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Chapter 1

Hardware Kits

Hands-On Embedded ML Labs for Real-World Deployment

Figure 1.1: Hardware platforms for embedded ML labs

These hands-on laboratories accompany the Machine Learning Systems
textbook, bringing theory to life on real hardware. Deploy machine
learning on embedded devices you can hold in your hand, from image
classification to voice recognition to motion detection. Professional
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1.1. Hardware Platforms 2

development boards costing $25-100 provide immediate, tangible feed-
back: LEDs light up, motors spin, and buzzers sound when your model
runs successfully.

Working within the resource constraints of embedded devices (typi-
cally 2MB of RAM and 1MB of flash) forces you to confront the same
engineering trade-offs that define large-scale ML systems, but in a tan-
gible environment where every optimization decision has immediate,
observable consequences.

INFO Laboratory Development

These hands-on laboratories were co-designed by Prof. Vijay
Janapa Reddi and Marcelo Rovai, with Marcelo leading their de-
velopment. His decades of embedded systems expertise shaped
accessible, practical learning experiences that bridge theory with
real-world implementation.

1.1 Hardware Platforms

Table 1.1: Hardware platform comparison

Platform Price Best For Capabilities

Grove Vision AI V2 ~$25 Beginners Vision, Plug & Play
XIAOML Kit ~$40 Best Value Vision, Audio, Motion
Raspberry Pi ~$60-80 Advanced Vision, LLM, VLM
Arduino Nicla Vision ~$95 Professional Vision, Audio, Motion

1.2 What You Will Build

Computer Vision: Image classification and object detection on micro-
controllers. Train models to recognize objects, detect faces, or classify
scenes, then deploy them to devices running on battery power.

Audio Processing: Keyword spotting and voice command recognition.
Build wake-word detectors and simple voice interfaces that run entirely
on-device without cloud connectivity.

Motion Classification: Activity and gesture recognition from IMU
data. Create wearable-style applications that detect walking, running,
or custom gestures using accelerometer and gyroscope sensors.

https://vijay.seas.harvard.edu
https://vijay.seas.harvard.edu
https://github.com/Mjrovai


Chapter 1. Hardware Kits 3

Large Language Models: Run LLMs and VLMs on edge devices using
Raspberry Pi. Experience the frontier of on-device AI with models that
can understand and generate text.

1.3 Getting Started

1. Choose Hardware: Select a platform based on your budget and
learning goals. See Platforms for detailed comparisons.

2. Set Up Environment: Install Arduino IDE or platform-specific
tools. Follow the IDE Setup Guide for step-by-step instructions.

3. Build &Deploy: Work through the labs for your chosen platform.
Start with Getting Started for an overview of available exercises.

1.4 Part of the MLSysBook Ecosystem

These hardware labs complement the broader ML Systems learning
experience:

• Textbook: Comprehensive theory and concepts covering the full
ML systems stack

• Hardware Kits: Hands-on embedded deployment (you are here)
• TinyTorch: Build your own ML framework from scratch

contents/platforms.qmd
contents/ide-setup.qmd
contents/getting-started.qmd




Getting Started

This guide walks you through selecting hardware, configuring your
development environment, and running your first embedded ML ap-
plication. Most students complete setup in under an hour.

Step 1: Select Your Platform

Your choice depends on budget, learning objectives, and the types of
applications you want to build.

For beginners or budget-conscious learners:

Platform Cost Why Choose It

Grove Vision AI V2 ~$25 No-code interface, fastest path to running
models

XIAOML Kit ~$40 Best value, supports vision, audio, and
motion

For advanced applications:

Platform Cost Why Choose It

Raspberry Pi ~$60-80 Full Linux environment, LLMs and VLMs
Nicla Vision ~$95 Professional-grade, ultra-low power design

For detailed specifications and technical comparisons, see Platforms.

5
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Step 2: Set Up Your Environment 6

Step 2: Set Up Your Environment

Development environment configuration is platform-dependent but
follows a common pattern: install software tools, configure communi-
cation with hardware, and verify the setup works.

Time estimate: 30-60 minutes depending on platform and internet
speed.

