4380923dd651c195b1631af7c829187-Abstract.html.
Kiela, Douwe, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger,
Zhengxuan Wu, Bertie Vidgen, et al. 2021. “Dynabench: Rethinking
Benchmarking in NLP.” In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 9:418–34. Online:
Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.naacl-main.324.
Kim, Jungrae, Michael Sullivan, and Mattan Erez. 2015. “Bamboo
ECC: Strong, Safe, and Flexible Codes for Reliable Computer
Memory.” In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), 101–12. IEEE; IEEE. https://doi.org/10.1109/hpca.2015.7056025.
Kim, Sunju, Chungsik Yoon, Seunghon Ham, Jihoon Park, Ohun Kwon, Donguk
Park, Sangjun Choi, Seungwon Kim, Kwonchul Ha, and Won Kim. 2018.
“Chemical Use in the Semiconductor Manufacturing Industry.”
International Journal of Occupational and Environmental Health
24 (3-4): 109–18. https://doi.org/10.1080/10773525.2018.1519957.
Kingma, Diederik P., and Jimmy Ba. 2014. “Adam: A Method for
Stochastic Optimization.” ICLR, December. http://arxiv.org/abs/1412.6980v9.
Kirkpatrick, James, Razvan Pascanu, Neil Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, et al. 2017.
“Overcoming Catastrophic Forgetting in Neural Networks.”
Proceedings of the National Academy of Sciences 114 (13):
3521–26. https://doi.org/10.1073/pnas.1611835114.
Kleppmann, Martin. 2016. Designing Data-Intensive Applications: The
Big Ideas Behind Reliable, Scalable, and Maintainable Systems.
O’Reilly Media. http://shop.oreilly.com/product/0636920032175.do.
Ko, Yohan. 2021. “Characterizing System-Level Masking Effects
Against Soft Errors.” Electronics 10 (18): 2286. https://doi.org/10.3390/electronics10182286.
Kocher, Paul, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, et al. 2019a. “Spectre Attacks:
Exploiting Speculative Execution.” In 2019 IEEE Symposium on
Security and Privacy (SP), 1–19. IEEE. https://doi.org/10.1109/sp.2019.00002.
———, et al. 2019b. “Spectre Attacks: Exploiting Speculative
Execution.” In 2019 IEEE Symposium on Security and Privacy
(SP), 1–19. IEEE. https://doi.org/10.1109/sp.2019.00002.
Kocher, Paul, Joshua Jaffe, and Benjamin Jun. 1999. “Differential
Power Analysis.” In Advances in Cryptology — CRYPTO’ 99,
388–97. Springer; Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-48405-1\_25.
Kocher, Paul, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. 2011.
“Introduction to Differential Power Analysis.” Journal
of Cryptographic Engineering 1 (1): 5–27. https://doi.org/10.1007/s13389-011-0006-y.
Koh, Pang Wei, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma
Pierson, Been Kim, and Percy Liang. 2020. “Concept Bottleneck
Models.” In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
119:5338–48. Proceedings of Machine Learning Research. PMLR. http://proceedings.mlr.press/v119/koh20a.html.
Koh, Pang Wei, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, et al. 2021. “WILDS: A
Benchmark of in-the-Wild Distribution Shifts.” In Proceedings
of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, edited by Marina Meila and Tong
Zhang, 139:5637–64. Proceedings of Machine Learning Research. PMLR. http://proceedings.mlr.press/v139/koh21a.html.
Koizumi, Yuma, Shoichiro Saito, Hisashi Uematsu, Noboru Harada, and
Keisuke Imoto. 2019. “ToyADMOS: A Dataset of Miniature-Machine
Operating Sounds for Anomalous Sound Detection.” In 2019 IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), 313–17. IEEE; IEEE. https://doi.org/10.1109/waspaa.2019.8937164.
Koren, Yehuda, Robert Bell, and Chris Volinsky. 2009. “Matrix
Factorization Techniques for Recommender Systems.”
Computer 42 (8): 30–37. https://doi.org/10.1109/mc.2009.263.
Krishna, Adithya, Srikanth Rohit Nudurupati, Chandana D G, Pritesh
Dwivedi, André van Schaik, Mahesh Mehendale, and Chetan Singh Thakur.
2023. “RAMAN: A Re-Configurable and Sparse tinyML Accelerator for
Inference on Edge,” June. http://arxiv.org/abs/2306.06493v1.
Krishnamoorthi, Raghuraman. 2018. “Quantizing Deep Convolutional
Networks for Efficient Inference: A Whitepaper.” arXiv
Preprint arXiv:1806.08342, June. http://arxiv.org/abs/1806.08342v1.
Krishnan, Rayan, Pranav Rajpurkar, and Eric J. Topol. 2022.
“Self-Supervised Learning in Medicine and Healthcare.”
Nature Biomedical Engineering 6 (12): 1346–52. https://doi.org/10.1038/s41551-022-00914-1.
Krishnan, Srivatsan, Natasha Jaques, Shayegan Omidshafiei, Dan Zhang,
Izzeddin Gur, Vijay Janapa Reddi, and Aleksandra Faust. 2022.
“Multi-Agent Reinforcement Learning for Microprocessor Design
Space Exploration,” November. http://arxiv.org/abs/2211.16385v1.
Krishnan, Srivatsan, Amir Yazdanbakhsh, Shvetank Prakash, Jason Jabbour,
Ikechukwu Uchendu, Susobhan Ghosh, Behzad Boroujerdian, et al. 2023.
“ArchGym: An Open-Source Gymnasium for Machine Learning Assisted
Architecture Design.” In Proceedings of the 50th Annual
International Symposium on Computer Architecture, 1–16. ACM. https://doi.org/10.1145/3579371.3589049.
Krizhevsky, Alex, Geoffrey Hinton, et al. 2009. “Learning Multiple
Layers of Features from Tiny Images.”
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2017a.
“ImageNet Classification with Deep Convolutional Neural
Networks.” Edited by F. Pereira, C. J. Burges, L. Bottou, and K.
Q. Weinberger. Communications of the ACM 60 (6): 84–90. https://doi.org/10.1145/3065386.
———. 2017b. “ImageNet Classification with Deep Convolutional
Neural Networks.” Communications of the ACM 60 (6):
84–90. https://doi.org/10.1145/3065386.
———. 2017c. “ImageNet Classification with Deep Convolutional
Neural Networks.” Communications of the ACM 60 (6):
84–90. https://doi.org/10.1145/3065386.
Kuchaiev, Oleksii, Boris Ginsburg, Igor Gitman, Vitaly Lavrukhin, Carl
Case, and Paulius Micikevicius. 2018. “OpenSeq2Seq: Extensible
Toolkit for Distributed and Mixed Precision Training of
Sequence-to-Sequence Models.” In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), 41–46. Association for
Computational Linguistics. https://doi.org/10.18653/v1/w18-2507.
Kuhn, Max, and Kjell Johnson. 2013. Applied Predictive
Modeling. Springer New York. https://doi.org/10.1007/978-1-4614-6849-3.
Kung, Hsiang Tsung, and Charles E Leiserson. 1979. “Systolic
Arrays (for VLSI).” In Sparse Matrix Proceedings 1978,
1:256–82. Society for industrial; applied mathematics Philadelphia, PA,
USA.
Kurth, Thorsten, Shashank Subramanian, Peter Harrington, Jaideep Pathak,
Morteza Mardani, David Hall, Andrea Miele, Karthik Kashinath, and Anima
Anandkumar. 2023. “FourCastNet: Accelerating Global
High-Resolution Weather Forecasting Using Adaptive Fourier Neural
Operators.” In Proceedings of the Platform for Advanced
Scientific Computing Conference, 1–11. ACM. https://doi.org/10.1145/3592979.3593412.
Kuzmin, Andrey, Mart Van Baalen, Yuwei Ren, Markus Nagel, Jorn Peters,
and Tijmen Blankevoort. 2022. “FP8 Quantization: The Power of the
Exponent,” August. http://arxiv.org/abs/2208.09225v2.
Kwon, Jisu, and Daejin Park. 2021. “Hardware/Software Co-Design
for TinyML Voice-Recognition Application on Resource Frugal Edge
Devices.” Applied Sciences 11 (22): 11073. https://doi.org/10.3390/app112211073.
Kwon, Sun Hwa, and Lin Dong. 2022. “Flexible Sensors and Machine
Learning for Heart Monitoring.” Nano Energy 102
(November): 107632. https://doi.org/10.1016/j.nanoen.2022.107632.
Kwon, Young D., Rui Li, Stylianos I. Venieris, Jagmohan Chauhan,
Nicholas D. Lane, and Cecilia Mascolo. 2023. “TinyTrain:
Resource-Aware Task-Adaptive Sparse Training of DNNs at the Data-Scarce
Edge.” ArXiv Preprint abs/2307.09988 (July). http://arxiv.org/abs/2307.09988v2.
Lai, Liangzhen, Naveen Suda, and Vikas Chandra. 2018a. “CMSIS-NN:
Efficient Neural Network Kernels for Arm Cortex-m CPUs,” January.
http://arxiv.org/abs/1801.06601v1.
———. 2018b. “CMSIS-NN: Efficient Neural Network Kernels for Arm
Cortex-m CPUs.” ArXiv Preprint abs/1801.06601 (January).
http://arxiv.org/abs/1801.06601v1.
Lakkaraju, Himabindu, and Osbert Bastani. 2020. “"How Do i Fool
You?": Manipulating User Trust via Misleading Black Box
Explanations.” In Proceedings of the AAAI/ACM Conference on
AI, Ethics, and Society, 79–85. ACM. https://doi.org/10.1145/3375627.3375833.
Lam, Remi, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger,
Meire Fortunato, Ferran Alet, Suman Ravuri, et al. 2023. “Learning
Skillful Medium-Range Global Weather Forecasting.”
Science 382 (6677): 1416–21. https://doi.org/10.1126/science.adi2336.
Lange, Klaus-Dieter. 2009. “Identifying Shades of Green: The
SPECpower Benchmarks.” Computer 42 (3): 95–97. https://doi.org/10.1109/mc.2009.84.
Lannelongue, Loïc, Jason Grealey, and Michael Inouye. 2021. “Green
Algorithms: Quantifying the Carbon Footprint of Computation.”
Advanced Science 8 (12): 2100707. https://doi.org/10.1002/advs.202100707.
LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015a. “Deep
Learning.” Nature 521 (7553): 436–44. https://doi.org/10.1038/nature14539.