Follow the IDE Setup Guide for complete procedures covering:

• System requirements for your development computer
• Arduino IDE installation for microcontroller platforms
• Python environment configuration for Raspberry Pi
• SenseCraft AI web interface for Grove Vision AI V2
• Serial communication and hardware verification

Step 3: Choose Your First Lab

Each platform supports different exercise categories. Select labs that
match both your hardware and learning goals.

Table 1.4: Exercise availability by platform

Lab Category Grove Vision XIAOML Kit Nicla Raspberry Pi

Image Classification ✓ ✓ ✓ ✓
Object Detection ✓ ✓ ✓ ✓
Keyword Spotting ✓ ✓
Motion Classification ✓ ✓
Large Language Models ✓
Vision Language Models ✓

Step 4: Start Your First Lab

Grove Vision AI V2: Begin with Setup and No-Code Apps. You’ll
deploy a pre-trained model in minutes using the visual interface.

XIAOML Kit: Start with Setup, then proceed to Image Classification to
train and deploy your first custom model.

Nicla Vision: Complete Setup to configure your board, then try Image
Classification.

ide-setup.qmd
seeed/grove_vision_ai_v2/setup_and_no_code_apps/setup_and_no_code_apps.qmd
seeed/xiao_esp32s3/setup/setup.qmd
seeed/xiao_esp32s3/image_classification/image_classification.qmd
arduino/nicla_vision/setup/setup.qmd
arduino/nicla_vision/image_classification/image_classification.qmd
arduino/nicla_vision/image_classification/image_classification.qmd
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Raspberry Pi: Follow Setup, then choose your path: - Image Classi-
fication for computer vision fundamentals - LLM Deployment to run
language models on edge hardware

Prerequisites

These labs assume:

• Programming: Proficiency in Python. Familiarity with C/C++ is
helpful for microcontroller platforms but not required.

• Mathematics: Working knowledge of linear algebra and basic
probability at the undergraduate level.

• Hardware: No prior embedded systems experience. Each lab
includes complete setup and troubleshooting procedures.

Connection to ML Systems Textbook

These laboratories complement specific chapters in the ML Systems
textbook:

• Image Classification labs reinforce concepts from the Computer
Vision and Model Optimization chapters

• Keyword Spotting labs connect to Audio Processing and Real-
time Inference

• Motion Classification labs demonstrate Sensor Fusion and Time-
series Analysis

• LLM/VLM labs extend Large Model Deployment to resource-
constrained environments

Each lab identifies relevant textbook sections for deeper theoretical
understanding.

raspi/setup/setup.qmd
raspi/image_classification/image_classification.qmd
raspi/image_classification/image_classification.qmd
raspi/llm/llm.qmd




Hardware Platforms

This chapter provides detailed technical specifications for the four hard-
ware platforms used in these laboratories. Each platform represents
a different point along the spectrum of embedded computing capa-
bilities, from ultra-low-power microcontrollers to full-featured edge
computers.

These platforms were selected because they illustrate distinct engineer-
ing trade-offs in power consumption, computational capability, and de-
velopment complexity. All are widely used in commercial applications,
ensuring that skills developed here transfer directly to professional
embedded systems work.

Featured Platform

Figure 1.2: Complete XIAOML Kit with all components

9
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The XIAOML Kit is the most recent addition to our educational hard-
ware platforms (released on July 31st, 2025). It offers a comprehensive
TinyML development environment for learning about ML systems, fea-
turing integrated wireless connectivity, a camera, multiple sensors, and
extensive documentation. This compact board exemplifies how contem-
porary embedded systems can efficiently provide advanced machine
learning capabilities within a cost-effective framework.

Platform Overview

Our curriculum features four carefully selected platforms that span
the full spectrum of embedded computing capabilities. Each platform
shown in Table 1.5 has been chosen to illustrate specific engineering
trade-offs and learning objectives.

Table 1.5: Platform selection strategy table.

Platform
Primary Learning
Focus Cost Power Profile Best For

XIAOML Kit IoT & Wireless ML ~$40 Low Power Cost-sensitive
deployments

Arduino Nicla Ultra-low Power
Design

~$95 Ultra-low Battery-powered
devices

Grove Vision
AI

Hardware
Acceleration

~$25 Medium Industrial
applications

Raspberry Pi Full ML Frameworks $60-145 High Advanced edge
computing

Platform Comparison

Table 1.6 provides a comprehensive technical comparison of all four
platforms.