———. 2015b. “Deep Learning.” Nature 521 (7553):
436–44. https://doi.org/10.1038/nature14539.
LeCun, Yann, Leon Bottou, Genevieve B. Orr, and Klaus -Robert Müller.
1998. “Efficient BackProp.” In Neural Networks: Tricks
of the Trade, 1524:9–50. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-49430-8\_2.
LeCun, Yann, John S. Denker, and Sara A. Solla. 1989. “Optimal
Brain Damage.” In Advances in Neural Information Processing
Systems, 2:598–605. Morgan-Kaufmann. http://papers.nips.cc/paper/250-optimal-brain-damage.
LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel. 1989. “Backpropagation Applied to
Handwritten Zip Code Recognition.” Neural Computation 1
(4): 541–51. https://doi.org/10.1162/neco.1989.1.4.541.
Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998.
“Gradient-Based Learning Applied to Document Recognition.”
Proceedings of the IEEE 86 (11): 2278–2324. https://doi.org/10.1109/5.726791.
Lee, Minwoong, Namho Lee, Huijeong Gwon, Jongyeol Kim, Younggwan Hwang,
and Seongik Cho. 2022. “Design of Radiation-Tolerant High-Speed
Signal Processing Circuit for Detecting Prompt Gamma Rays by Nuclear
Explosion.” Electronics 11 (18): 2970. https://doi.org/10.3390/electronics11182970.
LeRoy Poff, N, MM Brinson, and JW Day. 2002. “Aquatic Ecosystems
& Global Climate Change.” Pew Center on Global Climate
Change.
Li, Guanpeng, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai,
Karthik Pattabiraman, Joel Emer, and Stephen W. Keckler. 2017.
“Understanding Error Propagation in Deep Learning Neural Network
(DNN) Accelerators and Applications.” In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 1–12. ACM. https://doi.org/10.1145/3126908.3126964.
Li, Jingzhen, Igbe Tobore, Yuhang Liu, Abhishek Kandwal, Lei Wang, and
Zedong Nie. 2021. “Non-Invasive Monitoring of Three Glucose Ranges
Based on ECG by Using DBSCAN-CNN.” IEEE Journal of Biomedical
and Health Informatics 25 (9): 3340–50. https://doi.org/10.1109/jbhi.2021.3072628.
Li, Qinbin, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu,
and Bingsheng He. 2023. “A Survey on Federated Learning Systems:
Vision, Hype and Reality for Data Privacy and Protection.”
IEEE Transactions on Knowledge and Data Engineering 35 (4):
3347–66. https://doi.org/10.1109/tkde.2021.3124599.
Li, Tian, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020.
“Federated Learning: Challenges, Methods, and Future
Directions.” IEEE Signal Processing Magazine 37 (3):
50–60. https://doi.org/10.1109/msp.2020.2975749.
Li, Xiang, Tao Qin, Jian Yang, and Tie-Yan Liu. 2016. “LightRNN:
Memory and Computation-Efficient Recurrent Neural Networks.” In
Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, edited by Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, 4385–93. https://proceedings.neurips.cc/paper/2016/hash/c3e4035af2a1cde9f21e1ae1951ac80b-Abstract.html.
Li, Yuhang, Xin Dong 0009, and Wei Wang 0059. 2020. “Additive
Powers-of-Two Quantization: An Efficient Non-Uniform Discretization for
Neural Networks.” In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net. https://openreview.net/forum?id=BkgXT24tDS.
Li, Zhuohan, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin
Jin, Yanping Huang, et al. 2023. “{AlpaServe}:
Statistical Multiplexing with Model Parallelism for Deep Learning
Serving.” In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), 663–79.
Liang, Percy, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu,
Michihiro Yasunaga, Yian Zhang, et al. 2022. “Holistic Evaluation
of Language Models.” arXiv Preprint arXiv:2211.09110,
November. http://arxiv.org/abs/2211.09110v2.
Lin, Ji, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han.
2020. “MCUNet: Tiny Deep Learning on IoT Devices.” In
Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, Virtual, edited by Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin. https://proceedings.neurips.cc/paper/2020/hash/86c51678350f656dcc7f490a43946ee5-Abstract.html.
Lin, Ji, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen
Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. 2023.
“AWQ: Activation-Aware Weight Quantization for LLM Compression and
Acceleration.” ArXiv Preprint abs/2306.00978 (June). http://arxiv.org/abs/2306.00978v5.
Lin, Ji, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song
Han. 2022. “On-Device Training Under 256kb Memory.”
Adv. Neur. In. 35: 22941–54.
Lin, Ji, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, and Song Han. 2023.
“Tiny Machine Learning: Progress and Futures [Feature].”
IEEE Circuits and Systems Magazine 23 (3): 8–34. https://doi.org/10.1109/mcas.2023.3302182.
Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014.
“Microsoft COCO: Common Objects in Context.” In
Computer Vision – ECCV 2014, 740–55. Springer; Springer
International Publishing. https://doi.org/10.1007/978-3-319-10602-1\_48.
Lindgren, Simon. 2023. Handbook of Critical Studies of Artificial
Intelligence. Edward Elgar Publishing.
Lindholm, Andreas, Dave Zachariah, Petre Stoica, and Thomas B. Schon.
2019. “Data Consistency Approach to Model Validation.”
IEEE Access 7: 59788–96. https://doi.org/10.1109/access.2019.2915109.
Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym. 2008.
“NVIDIA Tesla: A Unified Graphics and Computing
Architecture.” IEEE Micro 28 (2): 39–55. https://doi.org/10.1109/mm.2008.31.
Liu, Yanan, Xiaoxia Wei, Jinyu Xiao, Zhijie Liu, Yang Xu, and Yun Tian.
2020. “Energy Consumption and Emission Mitigation Prediction Based
on Data Center Traffic and PUE for Global Data Centers.”
Global Energy Interconnection 3 (3): 272–82. https://doi.org/10.1016/j.gloei.2020.07.008.
Liu, Yingcheng, Guo Zhang, Christopher G. Tarolli, Rumen Hristov, Stella
Jensen-Roberts, Emma M. Waddell, Taylor L. Myers, et al. 2022.
“Monitoring Gait at Home with Radio Waves in Parkinson’s Disease:
A Marker of Severity, Progression, and Medication Response.”
Science Translational Medicine 14 (663): eadc9669. https://doi.org/10.1126/scitranslmed.adc9669.
Loh, Gabriel H. 2008. “3D-Stacked Memory Architectures for
Multi-Core Processors.” ACM SIGARCH Computer Architecture
News 36 (3): 453–64. https://doi.org/10.1145/1394608.1382159.
Lopez-Paz, David, and Marc’Aurelio Ranzato. 2017. “Gradient
Episodic Memory for Continual Learning.” In NIPS,
30:6467–76. https://proceedings.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html.
Lou, Yin, Rich Caruana, Johannes Gehrke, and Giles Hooker. 2013.
“Accurate Intelligible Models with Pairwise Interactions.”
In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, edited by Inderjit S. Dhillon,
Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh,
Jingrui He, Robert L. Grossman, and Ramasamy Uthurusamy, 623–31. ACM. https://doi.org/10.1145/2487575.2487579.
Lowy, Andrew, Sina Baharlouei, Rakesh Pavan, Meisam Razaviyayn, and
Ahmad Beirami. 2021. “A Stochastic Optimization Framework for Fair
Risk Minimization.” CoRR abs/2102.12586 (February). http://arxiv.org/abs/2102.12586v5.
Lubana, Ekdeep Singh, and Robert P. Dick. 2020. “A Gradient Flow
Framework for Analyzing Network Pruning.” arXiv Preprint
arXiv:2009.11839, September. http://arxiv.org/abs/2009.11839v4.
Luebke, David. 2008. “CUDA: Scalable Parallel Programming for
High-Performance Scientific Computing.” In 2008 5th IEEE
International Symposium on Biomedical Imaging: From Nano to Macro,
836–38. IEEE. https://doi.org/10.1109/isbi.2008.4541126.
Lundberg, Scott M., and Su-In Lee. 2017. “A Unified Approach to
Interpreting Model Predictions.” In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, edited by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett,
4765–74. https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html.
Ma, Dongning, Fred Lin, Alban Desmaison, Joel Coburn, Daniel Moore,
Sriram Sankar, and Xun Jiao. 2024. “Dr. DNA: Combating Silent Data
Corruptions in Deep Learning Using Distribution of Neuron
Activations.” In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, 239–52. ACM. https://doi.org/10.1145/3620666.3651349.
Maas, Martin, David G. Andersen, Michael Isard, Mohammad Mahdi
Javanmard, Kathryn S. McKinley, and Colin Raffel. 2024. “Combining
Machine Learning and Lifetime-Based Resource Management for Memory
Allocation and Beyond.” Communications of the ACM 67
(4): 87–96. https://doi.org/10.1145/3611018.
Maass, Wolfgang. 1997. “Networks of Spiking Neurons: The Third
Generation of Neural Network Models.” Neural Networks 10
(9): 1659–71. https://doi.org/10.1016/s0893-6080(97)00011-7.
Madry, Aleksander, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. 2017. “Towards Deep Learning Models Resistant to
Adversarial Attacks.” arXiv Preprint arXiv:1706.06083,
June. http://arxiv.org/abs/1706.06083v4.
Mahmoud, Abdulrahman, Neeraj Aggarwal, Alex Nobbe, Jose Rodrigo Sanchez
Vicarte, Sarita V. Adve, Christopher W. Fletcher, Iuri Frosio, and Siva
Kumar Sastry Hari. 2020. “PyTorchFI: A Runtime Perturbation Tool
for DNNs.” In 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-w),
25–31. IEEE; IEEE. https://doi.org/10.1109/dsn-w50199.2020.00014.
Mahmoud, Abdulrahman, Siva Kumar Sastry Hari, Christopher W. Fletcher,
Sarita V. Adve, Charbel Sakr, Naresh Shanbhag, Pavlo Molchanov, Michael
B. Sullivan, Timothy Tsai, and Stephen W. Keckler. 2021.
“Optimizing Selective Protection for CNN Resilience.” In
2021 IEEE 32nd International Symposium on Software Reliability
Engineering (ISSRE), 127–38. IEEE. https://doi.org/10.1109/issre52982.2021.00025.
Mahmoud, Abdulrahman, Thierry Tambe, Tarek Aloui, David Brooks, and
Gu-Yeon Wei. 2022. “GoldenEye: A Platform for Evaluating Emerging
Numerical Data Formats in DNN Accelerators.” In 2022 52nd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 206–14. IEEE. https://doi.org/10.1109/dsn53405.2022.00031.
Marković, Danijela, Alice Mizrahi, Damien Querlioz, and Julie Grollier.
2020. “Physics for Neuromorphic Computing.” Nature
Reviews Physics 2 (9): 499–510. https://doi.org/10.1038/s42254-020-0208-2.
Martin, C. Dianne. 1993. “The Myth of the Awesome Thinking
Machine.” Communications of the ACM 36 (4): 120–33. https://doi.org/10.1145/255950.153587.
Marulli, Fiammetta, Stefano Marrone, and Laura Verde. 2022.
“Sensitivity of Machine Learning Approaches to Fake and Untrusted
Data in Healthcare Domain.” Journal of Sensor and Actuator
Networks 11 (2): 21. https://doi.org/10.3390/jsan11020021.
Maslej, Nestor, Loredana Fattorini, Erik Brynjolfsson, John Etchemendy,
Katrina Ligett, Terah Lyons, James Manyika, et al. 2023.
“Artificial Intelligence Index Report 2023.” ArXiv
Preprint abs/2310.03715 (October). http://arxiv.org/abs/2310.03715v1.
Maslej, Nestor, Loredana Fattorini, C. Raymond Perrault, Vanessa Parli,
Anka Reuel, Erik Brynjolfsson, John Etchemendy, et al. 2024.
“Artificial Intelligence Index Report 2024.” CoRR.
https://doi.org/10.48550/ARXIV.2405.19522.
Mattson, Peter, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg
Diamos, David Kanter, Paulius Micikevicius, et al. 2020. “MLPerf:
An Industry Standard Benchmark Suite for Machine Learning
Performance.” IEEE Micro 40 (2): 8–16. https://doi.org/10.1109/mm.2020.2974843.
Mazumder, Mark, Sharad Chitlangia, Colby Banbury, Yiping Kang, Juan
Manuel Ciro, Keith Achorn, Daniel Galvez, et al. 2021.
“Multilingual Spoken Words Corpus.” In Thirty-Fifth
Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2).
McAuliffe, Michael, Michaela Socolof, Sarah Mihuc, Michael Wagner, and
Morgan Sonderegger. 2017. “Montreal Forced Aligner: Trainable
Text-Speech Alignment Using Kaldi.” In Interspeech 2017,
498–502. ISCA. https://doi.org/10.21437/interspeech.2017-1386.
McCarthy, John. 1981. “EPISTEMOLOGICAL PROBLEMS OF ARTIFICIAL
INTELLIGENCE.” In Readings in Artificial Intelligence,
459–65. Elsevier. https://doi.org/10.1016/b978-0-934613-03-3.50035-0.
McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Agüera y Arcas. 2017b. “Communication-Efficient Learning of Deep
Networks from Decentralized Data.” In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics,
AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, edited by
Aarti Singh and Xiaojin (Jerry) Zhu, 54:1273–82. Proceedings of Machine
Learning Research. PMLR. http://proceedings.mlr.press/v54/mcmahan17a.html.
———. 2017a. “Communication-Efficient Learning of Deep Networks
from Decentralized Data.” In Artificial Intelligence and
Statistics, 1273–82. PMLR. http://proceedings.mlr.press/v54/mcmahan17a.html.
Merity, Stephen, Caiming Xiong, James Bradbury, and Richard Socher.
2016. “Pointer Sentinel Mixture Models.” arXiv Preprint
arXiv:1609.07843, September. http://arxiv.org/abs/1609.07843v1.
Micikevicius, Paulius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, et al. 2017b. “Mixed
Precision Training.” arXiv Preprint arXiv:1710.03740,
October. http://arxiv.org/abs/1710.03740v3.
———, et al. 2017a. “Mixed Precision Training.” arXiv
Preprint arXiv:1710.03740, October. http://arxiv.org/abs/1710.03740v3.
Miller, Charlie. 2019. “Lessons Learned from Hacking a
Car.” IEEE Design &Amp; Test 36 (6): 7–9. https://doi.org/10.1109/mdat.2018.2863106.
Miller, Charlie, and Chris Valasek. 2015. “Remote Exploitation of
an Unaltered Passenger Vehicle.” Black Hat USA 2015 (S
91): 1–91.
Miller, D. A. B. 2000. “Optical Interconnects to Silicon.”
IEEE Journal of Selected Topics in Quantum Electronics 6 (6):
1312–17. https://doi.org/10.1109/2944.902184.
Mills, Andrew, and Stephen Le Hunte. 1997. “An Overview of
Semiconductor Photocatalysis.” Journal of Photochemistry and
Photobiology A: Chemistry 108 (1): 1–35. https://doi.org/10.1016/s1010-6030(97)00118-4.
Mirhoseini, Azalia, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang,
Ebrahim Songhori, Shen Wang, Young-Joon Lee, et al. 2021. “A Graph
Placement Methodology for Fast Chip Design.” Nature 594
(7862): 207–12. https://doi.org/10.1038/s41586-021-03544-w.
Mishra, Asit, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan
Stosic, Ganesh Venkatesh, Chong Yu, and Paulius Micikevicius. 2021.
“Accelerating Sparse Deep Neural Networks.” CoRR
abs/2104.08378 (April). http://arxiv.org/abs/2104.08378v1.
Mittal, Sparsh, Gaurav Verma, Brajesh Kaushik, and Farooq A. Khanday.
2021. “A Survey of SRAM-Based in-Memory Computing Techniques and
Applications.” Journal of Systems Architecture 119
(October): 102276. https://doi.org/10.1016/j.sysarc.2021.102276.
Modha, Dharmendra S., Filipp Akopyan, Alexander Andreopoulos,
Rathinakumar Appuswamy, John V. Arthur, Andrew S. Cassidy, Pallab Datta,
et al. 2023. “Neural Inference at the Frontier of Energy, Space,
and Time.” Science 382 (6668): 329–35. https://doi.org/10.1126/science.adh1174.
Mohanram, K., and N. A. Touba. n.d. “Partial Error Masking to
Reduce Soft Error Failure Rate in Logic Circuits.” In
Proceedings. 16th IEEE Symposium on Computer Arithmetic,
433–40. IEEE; IEEE Comput. Soc. https://doi.org/10.1109/dftvs.2003.1250141.
Monyei, Chukwuka G., and Kirsten E. H. Jenkins. 2018. “Electrons
Have No Identity: Setting Right Misrepresentations in Google and Apple’s
Clean Energy Purchasing.” Energy Research &Amp; Social
Science 46 (December): 48–51. https://doi.org/10.1016/j.erss.2018.06.015.
Moore, Gordon. 2021. “Cramming More Components onto Integrated
Circuits (1965).” In Ideas That Created the Future,
261–66. The MIT Press. https://doi.org/10.7551/mitpress/12274.003.0027.
Moore, Sean S., Kevin J. O’Sullivan, and Francesco Verdecchia. 2015.
“Shrinking the Supply Chain for Implantable Coronary Stent
Devices.” Annals of Biomedical Engineering 44 (2):
497–507. https://doi.org/10.1007/s10439-015-1471-8.
Moshawrab, Mohammad, Mehdi Adda, Abdenour Bouzouane, Hussein Ibrahim,
and Ali Raad. 2023. “Reviewing Federated Learning Aggregation
Algorithms; Strategies, Contributions, Limitations and Future
Perspectives.” Electronics 12 (10): 2287. https://doi.org/10.3390/electronics12102287.
Mukherjee, S. S., J. Emer, and S. K. Reinhardt. n.d. “The Soft
Error Problem: An Architectural Perspective.” In 11th
International Symposium on High-Performance Computer Architecture,
243–47. IEEE; IEEE. https://doi.org/10.1109/hpca.2005.37.
Munshi, Aaftab. 2009. “The OpenCL Specification.” In
2009 IEEE Hot Chips 21 Symposium (HCS), 1–314. IEEE. https://doi.org/10.1109/hotchips.2009.7478342.
Musk, Elon and. 2019. “An Integrated Brain-Machine Interface
Platform with Thousands of Channels.” Journal of Medical
Internet Research 21 (10): e16194. https://doi.org/10.2196/16194.
Myllyaho, Lalli, Mikko Raatikainen, Tomi Männistö, Jukka K. Nurminen,
and Tommi Mikkonen. 2022. “On Misbehaviour and Fault Tolerance in
Machine Learning Systems.” Journal of Systems and
Software 183 (January): 111096. https://doi.org/10.1016/j.jss.2021.111096.
Narayanan, Arvind, and Vitaly Shmatikov. 2006. “How to Break
Anonymity of the Netflix Prize Dataset.” CoRR. http://arxiv.org/abs/cs/0610105.
Narayanan, Deepak, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, et al. 2021.
“Efficient Large-Scale Language Model Training on GPU Clusters
Using Megatron-LM.” In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 1–15. ACM. https://doi.org/10.1145/3458817.3476209.
Nayak, Prateeth, Takuya Higuchi, Anmol Gupta, Shivesh Ranjan, Stephen
Shum, Siddharth Sigtia, Erik Marchi, et al. 2022. “Improving Voice
Trigger Detection with Metric Learning.” arXiv Preprint
arXiv:2204.02455, April. http://arxiv.org/abs/2204.02455v2.
Ng, Davy Tsz Kit, Jac Ka Lok Leung, Kai Wah Samuel Chu, and Maggie Shen
Qiao. 2021. “<Scp>AI</Scp> Literacy: Definition,
Teaching, Evaluation and Ethical Issues.” Proceedings of the
Association for Information Science and Technology 58 (1): 504–9.
https://doi.org/10.1002/pra2.487.
Ngo, Richard, Lawrence Chan, and Sören Mindermann. 2022. “The
Alignment Problem from a Deep Learning Perspective.” ArXiv
Preprint abs/2209.00626 (August). http://arxiv.org/abs/2209.00626v6.
Nguyen, Ngoc-Bao, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, and
Ngai-Man Cheung. 2023. “Re-Thinking Model Inversion Attacks
Against Deep Neural Networks.” In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 16384–93. IEEE. https://doi.org/10.1109/cvpr52729.2023.01572.
Nishigaki, Shinsuke. 2024. “Eigenphase Distributions of Unimodular
Circular Ensembles.” arXiv Preprint arXiv:2401.09045 36
(January). http://arxiv.org/abs/2401.09045v2.