Table 1.6: Platform comparison matrix.

Characteristic XIAOML Kit Raspberry Pi Arduino Nicla
Grove Vision AI
V2

Cost Range (USD) ~$40 $60-145 ~$95 ~$25
Power
Consumption

Low High Ultra-low Medium

Processing Power Medium Very High Low High (NPU)
Memory Capacity 8MB 1-16GB 2MB 16MB
Primary Use Case IoT networks Edge

computing
Battery devices Industrial AI

https://www.seeedstudio.com/blog/2025/08/05/introducing-the-xiaoml-kit-your-tinyml-journey-starts-here/


Hardware Platforms 11

Characteristic XIAOML Kit Raspberry Pi Arduino Nicla
Grove Vision AI
V2

ML Framework TF Lite TensorFlow,
PyTorch

TensorFlow
Lite

SenseCraft AI

Development Env. Arduino/
PlatformIO

Python/Linux Arduino IDE Visual/Code

Platform Selection Guidelines

Selecting the appropriate platform depends on specific learning objec-
tives and project requirements. Table 1.7 provides a systematic mapping
to guide these decisions.

Table 1.7: Platform capabilities matrix.

Learning
Objective/Application

XIAOML
Kit Ras Pi Arduino Nicla

Grove Vision AI
V2

Embedded Systems Basics ✓ Limited ✓ ✓
Wireless Connectivity ✓ ✓ ✓
Ultra-Low Power Design ✓
Full ML Frameworks ✓
Hardware Acceleration ✓
Real-time Vision Limited ✓ ✓ ✓
Edge-Cloud Integration ✓ ✓ ✓
Production Deployment ✓ ✓ ✓

Hardware Platform Specifications

This section provides detailed technical specifications for each platform,
including processor architecture, memory hierarchy, sensor capabilities,
and development toolchain requirements.

XIAOML Kit (Seeed Studio)

LIGHTBULB Best For: IoT & Wireless ML

The XIAOML Kit excels at wireless connectivity and cost-sensitive
deployments. It’s perfect for learning IoT sensor networks, remote
monitoring systems, and wireless ML inference where you need
reliable connectivity in a compact, affordable package.
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The XIAOML Kit bundles the XIAO ESP32S3 Sense board with an expan-
sion board, providing a complete TinyML development environment.
The XIAO ESP32S3 Sense alone provides camera and microphone ca-
pabilities (vision and sound), while the kit’s expansion board adds a
6-axis IMU for motion classification. The name “XIAO” (฀) translates to
“tiny” in Chinese, reflecting the board’s 21×17.5mm form factor.

Figure 1.3: XIAOML Kit with expansion board

Processor Architecture: ESP32-S3 dual-core Xtensa LX7 running at
240MHz

Memory Hierarchy: 8MB PSRAM and 8MB Flash storage

Connectivity: WiFi 802.11 b/g/n and Bluetooth 5.0

Included Sensors:

• XIAO ESP32S3 Sense: OV2640 camera sensor, digital microphone
• Expansion Board: 6-axis inertial measurement unit (IMU), 0.42”

OLED display

PowerCharacteristics: 3.3V operation with multiple low-power modes

Development Environment: Arduino IDE and PlatformIO support
with extensive library ecosystem. Supports C/C++ programming with
Arduino-style abstractions and direct ESP-IDF for advanced users.

Application Focus: IoT sensor networks, remote monitoring systems,
wireless ML inference, cost-sensitive deployments
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Arduino Nicla Vision

LIGHTBULB Best For: Ultra-Low Power Design

The Arduino Nicla Vision is optimized for battery-powered de-
vices and always-on sensing applications. It’s ideal for learning
ultra-low power design, image classification systems, and object
detection applications where battery life is measured in months,
not hours.

The Nicla Vision exemplifies professional-grade embedded vision sys-
tems built around the STM32H7 microcontroller. This platform demon-
strates how specialized hardware design enables sophisticated ML
inference within severe resource constraints.