Norrie, Thomas, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li,
James Laudon, Cliff Young, Norman Jouppi, and David Patterson. 2021.
“The Design Process for Google’s Training Chips: TPUv2 and
TPUv3.” IEEE Micro 41 (2): 56–63. https://doi.org/10.1109/mm.2021.3058217.
Northcutt, Curtis G, Anish Athalye, and Jonas Mueller. 2021.
“Pervasive Label Errors in Test Sets Destabilize Machine Learning
Benchmarks.” arXiv. https://doi.org/https://doi.org/10.48550/arXiv.2103.14749
arXiv-issued DOI via DataCite.
Obermeyer, Ziad, Brian Powers, Christine Vogeli, and Sendhil
Mullainathan. 2019. “Dissecting Racial Bias in an Algorithm Used
to Manage the Health of Populations.” Science 366
(6464): 447–53. https://doi.org/10.1126/science.aax2342.
Oecd. 2023. “A Blueprint for Building National Compute Capacity
for Artificial Intelligence.” 350. Organisation for Economic
Co-Operation; Development (OECD). https://doi.org/10.1787/876367e3-en.
OECD.AI. 2021. “Measuring the Geographic Distribution of AI
Computing Capacity.”
<https://oecd.ai/en/policy-circle/computing-capacity>.
Olah, Chris, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael
Petrov, and Shan Carter. 2020. “Zoom in: An Introduction to
Circuits.” Distill 5 (3): e00024–001. https://doi.org/10.23915/distill.00024.001.
Oliynyk, Daryna, Rudolf Mayer, and Andreas Rauber. 2023. “I Know
What You Trained Last Summer: A Survey on Stealing Machine Learning
Models and Defences.” ACM Computing Surveys 55 (14s):
1–41. https://doi.org/10.1145/3595292.
Oprea, Alina, Anoop Singhal, and Apostol Vassilev. 2022.
“Poisoning Attacks Against Machine Learning: Can Machine Learning
Be Trustworthy?” Computer 55 (11): 94–99. https://doi.org/10.1109/mc.2022.3190787.
Pan, Sinno Jialin, and Qiang Yang. 2010. “A Survey on Transfer
Learning.” IEEE Transactions on Knowledge and Data
Engineering 22 (10): 1345–59. https://doi.org/10.1109/tkde.2009.191.
Panda, Priyadarshini, Indranil Chakraborty, and Kaushik Roy. 2019.
“Discretization Based Solutions for Secure Machine Learning
Against Adversarial Attacks.” IEEE Access 7: 70157–68.
https://doi.org/10.1109/access.2019.2919463.
Papadimitriou, George, and Dimitris Gizopoulos. 2021.
“Demystifying the System Vulnerability Stack: Transient Fault
Effects Across the Layers.” In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), 902–15.
IEEE; IEEE. https://doi.org/10.1109/isca52012.2021.00075.
Papernot, Nicolas, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. 2016. “Distillation as a Defense to Adversarial
Perturbations Against Deep Neural Networks.” In 2016 IEEE
Symposium on Security and Privacy (SP), 582–97. IEEE; IEEE. https://doi.org/10.1109/sp.2016.41.
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2001.
“BLEU: A Method for Automatic Evaluation of Machine
Translation.” In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics - ACL ’02, 311.
Association for Computational Linguistics. https://doi.org/10.3115/1073083.1073135.
Park, Daniel S., William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph,
Ekin D. Cubuk, and Quoc V. Le. 2019. “SpecAugment: A Simple Data
Augmentation Method for Automatic Speech Recognition.” arXiv
Preprint arXiv:1904.08779, April. http://arxiv.org/abs/1904.08779v3.
Parrish, Alicia, Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Max
Bartolo, Oana Inel, Juan Ciro, et al. 2023. “Adversarial Nibbler:
A Data-Centric Challenge for Improving the Safety of Text-to-Image
Models.” ArXiv Preprint abs/2305.14384 (May). http://arxiv.org/abs/2305.14384v1.
Paszke, Adam, Sam Gross, Francisco Massa, and et al. 2019.
“PyTorch: An Imperative Style, High-Performance Deep Learning
Library.” Advances in Neural Information Processing Systems
(NeurIPS) 32: 8026–37.
Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, et al. 2019. “PyTorch: An
Imperative Style, High-Performance Deep Learning Library.” In
Advances in Neural Information Processing Systems, 8026–37.
Patel, Jay M, and Jay M Patel. 2020. “Introduction to Common Crawl
Datasets.” Getting Structured Data from the Internet: Running
Web Crawlers/Scrapers on a Big Data Production Scale, 277–324.
Patterson, David A., and John L. Hennessy. 2021a. Computer
Architecture: A Quantitative Approach. 6th ed. Morgan Kaufmann.
———. 2021b. Computer Organization and Design RISC-v Edition: The
Hardware Software Interface. 2nd ed. San Francisco, CA: Morgan
Kaufmann.
Patterson, David A, and John L Hennessy. 2016. Computer Organization
and Design ARM Edition: The Hardware Software Interface. Morgan
kaufmann.
———. 2021c. “Carbon Emissions and Large Neural Network
Optimization.” Communications of the ACM 64 (7): 54–61.
Patterson, David, Joseph Gonzalez, Urs Holzle, Quoc Le, Chen Liang,
Lluis-Miquel Munguia, Daniel Rothchild, David R. So, Maud Texier, and
Jeff Dean. 2022. “The Carbon Footprint of Machine Learning
Training Will Plateau, Then Shrink.” Computer 55 (7):
18–28. https://doi.org/10.1109/mc.2022.3148714.
Patterson, David, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2021.
“Carbon Emissions and Large Neural Network Training.”
arXiv Preprint arXiv:2104.10350, April. http://arxiv.org/abs/2104.10350v3.
Penedo, Guilherme, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell,
Colin Raffel, Leandro Von Werra, Thomas Wolf, et al. 2024. “The
Fineweb Datasets: Decanting the Web for the Finest Text Data at
Scale.” arXiv Preprint arXiv:2406.17557.
Peters, Dorian, Rafael A. Calvo, and Richard M. Ryan. 2018.
“Designing for Motivation, Engagement and Wellbeing in Digital
Experience.” Frontiers in Psychology 9 (May): 797. https://doi.org/10.3389/fpsyg.2018.00797.
Phillips, P. Jonathon, Carina A. Hahn, Peter C. Fontana, David A.
Broniatowski, and Mark A. Przybocki. 2020. “Four Principles of
Explainable Artificial Intelligence.” Gaithersburg,
Maryland. National Institute of Standards; Technology (NIST). https://doi.org/10.6028/nist.ir.8312-draft.
Pineau, Joelle, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent
Larivière, Alina Beygelzimer, Florence d’Alché-Buc, Emily Fox, and Hugo
Larochelle. 2021. “Improving Reproducibility in Machine Learning
Research (a Report from the Neurips 2019 Reproducibility
Program).” Journal of Machine Learning Research 22
(164): 1–20.
Plank, James S. 1997. “A Tutorial on Reed-Solomon Coding for
Fault-Tolerance in RAID-Like Systems.” Software: Practice and
Experience 27 (9): 995–1012. https://doi.org/10.1002/(sici)1097-024x(199709)27:9<995::aid-spe111>3.0.co;2-6.
Pont, Michael J, and Royan HL Ong. 2002. “Using Watchdog Timers to
Improve the Reliability of Single-Processor Embedded Systems: Seven New
Patterns and a Case Study.” In Proceedings of the First
Nordic Conference on Pattern Languages of Programs, 159–200.
Citeseer.
Prakash, Shvetank, Tim Callahan, Joseph Bushagour, Colby Banbury, Alan
V. Green, Pete Warden, Tim Ansell, and Vijay Janapa Reddi. 2023.
“CFU Playground: Full-Stack Open-Source Framework for Tiny Machine
Learning (TinyML) Acceleration on FPGAs.” In 2023 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), abs/2201.01863:157–67. IEEE. https://doi.org/10.1109/ispass57527.2023.00024.
Prakash, Shvetank, Matthew Stewart, Colby Banbury, Mark Mazumder, Pete
Warden, Brian Plancher, and Vijay Janapa Reddi. 2023. “Is TinyML
Sustainable? Assessing the Environmental Impacts of Machine Learning on
Microcontrollers.” ArXiv Preprint abs/2301.11899
(January). http://arxiv.org/abs/2301.11899v3.
Psoma, Sotiria D., and Chryso Kanthou. 2023. “Wearable Insulin
Biosensors for Diabetes Management: Advances and Challenges.”
Biosensors 13 (7): 719. https://doi.org/10.3390/bios13070719.
Pushkarna, Mahima, Andrew Zaldivar, and Oddur Kjartansson. 2022.
“Data Cards: Purposeful and Transparent Dataset Documentation for
Responsible AI.” In 2022 ACM Conference on Fairness,
Accountability, and Transparency, 1776–826. ACM. https://doi.org/10.1145/3531146.3533231.
Putnam, Andrew, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros
Constantinides, John Demme, Hadi Esmaeilzadeh, et al. 2014b. “A
Reconfigurable Fabric for Accelerating Large-Scale Datacenter
Services.” ACM SIGARCH Computer Architecture News 42
(3): 13–24. https://doi.org/10.1145/2678373.2665678.
———, et al. 2014a. “A Reconfigurable Fabric for Accelerating
Large-Scale Datacenter Services.” ACM SIGARCH Computer
Architecture News 42 (3): 13–24. https://doi.org/10.1145/2678373.2665678.
Qi, Chen, Shibo Shen, Rongpeng Li, Zhifeng Zhao, Qing Liu, Jing Liang,
and Honggang Zhang. 2021. “An Efficient Pruning Scheme of Deep
Neural Networks for Internet of Things Applications.” EURASIP
Journal on Advances in Signal Processing 2021 (1): 31. https://doi.org/10.1186/s13634-021-00744-4.
Qian, Yu, Xuegong Zhou, Hao Zhou, and Lingli Wang. 2024. “An
Efficient Reinforcement Learning Based Framework for Exploring Logic
Synthesis.” ACM Transactions on Design Automation of
Electronic Systems 29 (2): 1–33. https://doi.org/10.1145/3632174.
R. V., Rashmi, and Karthikeyan A. 2018. “Secure Boot of Embedded
Applications - a Review.” In 2018 Second International
Conference on Electronics, Communication and Aerospace Technology
(ICECA), 291–98. IEEE. https://doi.org/10.1109/iceca.2018.8474730.
Rachwan, John, Daniel Zügner, Bertrand Charpentier, Simon Geisler,
Morgane Ayle, and Stephan Günnemann. 2022. “Winning the Lottery
Ahead of Time: Efficient Early Network Pruning.” In
International Conference on Machine Learning, 18293–309. PMLR.
Raina, Rajat, Anand Madhavan, and Andrew Y. Ng. 2009. “Large-Scale
Deep Unsupervised Learning Using Graphics Processors.” In
Proceedings of the 26th Annual International Conference on Machine
Learning, edited by Andrea Pohoreckyj Danyluk, Léon Bottou, and
Michael L. Littman, 382:873–80. ACM International Conference Proceeding
Series. ACM. https://doi.org/10.1145/1553374.1553486.
Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
2016. “SQuAD: 100,000+ Questions for Machine Comprehension of
Text.” arXiv Preprint arXiv:1606.05250, June, 2383–92.
https://doi.org/10.18653/v1/d16-1264.
Ramaswamy, Vikram V., Sunnie S. Y. Kim, Ruth Fong, and Olga Russakovsky.
2023a. “UFO: A Unified Method for Controlling Understandability
and Faithfulness Objectives in Concept-Based Explanations for
CNNs.” ArXiv Preprint abs/2303.15632 (March). http://arxiv.org/abs/2303.15632v1.
———. 2023b. “Overlooked Factors in Concept-Based Explanations:
Dataset Choice, Concept Learnability, and Human Capability.” In
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 10932–41. IEEE. https://doi.org/10.1109/cvpr52729.2023.01052.
Ramcharan, Amanda, Kelsee Baranowski, Peter McCloskey, Babuali Ahmed,
James Legg, and David P. Hughes. 2017. “Deep Learning for
Image-Based Cassava Disease Detection.” Frontiers in Plant
Science 8 (October): 1852. https://doi.org/10.3389/fpls.2017.01852.
Ramesh, Aditya, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss,
Alec Radford, Mark Chen, and Ilya Sutskever. 2021. “Zero-Shot
Text-to-Image Generation.” In Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, edited by Marina Meila and Tong Zhang,
139:8821–31. Proceedings of Machine Learning Research. PMLR. http://proceedings.mlr.press/v139/ramesh21a.html.
Ranganathan, Parthasarathy. 2011. “From Microprocessors to
Nanostores: Rethinking Data-Centric Systems.” Computer
44 (1): 39–48. https://doi.org/10.1109/mc.2011.18.
Ranganathan, Parthasarathy, and Urs Hölzle. 2024. “Twenty Five
Years of Warehouse-Scale Computing.” IEEE Micro 44 (5):
11–22. https://doi.org/10.1109/mm.2024.3409469.
Rashid, Layali, Karthik Pattabiraman, and Sathish Gopalakrishnan. 2012.
“Intermittent Hardware Errors Recovery: Modeling and
Evaluation.” In 2012 Ninth International Conference on
Quantitative Evaluation of Systems, 220–29. IEEE; IEEE. https://doi.org/10.1109/qest.2012.37.
———. 2015. “Characterizing the Impact of Intermittent Hardware
Faults on Programs.” IEEE Transactions on Reliability 64
(1): 297–310. https://doi.org/10.1109/tr.2014.2363152.
Ratner, Alex, Braden Hancock, Jared Dunnmon, Roger Goldman, and
Christopher Ré. 2018. “Snorkel MeTaL: Weak Supervision for
Multi-Task Learning.” In Proceedings of the Second Workshop
on Data Management for End-to-End Machine Learning. ACM. https://doi.org/10.1145/3209889.3209898.
Reagen, Brandon, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, and David
Brooks. 2017. Deep Learning for Computer Architects. Springer
International Publishing. https://doi.org/10.1007/978-3-031-01756-8.
Reagen, Brandon, Udit Gupta, Lillian Pentecost, Paul Whatmough, Sae Kyu
Lee, Niamh Mulholland, David Brooks, and Gu-Yeon Wei. 2018. “Ares:
A Framework for Quantifying the Resilience of Deep Neural
Networks.” In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), 1–6. IEEE. https://doi.org/10.1109/dac.2018.8465834.
Reagen, Brandon, Jose Miguel Hernandez-Lobato, Robert Adolf, Michael
Gelbart, Paul Whatmough, Gu-Yeon Wei, and David Brooks. 2017. “A
Case for Efficient Accelerator Design Space Exploration via Bayesian
Optimization.” In 2017 IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED), 1–6. IEEE; IEEE. https://doi.org/10.1109/islped.2017.8009208.
Reddi, Vijay Janapa, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, et al. 2020.
“MLPerf Inference Benchmark.” In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA),
446–59. IEEE; IEEE. https://doi.org/10.1109/isca45697.2020.00045.
Reddi, Vijay Janapa, and Meeta Sharma Gupta. 2013. Resilient
Architecture Design for Voltage Variation. Springer International
Publishing. https://doi.org/10.1007/978-3-031-01739-1.
Reis, G. A., J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
n.d. “SWIFT: Software Implemented Fault Tolerance.” In
International Symposium on Code Generation and Optimization,
243–54. IEEE; IEEE. https://doi.org/10.1109/cgo.2005.34.
Research, Microsoft. 2021. DeepSpeed: Extreme-Scale Model Training
for Everyone.
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016. “”
Why Should i Trust You?” Explaining the Predictions of Any
Classifier.” In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
1135–44.
Richter, Joel D., and Xinyu Zhao. 2021. “The Molecular Biology of
FMRP: New Insights into Fragile x Syndrome.” Nature Reviews
Neuroscience 22 (4): 209–22. https://doi.org/10.1038/s41583-021-00432-0.
Rombach, Robin, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Bjorn Ommer. 2022. “High-Resolution Image Synthesis with Latent
Diffusion Models.” In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 10674–85. IEEE. https://doi.org/10.1109/cvpr52688.2022.01042.
Romero, Francisco, Qian Li 0027, Neeraja J. Yadwadkar, and Christos
Kozyrakis. 2021. “INFaaS: Automated Model-Less Inference
Serving.” In 2021 USENIX Annual Technical Conference (USENIX
ATC 21), 397–411. https://www.usenix.org/conference/atc21/presentation/romero.
Rosenblatt, F. 1958. “The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain.”
Psychological Review 65 (6): 386–408. https://doi.org/10.1037/h0042519.
Roskies, Adina. 2002. “Neuroethics for the New Millenium.”
Neuron 35 (1): 21–23. https://doi.org/10.1016/s0896-6273(02)00763-8.
Rudin, Cynthia. 2019. “Stop Explaining Black Box Machine Learning
Models for High Stakes Decisions and Use Interpretable Models
Instead.” Nature Machine Intelligence 1 (5): 206–15. https://doi.org/10.1038/s42256-019-0048-x.
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986.
“Learning Representations by Back-Propagating Errors.”
Nature 323 (6088): 533–36. https://doi.org/10.1038/323533a0.
Russell, Stuart. 2021. “Human-Compatible Artificial
Intelligence.” In Human-Like Machine Intelligence, 3–23.
Oxford University Press. https://doi.org/10.1093/oso/9780198862536.003.0001.
Ryan, Richard M., and Edward L. Deci. 2000. “Self-Determination
Theory and the Facilitation of Intrinsic Motivation, Social Development,
and Well-Being.” American Psychologist 55 (1): 68–78. https://doi.org/10.1037/0003-066x.55.1.68.
Samajdar, Ananda, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar
Krishna. 2018. “SCALE-Sim: Systolic CNN Accelerator
Simulator.” ArXiv Preprint abs/1811.02883 (October). http://arxiv.org/abs/1811.02883v2.
———. 2021b. “‘Everyone Wants to Do the Model Work, Not the
Data Work’: Data Cascades in High-Stakes AI.” In
Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, 1–15. ACM. https://doi.org/10.1145/3411764.3445518.
Sangchoolie, Behrooz, Karthik Pattabiraman, and Johan Karlsson. 2017.
“One Bit Is (Not) Enough: An Empirical Study of the Impact of
Single and Multiple Bit-Flip Errors.” In 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 97–108. IEEE; IEEE. https://doi.org/10.1109/dsn.2017.30.
Schäfer, Mike S. 2023. “The Notorious GPT: Science Communication
in the Age of Artificial Intelligence.” Journal of Science
Communication 22 (02): Y02. https://doi.org/10.22323/2.22020402.
Schuman, Catherine D., Shruti R. Kulkarni, Maryam Parsa, J. Parker
Mitchell, Prasanna Date, and Bill Kay. 2022. “Opportunities for
Neuromorphic Computing Algorithms and Applications.” Nature
Computational Science 2 (1): 10–19. https://doi.org/10.1038/s43588-021-00184-y.
Schwartz, Daniel, Jonathan Michael Gomes Selman, Peter Wrege, and
Andreas Paepcke. 2021. “Deployment of Embedded Edge-AI for
Wildlife Monitoring in Remote Regions.” In 2021 20th IEEE
International Conference on Machine Learning and Applications
(ICMLA), 1035–42. IEEE; IEEE. https://doi.org/10.1109/icmla52953.2021.00170.
Schwartz, Roy, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2020.
“Green AI.” Communications of the ACM 63 (12):
54–63. https://doi.org/10.1145/3381831.
Segal, Mark, and Kurt Akeley. 1999. “The OpenGL Graphics System: A
Specification (Version 1.1).”
Segura Anaya, L. H., Abeer Alsadoon, N. Costadopoulos, and P. W. C.
Prasad. 2017. “Ethical Implications of User Perceptions of
Wearable Devices.” Science and Engineering Ethics 24
(1): 1–28. https://doi.org/10.1007/s11948-017-9872-8.
Seide, Frank, and Amit Agarwal. 2016. “CNTK: Microsoft’s
Open-Source Deep-Learning Toolkit.” In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2135–35. ACM. https://doi.org/10.1145/2939672.2945397.
Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. 2017. “Grad-CAM: Visual
Explanations from Deep Networks via Gradient-Based Localization.”
In 2017 IEEE International Conference on Computer Vision
(ICCV), 618–26. IEEE. https://doi.org/10.1109/iccv.2017.74.
Seong, Nak Hee, Dong Hyuk Woo, Vijayalakshmi Srinivasan, Jude A. Rivers,
and Hsien-Hsin S. Lee. 2010. “SAFER: Stuck-at-Fault Error Recovery
for Memories.” In 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 115–24. IEEE; IEEE. https://doi.org/10.1109/micro.2010.46.