Figure 1.4: Arduino Nicla Vision with camera module

Processor Architecture: STM32H747 dual-core ARM Cortex-M7/M4
running at 480MHz

Memory Hierarchy: 2MB integrated RAM and 16MB Flash storage
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Integrated Sensors: GC2145 camera sensor, MP34DT05 digital micro-
phone, 6-axis IMU

Power Characteristics: 3.3V operation optimized for battery-powered
deployment

Development Environment: Arduino IDE and OpenMV IDE support
with specialized computer vision libraries. MicroPython support for
rapid prototyping alongside C/C++ for production deployments.

Application Focus: Battery-powered devices, image classification sys-
tems, object detection applications, always-on sensing

Grove Vision AI V2

LIGHTBULB Best For: Hardware Acceleration

The Grove Vision AI V2 features dedicated neural processing
hardware for orders-of-magnitude performance improvements.
It’s perfect for learning industrial inspection systems, real-time
video analytics, and advanced object detection where you need
NPU-accelerated inference capabilities.

The Grove Vision AI V2 incorporates dedicated neural processing hard-
ware (NPU) to demonstrate hardware-accelerated ML inference. This
platform illustrates how specialized AI processors achieve orders-of-
magnitude performance improvements over software-only implemen-
tations.
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Figure 1.5: Grove Vision AI V2 with NPU

Processor Architecture: ARM Cortex-M55 with integrated Ethos-U55
NPU

Memory Hierarchy: 16MB external memory for model and data stor-
age

Neural Processing Unit: Dedicated hardware accelerator for ML infer-
ence

Camera Interface: Standard CSI connector supporting various camera
modules

Audio Input: Onboard digital microphone

Development Environment: SenseCraft AI visual programming plat-
form for no-code development, with Arduino IDE support for custom
applications. Supports both graphical programming and traditional
C/C++ development workflows.

Application Focus: Industrial inspection systems, real-time video ana-
lytics, advanced object detection, NPU-accelerated inference
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Raspberry Pi (Models 4/5 and Zero 2W)

LIGHTBULB Best For: Full ML Frameworks

The Raspberry Pi bridges embedded systems and traditional com-
puting, providing a complete Linux environment for advanced
ML applications. It’s ideal for learning edge AI gateways, ad-
vanced computer vision systems, language model deployment,
and multi-modal AI applications where you need full computing
capabilities.

The Raspberry Pi family bridges embedded systems and traditional
computing, providing a full Linux environment while maintaining
educational accessibility. This platform demonstrates how increased
computational resources enable sophisticated ML applications.

Figure 1.6: Raspberry Pi 5 and Pi Zero 2W comparison

Processor Architecture: ARM Cortex-A76 (Pi 5) or Cortex-A53 (Zero
2W)

Memory Hierarchy: 1-16GB DDR4 RAM depending on model

Storage: MicroSD card primary storage with USB 3.0 expansion

Connectivity: Gigabit Ethernet, WiFi, Bluetooth, multiple USB ports

Camera Interface: Dedicated CSI connector plus USB camera support

Operating System: Debian-based Raspberry Pi OS (full Linux distribu-
tion)
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Development Environment: Full Linux development environment
with native Python, C/C++, and JavaScript support. Package managers
(apt, pip) provide access to extensive ML libraries including TensorFlow,
PyTorch, and OpenCV.

Application Focus: Edge AI gateways, advanced computer vision sys-
tems, language model deployment, multi-modal AI applications

Getting Started

To get started with the hardware kits used in this course, you can
purchase them directly from the following official sources:

• Seeed Studio – XIAOML Kit and Grove Vision AI V2 Module
• Arduino Store – Nicla Vision
• Raspberry Pi Foundation – Boards and Kits
• DigiKey, Mouser, SparkFun — Alternative distributors for a vari-

ety of components and kits

Check each site for educational discounts, bundles, and regional avail-
ability. Most kits are available as starter packages that include the board
and basic accessories.

https://www.seeedstudio.com/The-XIAOML-Kit.html
https://wiki.seeedstudio.com/grove_vision_ai_v2/
https://store.arduino.cc/products/nicla-vision
https://www.raspberrypi.com/products/
https://www.digikey.com/
https://www.mouser.com/
https://www.sparkfun.com/




IDE Setup

Setting up your development environment is a critical first step that
determines your success throughout the laboratory sequence. Unlike
cloud-based ML development where infrastructure is abstracted away,
embedded systems require understanding the complete toolchain from
code compilation to hardware deployment.