Settles, Burr. 2012b. Active Learning. University of
Wisconsin-Madison Department of Computer Sciences. Vol. 1648.
Springer International Publishing. https://doi.org/10.1007/978-3-031-01560-1.
———. 2012a. Active Learning. Computer Sciences Technical
Report. University of Wisconsin–Madison; Springer International
Publishing. https://doi.org/10.1007/978-3-031-01560-1.
Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua. 2017. “On
a Formal Model of Safe and Scalable Self-Driving Cars.” ArXiv
Preprint abs/1708.06374 (August). http://arxiv.org/abs/1708.06374v6.
Shan, Shawn, Wenxin Ding, Josephine Passananti, Stanley Wu, Haitao
Zheng, and Ben Y. Zhao. 2023. “Nightshade: Prompt-Specific
Poisoning Attacks on Text-to-Image Generative Models.” ArXiv
Preprint abs/2310.13828 (October). http://arxiv.org/abs/2310.13828v3.
Shastri, Bhavin J., Alexander N. Tait, T. Ferreira de Lima, Wolfram H.
P. Pernice, Harish Bhaskaran, C. D. Wright, and Paul R. Prucnal. 2021.
“Photonics for Artificial Intelligence and Neuromorphic
Computing.” Nature Photonics 15 (2): 102–14. https://doi.org/10.1038/s41566-020-00754-y.
Shazeer, Noam, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc
Le, Geoffrey Hinton, and Jeff Dean. 2017. “Outrageously Large
Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer.”
arXiv Preprint arXiv:1701.06538, January. http://arxiv.org/abs/1701.06538v1.
Sheaffer, Jeremy W., David P. Luebke, and Kevin Skadron. 2007. “A
Hardware Redundancy and Recovery Mechanism for Reliable Scientific
Computation on Graphics Processors.” In Graphics
Hardware, 2007:55–64. Citeseer. https://doi.org/10.2312/EGGH/EGGH07/055-064.
Shehabi, Arman, Sarah Smith, Dale Sartor, Richard Brown, Magnus Herrlin,
Jonathan Koomey, Eric Masanet, Nathaniel Horner, Inês Azevedo, and
William Lintner. 2016. “United States Data Center Energy Usage
Report.” Office of Scientific; Technical Information (OSTI). https://doi.org/10.2172/1372902.
Shen, Sheng, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami,
Michael W. Mahoney, and Kurt Keutzer. 2019. “Q-BERT: Hessian Based
Ultra Low Precision Quantization of BERT.” Proceedings of the
AAAI Conference on Artificial Intelligence 34 (05): 8815–21. https://doi.org/10.1609/aaai.v34i05.6409.
Sheng, Victor S., and Jing Zhang. 2019. “Machine Learning with
Crowdsourcing: A Brief Summary of the Past Research and Future
Directions.” Proceedings of the AAAI Conference on Artificial
Intelligence 33 (01): 9837–43. https://doi.org/10.1609/aaai.v33i01.33019837.
Shi, Hongrui, and Valentin Radu. 2022. “Data Selection for
Efficient Model Update in Federated Learning.” In Proceedings
of the 2nd European Workshop on Machine Learning and Systems,
72–78. ACM. https://doi.org/10.1145/3517207.3526980.
Shneiderman, Ben. 2020. “Bridging the Gap Between Ethics and
Practice: Guidelines for Reliable, Safe, and Trustworthy Human-Centered
AI Systems.” ACM Transactions on Interactive Intelligent
Systems 10 (4): 1–31. https://doi.org/10.1145/3419764.
———. 2022. Human-Centered AI. Oxford University Press.
Shokri, Reza, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
2017. “Membership Inference Attacks Against Machine Learning
Models.” In 2017 IEEE Symposium on Security and Privacy
(SP), 3–18. IEEE; IEEE. https://doi.org/10.1109/sp.2017.41.
Siddik, Md Abu Bakar, Arman Shehabi, and Landon Marston. 2021.
“The Environmental Footprint of Data Centers in the United
States.” Environmental Research Letters 16 (6): 064017.
https://doi.org/10.1088/1748-9326/abfba1.
Silvestro, Daniele, Stefano Goria, Thomas Sterner, and Alexandre
Antonelli. 2022. “Improving Biodiversity Protection Through
Artificial Intelligence.” Nature Sustainability 5 (5):
415–24. https://doi.org/10.1038/s41893-022-00851-6.
Singh, Narendra, and Oladele A. Ogunseitan. 2022. “Disentangling
the Worldwide Web of e-Waste and Climate Change Co-Benefits.”
Circular Economy 1 (2): 100011. https://doi.org/10.1016/j.cec.2022.100011.
Skorobogatov, Sergei. 2009. “Local Heating Attacks on Flash Memory
Devices.” In 2009 IEEE International Workshop on
Hardware-Oriented Security and Trust, 1–6. IEEE; IEEE. https://doi.org/10.1109/hst.2009.5225028.
Skorobogatov, Sergei P., and Ross J. Anderson. 2003. “Optical
Fault Induction Attacks.” In Cryptographic Hardware and
Embedded Systems - CHES 2002, 2–12. Springer; Springer Berlin
Heidelberg. https://doi.org/10.1007/3-540-36400-5\_2.
Smilkov, Daniel, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin
Wattenberg. 2017. “SmoothGrad: Removing Noise by Adding
Noise.” ArXiv Preprint abs/1706.03825 (June). http://arxiv.org/abs/1706.03825v1.
Sokolova, Marina, and Guy Lapalme. 2009. “A Systematic Analysis of
Performance Measures for Classification Tasks.” Information
Processing &Amp; Management 45 (4): 427–37. https://doi.org/10.1016/j.ipm.2009.03.002.
Strassen, Volker. 1969. “Gaussian Elimination Is Not
Optimal.” Numerische Mathematik 13 (4): 354–56. https://doi.org/10.1007/bf02165411.
Strickland, Eliza. 2019. “IBM Watson, Heal Thyself: How IBM
Overpromised and Underdelivered on AI Health Care.” IEEE
Spectrum 56 (4): 24–31. https://doi.org/10.1109/mspec.2019.8678513.
Strubell, Emma, Ananya Ganesh, and Andrew McCallum. 2019. “Energy
and Policy Considerations for Deep Learning in NLP.” In
Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 3645–50. Florence, Italy: Association
for Computational Linguistics. https://doi.org/10.18653/v1/p19-1355.
Suda, Naveen, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma,
Sarma Vrudhula, Jae-sun Seo, and Yu Cao. 2016.
“Throughput-Optimized OpenCL-Based FPGA Accelerator for
Large-Scale Convolutional Neural Networks.” In Proceedings of
the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 16–25. ACM. https://doi.org/10.1145/2847263.2847276.
Sudhakar, Soumya, Vivienne Sze, and Sertac Karaman. 2023. “Data
Centers on Wheels: Emissions from Computing Onboard Autonomous
Vehicles.” IEEE Micro 43 (1): 29–39. https://doi.org/10.1109/mm.2022.3219803.
Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. 2017.
“Efficient Processing of Deep Neural Networks: A Tutorial and
Survey.” Proc. IEEE 105 (12): 2295–2329. https://doi.org/10.1109/jproc.2017.2761740.
Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2013. “Intriguing
Properties of Neural Networks.” Edited by Yoshua Bengio and Yann
LeCun, December. http://arxiv.org/abs/1312.6199v4.
Tambe, Thierry, En-Yu Yang, Zishen Wan, Yuntian Deng, Vijay Janapa
Reddi, Alexander Rush, David Brooks, and Gu-Yeon Wei. 2020.
“Algorithm-Hardware Co-Design of Adaptive Floating-Point Encodings
for Resilient Deep Learning Inference.” In 2020 57th ACM/IEEE
Design Automation Conference (DAC), 1–6. IEEE; IEEE. https://doi.org/10.1109/dac18072.2020.9218516.
Tan, Mingxing, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler,
Andrew Howard, and Quoc V. Le. 2019. “MnasNet: Platform-Aware
Neural Architecture Search for Mobile.” In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
2815–23. IEEE. https://doi.org/10.1109/cvpr.2019.00293.
Tan, Mingxing, and Quoc V. Le. 2019a. “EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks.” In
Proceedings of the International Conference on Machine Learning
(ICML), 6105–14.
———. 2019b. “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” May, 111–31. https://doi.org/10.1002/9781394205639.ch6.
Tang, Xin, Yichun He, and Jia Liu. 2022. “Soft Bioelectronics for
Cardiac Interfaces.” Biophysics Reviews 3 (1). https://doi.org/10.1063/5.0069516.
Tang, Xin, Hao Shen, Siyuan Zhao, Na Li, and Jia Liu. 2023.
“Flexible Brain–Computer Interfaces.” Nature
Electronics 6 (2): 109–18. https://doi.org/10.1038/s41928-022-00913-9.
Tarun, Ayush K, Vikram S Chundawat, Murari Mandal, and Mohan
Kankanhalli. 2022. “Deep Regression Unlearning.” ArXiv
Preprint abs/2210.08196 (October). http://arxiv.org/abs/2210.08196v2.
Team, The Theano Development, Rami Al-Rfou, Guillaume Alain, Amjad
Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, et
al. 2016. “Theano: A Python Framework for Fast Computation of
Mathematical Expressions,” May. http://arxiv.org/abs/1605.02688v1.
The Sustainable Development Goals Report 2018. 2018. New York:
United Nations. https://doi.org/10.18356/7d014b41-en.
“The Ultimate Guide to Deep Learning Model Quantization and
Quantization-Aware Training.” n.d. https://deci.ai/quantization-and-quantization-aware-training/.
Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F.
Manso. 2021. “Deep Learning’s Diminishing Returns: The Cost of
Improvement Is Becoming Unsustainable.” IEEE Spectrum 58
(10): 50–55. https://doi.org/10.1109/mspec.2021.9563954.
Thornton, James E. 1965. “Design of a Computer: The Control Data
6600.” Communications of the ACM 8 (6): 330–35.
Till, Aaron, Andrew L. Rypel, Andrew Bray, and Samuel B. Fey. 2019.
“Fish Die-Offs Are Concurrent with Thermal Extremes in North
Temperate Lakes.” Nature Climate Change 9 (8): 637–41.
https://doi.org/10.1038/s41558-019-0520-y.
Tirtalistyani, Rose, Murtiningrum Murtiningrum, and Rameshwar S. Kanwar.
2022. “Indonesia Rice Irrigation System: Time for
Innovation.” Sustainability 14 (19): 12477. https://doi.org/10.3390/su141912477.
Tramèr, Florian, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino, and Dan
Boneh. 2019. “AdVersarial: Perceptual Ad Blocking Meets
Adversarial Machine Learning.” In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2005–21.
ACM. https://doi.org/10.1145/3319535.3354222.
Tsai, Min-Jen, Ping-Yi Lin, and Ming-En Lee. 2023. “Adversarial
Attacks on Medical Image Classification.” Cancers 15
(17): 4228. https://doi.org/10.3390/cancers15174228.
Tsai, Timothy, Siva Kumar Sastry Hari, Michael Sullivan, Oreste Villa,
and Stephen W. Keckler. 2021. “NVBitFI: Dynamic Fault Injection
for GPUs.” In 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 284–91. IEEE;
IEEE. https://doi.org/10.1109/dsn48987.2021.00041.
Uddin, Mueen, and Azizah Abdul Rahman. 2012. “Energy Efficiency
and Low Carbon Enabler Green IT Framework for Data Centers Considering
Green Metrics.” Renewable and Sustainable Energy Reviews
16 (6): 4078–94. https://doi.org/10.1016/j.rser.2012.03.014.
Un, and World Economic Forum. 2019. A New Circular Vision for
Electronics, Time for a Global Reboot. PACE - Platform for
Accelerating the Circular Economy. https://www3.weforum.org/docs/WEF\_A\_New\_Circular\_Vision\_for\_Electronics.pdf.
Valenzuela, Christine L., and Pearl Y. Wang. 2000. “A Genetic
Algorithm for VLSI Floorplanning.” In Parallel Problem
Solving from Nature PPSN VI, 671–80. Springer; Springer Berlin
Heidelberg. https://doi.org/10.1007/3-540-45356-3\_66.
Van Noorden, Richard. 2016. “ArXiv Preprint Server Plans
Multimillion-Dollar Overhaul.” Nature 534 (7609): 602–2.
https://doi.org/10.1038/534602a.
Vangal, Sriram, Somnath Paul, Steven Hsu, Amit Agarwal, Saurabh Kumar,
Ram Krishnamurthy, Harish Krishnamurthy, James Tschanz, Vivek De, and
Chris H. Kim. 2021. “Wide-Range Many-Core SoC Design in Scaled
CMOS: Challenges and Opportunities.” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 29 (5): 843–56. https://doi.org/10.1109/tvlsi.2021.3061649.
Velazco, Raoul, Gilles Foucard, and Paul Peronnard. 2010.
“Combining Results of Accelerated Radiation Tests and Fault
Injections to Predict the Error Rate of an Application Implemented in
SRAM-Based FPGAs.” IEEE Transactions on Nuclear Science
57 (6): 3500–3505. https://doi.org/10.1109/tns.2010.2087355.
Verma, Naveen, Hongyang Jia, Hossein Valavi, Yinqi Tang, Murat Ozatay,
Lung-Yen Chen, Bonan Zhang, and Peter Deaville. 2019. “In-Memory
Computing: Advances and Prospects.” IEEE Solid-State Circuits
Magazine 11 (3): 43–55. https://doi.org/10.1109/mssc.2019.2922889.
Verma, Team Dual_Boot: Swapnil. 2022. “Elephant AI.”
Hackster.io. https://www.hackster.io/dual\_boot/elephant-ai-ba71e9.
Vivet, Pascal, Eric Guthmuller, Yvain Thonnart, Gael Pillonnet, Cesar
Fuguet, Ivan Miro-Panades, Guillaume Moritz, et al. 2021. “IntAct:
A 96-Core Processor with Six Chiplets 3D-Stacked on an Active Interposer
with Distributed Interconnects and Integrated Power Management.”
IEEE Journal of Solid-State Circuits 56 (1): 79–97. https://doi.org/10.1109/jssc.2020.3036341.
Wachter, Sandra, Brent Mittelstadt, and Chris Russell. 2017.
“Counterfactual Explanations Without Opening the Black Box:
Automated Decisions and the GDPR.” SSRN Electronic
Journal 31: 841. https://doi.org/10.2139/ssrn.3063289.
Wald, Peter H., and Jeffrey R. Jones. 1987. “Semiconductor
Manufacturing: An Introduction to Processes and Hazards.”
American Journal of Industrial Medicine 11 (2): 203–21. https://doi.org/10.1002/ajim.4700110209.
Wan, Zishen, Aqeel Anwar, Yu-Shun Hsiao, Tianyu Jia, Vijay Janapa Reddi,
and Arijit Raychowdhury. 2021. “Analyzing and Improving Fault
Tolerance of Learning-Based Navigation Systems.” In 2021 58th
ACM/IEEE Design Automation Conference (DAC), 841–46. IEEE; IEEE. https://doi.org/10.1109/dac18074.2021.9586116.
Wan, Zishen, Yiming Gan, Bo Yu, S Liu, A Raychowdhury, and Y Zhu. 2023.
“Vpp: The Vulnerability-Proportional Protection Paradigm Towards
Reliable Autonomous Machines.” In Proceedings of the 5th
International Workshop on Domain Specific System Architecture
(DOSSA), 1–6.
Wang, Alex, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019.
“SuperGLUE: A Stickier Benchmark for General-Purpose Language
Understanding Systems.” arXiv Preprint arXiv:1905.00537,
May. http://arxiv.org/abs/1905.00537v3.
Wang, Alex, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R. Bowman. 2018. “GLUE: A Multi-Task Benchmark and Analysis
Platform for Natural Language Understanding.” arXiv Preprint
arXiv:1804.07461, April. http://arxiv.org/abs/1804.07461v3.
Wang, LingFeng, and YaQing Zhan. 2019. “A Conceptual Peer Review
Model for arXiv and Other Preprint Databases.” Learned
Publishing 32 (3): 213–19. https://doi.org/10.1002/leap.1229.
Wang, Tianlu, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, and Vicente
Ordonez. 2019. “Balanced Datasets Are Not Enough: Estimating and
Mitigating Gender Bias in Deep Image Representations.” In
2019 IEEE/CVF International Conference on Computer Vision
(ICCV), 5309–18. IEEE. https://doi.org/10.1109/iccv.2019.00541.
Wang, Tianzhe, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang,
Yujun Lin, and Song Han. 2020. “APQ: Joint Search for Network
Architecture, Pruning and Quantization Policy.” In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2075–84. IEEE. https://doi.org/10.1109/cvpr42600.2020.00215.
Wang, Y., and P. Kanwar. 2019. “BFloat16: The Secret to High
Performance on Cloud TPUs.” Google Cloud Blog.
Warden, Pete. 2018. “Speech Commands: A Dataset for
Limited-Vocabulary Speech Recognition.” arXiv Preprint
arXiv:1804.03209, April. http://arxiv.org/abs/1804.03209v1.
Weicker, Reinhold P. 1984. “Dhrystone: A Synthetic Systems
Programming Benchmark.” Communications of the ACM 27
(10): 1013–30. https://doi.org/10.1145/358274.358283.
Weik, Martin H. 1961. “A THIRD SURVEY OF DOMESTIC ELECTRONIC
DIGITAL COMPUTING SYSTEMS.” Defense Technical Information Center;
Ballistic Research Laboratories. https://doi.org/10.21236/ad0253212.
Werchniak, Andrew, Roberto Barra Chicote, Yuriy Mishchenko, Jasha
Droppo, Jeff Condal, Peng Liu, and Anish Shah. 2021. “Exploring
the Application of Synthetic Audio in Training Keyword Spotters.”
In ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 7993–96. IEEE; IEEE. https://doi.org/10.1109/icassp39728.2021.9413448.
Wess, Matthias, Matvey Ivanov, Christoph Unger, Anvesh Nookala,
Alexander Wendt, and Axel Jantsch. 2021. “ANNETTE: Accurate Neural
Network Execution Time Estimation with Stacked Models.” IEEE
Access 9: 3545–56. https://doi.org/10.1109/access.2020.3047259.
Wiener, Norbert. 1960. “Some Moral and Technical Consequences of
Automation: As Machines Learn They May Develop Unforeseen Strategies at
Rates That Baffle Their Programmers.” Science 131
(3410): 1355–58. https://doi.org/10.1126/science.131.3410.1355.
Wilkening, Mark, Vilas Sridharan, Si Li, Fritz Previlon, Sudhanva
Gurumurthi, and David R. Kaeli. 2014. “Calculating Architectural
Vulnerability Factors for Spatial Multi-Bit Transient Faults.” In
2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture, 293–305. IEEE; IEEE. https://doi.org/10.1109/micro.2014.15.
Winkler, Harald, Franck Lecocq, Hans Lofgren, Maria Virginia Vilariño,
Sivan Kartha, and Joana Portugal-Pereira. 2022. “Examples of
Shifting Development Pathways: Lessons on How to Enable Broader, Deeper,
and Faster Climate Action.” Climate Action 1 (1). https://doi.org/10.1007/s44168-022-00026-1.
Witten, Ian H., and Eibe Frank. 2002. “Data Mining: Practical
Machine Learning Tools and Techniques with Java Implementations.”
ACM SIGMOD Record 31 (1): 76–77. https://doi.org/10.1145/507338.507355.
Wolpert, D. H., and W. G. Macready. 1997. “No Free Lunch Theorems
for Optimization.” IEEE Transactions on Evolutionary
Computation 1 (1): 67–82. https://doi.org/10.1109/4235.585893.
Wong, H.-S. Philip, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu,
Pang-Shiu Chen, Byoungil Lee, Frederick T. Chen, and Ming-Jinn Tsai.
2012. “Metal–Oxide RRAM.” Proceedings of the IEEE
100 (6): 1951–70. https://doi.org/10.1109/jproc.2012.2190369.
Wu, Bichen, Kurt Keutzer, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, and Yangqing Jia. 2019.
“FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable
Neural Architecture Search.” In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 10726–34. IEEE. https://doi.org/10.1109/cvpr.2019.01099.
Wu, Carole-Jean, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury,
Marat Dukhan, Kim Hazelwood, et al. 2019. “Machine Learning at
Facebook: Understanding Inference at the Edge.” In 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 331–44. IEEE; IEEE. https://doi.org/10.1109/hpca.2019.00048.
Wu, Carole-Jean, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha
Ardalani, Kiwan Maeng, Gloria Chang, et al. 2022. “Sustainable Ai:
Environmental Implications, Challenges and Opportunities.”