Environment setup typically takes 30-60 minutes, depending on plat-
form choice and internet speed. These procedures are designed for
students with no prior embedded systems experience.

System Requirements

Before beginning installation, verify your development computer meets
these requirements:

Development Computer:

• Operating System: Windows 10/11, macOS 10.15+, or Linux
(Ubuntu 18.04+)

• Memory: 8GB RAM minimum (16GB recommended for Rasp-
berry Pi development)

• Storage: 10GB free space for development tools and libraries
• USB Ports: At least one USB 2.0/3.0 port for device connection
• Internet Connection: Required for software installation and li-

brary downloads

Software Prerequisites:

• Arduino IDE 2.0+ for Arduino-based platforms (XIAO, Nicla
Vision)

• Python 3.8+ for Raspberry Pi development

19
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• Git for version control and example code access
• Text Editor/IDE such as VS Code or PyCharm

Hardware Accessories:

• USB cables: USB-C or Micro-USB (must support data transfer,
not power-only)

• SD Card: 32GB+ Class 10 for Raspberry Pi
• Power adapters: Appropriate for each platform
• Camera modules: Included with most kits or available separately

Platform-Specific Software Installation

Each hardware platform demands different development approaches
that mirror real-world embedded engineering practices. Arduino-based
systems focus on resource efficiency and real-time constraints, Rasp-
berry Pi demonstrates comprehensive edge computing capabilities,
while specialized AI hardware highlights dedicated acceleration tech-
niques.

Select the installation procedures appropriate for your chosen hardware
platform.

Arduino-Based Platforms (Nicla Vision, XIAOML Kit)

Arduino-based embedded systems provide direct hardware control
with minimal abstraction layers, making them ideal for understanding
resource constraints and optimization techniques. The development
environment emphasizes immediate feedback between code changes
and system behavior.

Arduino IDE Installation:

1. Download Arduino IDE 2.0 from arduino.cc/software
2. Install following the platform-specific setup wizard
3. Launch Arduino IDE and navigate to File → Preferences
4. Add board support URLs:

• For XIAOML Kit: https://raw.githubusercontent.com/espressif/arduino-
esp32/gh-pages/package_esp32_index.json

https://www.arduino.cc/en/software
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• For Nicla Vision: URL provided in Arduino IDE Board Man-
ager

Board Package Installation:

1. Open Tools → Board → Boards Manager
2. Search for your platform:

• XIAOML Kit: Search “ESP32” and install “esp32 by Espressif
Systems”

• Nicla Vision: Search “Arduino Mbed OS Nicla Boards” and
install

3. Select your board from Tools → Board menu
4. Install required libraries via Library Manager

Essential Libraries:

• TensorFlow Lite Micro
• Platform-specific camera drivers
• Sensor interface libraries (I2C, SPI)

Grove Vision AI V2 Platform

This platform introduces hardware-accelerated AI through dedicated
neural processing units, demonstrating how specialized silicon achieves
performance improvements impossible with general-purpose proces-
sors. The visual programming interface showcases rapid prototyping
capabilities, while traditional development environments offer more
extensive customization options.

SenseCraft AI Setup:

1. Create an account at sensecraft.seeed.cc
2. Connect Grove Vision AI V2 via USB
3. Access the device through the SenseCraft AI web interface
4. No local software installation required for the visual program-

ming workflow

Arduino IDE Setup (for custom development):

Follow Arduino-based platform instructions above, using the Seeed
Studio board package URL in the board manager.

https://sensecraft.seeed.cc
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Raspberry Pi Platform

The Raspberry Pi environment bridges embedded constraints with full
computing capabilities, enabling students to experience both resource
optimization and advanced ML frameworks. This dual perspective
illustrates how computational resources impact algorithmic choices
and system architecture decisions.