Proceedings of Machine Learning and Systems 4: 795–813.
Wu, Hao, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius
Micikevicius. 2020. “Integer Quantization for Deep Learning
Inference: Principles and Empirical Evaluation.” ArXiv
Preprint abs/2004.09602 (April). http://arxiv.org/abs/2004.09602v1.
Xiao, Guangxuan, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and
Song Han. 2022. “SmoothQuant: Accurate and Efficient Post-Training
Quantization for Large Language Models.” ArXiv Preprint
abs/2211.10438 (November). http://arxiv.org/abs/2211.10438v7.
Xiong, Siyu, Guoqing Wu, Xitian Fan, Xuan Feng, Zhongcheng Huang, Wei
Cao, Xuegong Zhou, et al. 2021. “MRI-Based Brain Tumor
Segmentation Using FPGA-Accelerated Neural Network.” BMC
Bioinformatics 22 (1): 421. https://doi.org/10.1186/s12859-021-04347-6.
Xiu, Liming. 2019. “Time Moore: Exploiting Moore’s Law from the
Perspective of Time.” IEEE Solid-State Circuits Magazine
11 (1): 39–55. https://doi.org/10.1109/mssc.2018.2882285.
Xu, Chen, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong
Wang, and Hongbin Zha. 2018. “Alternating Multi-Bit Quantization
for Recurrent Neural Networks.” In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=S19dR9x0b.
Xu, Ruijie, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu. 2024.
“Benchmarking Benchmark Leakage in Large Language Models.”
arXiv Preprint arXiv:2404.18824, April. http://arxiv.org/abs/2404.18824v1.
Xu, Zheng, Yanxiang Zhang, Galen Andrew, Christopher A. Choquette-Choo,
Peter Kairouz, H. Brendan McMahan, Jesse Rosenstock, and Yuanbo Zhang.
2023. “Federated Learning of Gboard Language Models with
Differential Privacy.” ArXiv Preprint abs/2305.18465
(May). http://arxiv.org/abs/2305.18465v2.
Yang, Lei, Zheyu Yan, Meng Li, Hyoukjun Kwon, Liangzhen Lai, Tushar
Krishna, Vikas Chandra, Weiwen Jiang, and Yiyu Shi. 2020.
“Co-Exploration of Neural Architectures and Heterogeneous ASIC
Accelerator Designs Targeting Multiple Tasks,” February, 523–87.
https://doi.org/10.1002/9783527667703.ch67.
Yang, Tien-Ju, Yonghui Xiao, Giovanni Motta, Françoise Beaufays, Rajiv
Mathews, and Mingqing Chen. 2023. “Online Model Compression for
Federated Learning with Large Models.” In ICASSP 2023 - 2023
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 1–5. IEEE; IEEE. https://doi.org/10.1109/icassp49357.2023.10097124.
Yao, Zhewei, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric
Tan, Leyuan Wang, et al. 2021. “Hawq-V3: Dyadic Neural Network
Quantization.” In International Conference on Machine
Learning, 11875–86. PMLR.
Yeh, Y. C. n.d. “Triple-Triple Redundant 777 Primary Flight
Computer.” In 1996 IEEE Aerospace Applications Conference.
Proceedings, 1:293–307. IEEE; IEEE. https://doi.org/10.1109/aero.1996.495891.
Yosinski, Jason, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014.
“How Transferable Are Features in Deep Neural Networks?”
Advances in Neural Information Processing Systems 27.
You, Jie, Jae-Won Chung, and Mosharaf Chowdhury. 2023. “Zeus:
Understanding and Optimizing GPU Energy Consumption of DNN
Training.” In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), 119–39. Boston, MA: USENIX
Association. https://www.usenix.org/conference/nsdi23/presentation/you.
Young, Tom, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2018.
“Recent Trends in Deep Learning Based Natural Language Processing
[Review Article].” IEEE Computational Intelligence
Magazine 13 (3): 55–75. https://doi.org/10.1109/mci.2018.2840738.
Zafrir, Ofir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. 2019.
“Q8BERT: Quantized 8Bit BERT.” In 2019 Fifth Workshop
on Energy Efficient Machine Learning and Cognitive Computing - NeurIPS
Edition (EMC2-NIPS), 36–39. IEEE; IEEE. https://doi.org/10.1109/emc2-nips53020.2019.00016.
Zeghidour, Neil, Olivier Teboul, Félix de Chaumont Quitry, and Marco
Tagliasacchi. 2021. “LEAF: A Learnable Frontend for Audio
Classification.” arXiv Preprint arXiv:2101.08596,
January. http://arxiv.org/abs/2101.08596v1.
Zhang, Chengliang, Minchen Yu, Wei Wang 0030, and Feng Yan 0001. 2019.
“MArk: Exploiting Cloud Services for Cost-Effective, SLO-Aware
Machine Learning Inference Serving.” In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), 1049–62. https://www.usenix.org/conference/atc19/presentation/zhang-chengliang.
Zhang, Chen, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Optimizing Cong. 2015. “FPGA-Based Accelerator Design for Deep
Convolutional Neural Networks Proceedings of the 2015 ACM.” In
SIGDA International Symposium on Field-Programmable Gate
Arrays-FPGA, 15:161–70.
Zhang, Dan, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna
Goldie, and Azalia Mirhoseini. 2022. “A Full-Stack Search
Technique for Domain Optimized Deep Learning Accelerators.” In
Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, 27–42. ASPLOS ’22. New York, NY, USA: ACM. https://doi.org/10.1145/3503222.3507767.
Zhang, Dongxia and, Xiaoqing Han, and Chunyu and and Deng. 2018.
“Review on the Research and Practice of Deep Learning and
Reinforcement Learning in Smart Grids.” CSEE Journal of Power
and Energy Systems 4 (3): 362–70. https://doi.org/10.17775/cseejpes.2018.00520.
Zhang, Hongyu. 2008. “On the Distribution of Software
Faults.” IEEE Transactions on Software Engineering 34
(2): 301–2. https://doi.org/10.1109/tse.2007.70771.
Zhang, Jeff Jun, Tianyu Gu, Kanad Basu, and Siddharth Garg. 2018.
“Analyzing and Mitigating the Impact of Permanent Faults on a
Systolic Array Based Neural Network Accelerator.” In 2018
IEEE 36th VLSI Test Symposium (VTS), 1–6. IEEE; IEEE. https://doi.org/10.1109/vts.2018.8368656.
Zhang, Jeff, Kartheek Rangineni, Zahra Ghodsi, and Siddharth Garg. 2018.
“ThUnderVolt: Enabling Aggressive Voltage Underscaling and Timing
Error Resilience for Energy Efficient Deep Learning
Accelerators.” In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), 1–6. IEEE. https://doi.org/10.1109/dac.2018.8465918.
Zhang, Li Lyna, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin Liu.
2020. “Fast Hardware-Aware Neural Architecture Search.” In
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). IEEE. https://doi.org/10.1109/cvprw50498.2020.00354.
Zhang, Qingxue, Dian Zhou, and Xuan Zeng. 2017. “Highly Wearable
Cuff-Less Blood Pressure and Heart Rate Monitoring with Single-Arm
Electrocardiogram and Photoplethysmogram Signals.” BioMedical
Engineering OnLine 16 (1): 23. https://doi.org/10.1186/s12938-017-0317-z.
Zhang, Tunhou, Hsin-Pai Cheng, Zhenwen Li, Feng Yan, Chengyu Huang, Hai
Li, and Yiran Chen. 2020. “AutoShrink: A Topology-Aware NAS for
Discovering Efficient Neural Architecture.” Proceedings of
the AAAI Conference on Artificial Intelligence 34 (04): 6829–36. https://doi.org/10.1609/aaai.v34i04.6163.
Zhao, Jiawei, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima
Anandkumar, and Yuandong Tian. 2024. “GaLore: Memory-Efficient LLM
Training by Gradient Low-Rank Projection,” March. http://arxiv.org/abs/2403.03507v2.
Zhao, Mark, and G. Edward Suh. 2018. “FPGA-Based Remote Power
Side-Channel Attacks.” In 2018 IEEE Symposium on Security and
Privacy (SP), 229–44. IEEE; IEEE. https://doi.org/10.1109/sp.2018.00049.
Zhao, Yue, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas
Chandra. 2018. “Federated Learning with Non-IID Data.”
ArXiv Preprint abs/1806.00582 (June). http://arxiv.org/abs/1806.00582v2.
Zhou, Bolei, Yiyou Sun, David Bau, and Antonio Torralba. 2018.
“Interpretable Basis Decomposition for Visual Explanation.”
In Computer Vision – ECCV 2018, 122–38. Springer International
Publishing. https://doi.org/10.1007/978-3-030-01237-3_8.
Zhou, Chuteng, Fernando Garcia Redondo, Julian Büchel, Irem Boybat,
Xavier Timoneda Comas, S. R. Nandakumar, Shidhartha Das, Abu Sebastian,
Manuel Le Gallo, and Paul N. Whatmough. 2021. “AnalogNets: ML-HW
Co-Design of Noise-Robust TinyML Models and Always-on Analog
Compute-in-Memory Accelerator,” November. http://arxiv.org/abs/2111.06503v1.
Zhou, Peng, Xintong Han, Vlad I. Morariu, and Larry S. Davis. 2018.
“Learning Rich Features for Image Manipulation Detection.”
In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 1053–61. IEEE. https://doi.org/10.1109/cvpr.2018.00116.
Zhu, Hongyu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Anand
Jayarajan, Amar Phanishayee, Bianca Schroeder, and Gennady Pekhimenko.
2018. “Benchmarking and Analyzing Deep Neural Network
Training.” In 2018 IEEE International Symposium on Workload
Characterization (IISWC), 88–100. IEEE; IEEE. https://doi.org/10.1109/iiswc.2018.8573476.
Zhu, Ligeng, Lanxiang Hu, Ji Lin, Wei-Ming Chen, Wei-Chen Wang, Chuang
Gan, and Song Han. 2023. “PockEngine: Sparse and Efficient
Fine-Tuning in a Pocket.” In 56th Annual IEEE/ACM
International Symposium on Microarchitecture, 1381–94. ACM. https://doi.org/10.1145/3613424.3614307.
Zhuang, Fuzhen, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. 2021. “A Comprehensive Survey on
Transfer Learning.” Proceedings of the IEEE 109 (1):
43–76. https://doi.org/10.1109/jproc.2020.3004555.