Operating System Installation:

1. Download Raspberry Pi Imager
2. Flash Raspberry Pi OS (64-bit recommended) to a microSD card

(32GB minimum)
3. Configure SSH access and WiFi credentials during the imaging

process
4. Insert the flashed SD card and boot the Raspberry Pi

Software Environment Setup:

The following commands establish a complete Python-based ML devel-
opment environment with proper dependency management:

# Update system packages
sudo apt update && sudo apt upgrade -y

# Install Python development tools
# python3-pip: Python package installer
# python3-venv: Virtual environment creation
# python3-dev: Python development headers
sudo apt install python3-pip \

python3-venv \
python3-dev -y

# Install ML framework dependencies
# libatlas-base-dev: Linear algebra library (BLAS/LAPACK)
# libhdf5-dev: HDF5 data format library
# libhdf5-serial-dev: HDF5 serial version
sudo apt install libatlas-base-dev \

libhdf5-dev \
libhdf5-serial-dev -y

# Install computer vision dependencies
# libcamera-dev: Camera interface library
# python3-libcamera: Python bindings for libcamera
# python3-kms++: Kernel mode setting library

https://www.raspberrypi.com/software/
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sudo apt install libcamera-dev \
python3-libcamera \
python3-kms++ -y

# Create virtual environment for projects
python3 -m venv ~/ml_projects
source ~/ml_projects/bin/activate

# Install core ML packages
# tensorflow: Main ML framework
# tensorflow-lite: Optimized for edge/mobile devices
# opencv-python: Computer vision library
# numpy: Numerical computing foundation
pip install tensorflow \

tensorflow-lite \
opencv-python \
numpy

Development Tool Configuration

Proper tool configuration ensures reliable communication between
your development workstation and embedded hardware. These set-
tings establish the foundation for code deployment, debugging, and
performance monitoring throughout the laboratory exercises.

Serial Communication Setup

Serial communication provides the primary interface for debugging and
data monitoring in embedded systems, offering insights into system
behavior that are essential for understanding performance constraints
and optimization opportunities.

Windows:

• Install appropriate USB-to-serial drivers (CH340, FTDI, or platform-
specific)

• Configure Device Manager to recognize the development board

macOS/Linux:

• Most USB-to-serial adapters work without additional drivers
• Verify device detection: ls /dev/tty* (macOS/Linux)
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• Add user to dialout group: sudo usermod -a -G dialout $USER
(Linux)

IDE Configuration

Development environment settings directly impact the efficiency of
the code-test-deploy cycle that characterizes embedded development.
Proper configuration reduces debugging time and provides clear feed-
back about system performance.

Arduino IDE Settings:

• Configure the appropriate COM port under Tools → Port
• Set the correct board and processor selection
• Verify upload speed (typically 115200 baud)
• Enable verbose output during compilation for debugging

Raspberry Pi Development:

• Configure SSH keys for remote development
• Install VS Code with Python and Remote SSH extensions
• Set up Jupyter notebook access for interactive development

Environment Verification

Verification procedures confirm that your development environment
can successfully communicate with hardware and execute basic opera-
tions. These tests establish baseline functionality before proceeding to
more complex laboratory exercises.

Hardware Detection Tests

The following verification procedures test core functionality required
for laboratory exercises, ensuring that both hardware communication
and software libraries operate correctly.

Arduino Platforms:
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void setup() {
Serial.begin(115200);
Serial.println("Development environment test");
Serial.print("Board: ");
Serial.println(ARDUINO_BOARD);

}

void loop() {
Serial.println("Environment operational");
delay(1000);

}

Raspberry Pi:

# Test camera interface
libcamera-hello --timeout 5000

# Test Python ML environment
python3 -c \
"import tensorflow as tf; print('TensorFlow:', tf.__version__)"

python3 -c \
"import cv2; print('OpenCV:', cv2.__version__)"

Grove Vision AI V2:

• Verify device detection in the SenseCraft AI web interface
• Test basic model deployment through visual programming inter-

face

Common Setup Issues and Solutions

Setup challenges are common and offer valuable learning opportunities
regarding embedded system constraints and debugging techniques.
The following solutions address the most frequently encountered issues
during environment configuration.

Device Connection Problems:

• Verify the USB cable supports data transfer (not power-only)
• Install platform-specific USB drivers if the device is not recognized
• Try different USB ports or USB hubs if the connection is unstable

Compilation Errors:

• Confirm the correct board and processor selection in the IDE
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• Verify all required libraries are installed with compatible versions
• Check for sufficient disk space for the compilation process

Runtime Issues:

• Ensure adequate power supply (especially for camera operations)
• Verify SD card compatibility and formatting (Raspberry Pi)
• Check memory allocation for ML models within platform con-

straints

Network Connectivity (WiFi-enabled platforms):

• Confirm network credentials and security protocols
• Check firewall settings for development tool access
• Verify that the network allows device-to-development machine

communication

Troubleshooting and Support

Common Hardware Issues:

• Device not recognized: Ensure the USB cable supports data trans-
fer, try different ports

• Upload failures: Check board selection and port configuration in
the IDE

• Power issues: Verify adequate power supply, especially for cam-
era operations

• Memory errors: Confirm model size fits within platform con-
straints

Software Setup Issues:

• Library conflicts: Use compatible versions specified in the setup
guides

• Compilation errors: Verify all dependencies are installed cor-
rectly

• Network connectivity: Check firewall settings and network per-
missions

Platform-Specific Resources:

• XIAOML Kit: Seeed Studio Documentation

https://www.seeedstudio.com/The-XIAOML-Kit.html
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– XIAO ESP32S3 Series documentation

• Arduino Nicla Vision: Arduino Documentation
• Grove Vision AI V2: SenseCraft AI Platform
• Raspberry Pi: Official Documentation

Community Support:

• GitHub Issues: Report bugs and request features through the
project repository

• Discussion Forums: Platform-specific communities on Arduino,
Raspberry Pi, and Seeed Studio websites

• Stack Overflow: Tag questions with appropriate platform tags
for community assistance

Ready for Laboratory Exercises

With your development environment configured and verified, you
have established the foundational tools needed for embedded ML
programming. The skills developed during environment setup—
understanding toolchains, managing dependencies, and verifying
system functionality—apply throughout all subsequent laboratory
work.

Your configured environment now supports the entire development
workflow, from algorithm implementation to hardware deployment and
performance optimization. The Laboratory Overview offers exercise
categories organized by complexity and learning objectives, designed
to systematically build on these foundational capabilities.

Recommended starting sequence:

1. Begin with basic sensor exercises to verify hardware functionality
2. Progress to single-modality ML applications (image or audio)
3. Advance to multi-modal and optimization exercises

Each laboratory exercise includes detailed implementation procedures,
expected performance benchmarks, and troubleshooting guidance spe-
cific to the project requirements. The development environment you
have established provides the foundation for exploring the complete
spectrum of embedded ML applications and optimization techniques.

https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/
https://docs.arduino.cc/hardware/nicla-vision
https://sensecraft.seeed.cc
https://www.raspberrypi.com/documentation/
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Overview

These labs provide a unique opportunity to gain practical experience
with machine learning (ML) systems. Unlike working with large mod-
els requiring data center-scale resources, these exercises allow you to
directly interact with hardware and software using TinyML. This hands-
on approach gives you a tangible understanding of the challenges and
opportunities in deploying AI, albeit at a tiny scale. However, the prin-
ciples are largely the same as what you would encounter when working
with larger systems.

Figure 1.7: Nicla Vision. Source: Arduino.

Where to Buy

The Arduino Nicla Vision is available from the official Arduino Store:

33



Pre-requisites 34

• Arduino Store (~$95)

Pre-requisites

• Nicla Vision Board: Ensure you have the Nicla Vision board.
• USB Cable: For connecting the board to your computer.
• Network: With internet access for downloading necessary soft-

ware.

Setup

• Setup Nicla Vision

Exercises

Modality Task Description Link

Vision Image Classification Learn to classify images Link
Vision Object Detection Implement object detection Link
Sound Keyword Spotting Explore voice recognition

systems
Link

IMU Motion Classification
and Anomaly
Detection

Classify motion data and
detect anomalies

Link

https://store.arduino.cc/products/nicla-vision
setup/setup.qmd
image_classification/image_classification.qmd
object_detection/object_detection.qmd
kws/kws.qmd
motion_classification/motion_classification.qmd


Setup

Figure 1.8: DALL·E 3 Prompt: Illustration reminiscent of a 1950s cartoon where the Arduino NICLA
VISION board, equipped with various sensors including a camera, is the focal point on an old-fashioned desk.
In the background, a computer screen with rounded edges displays the Arduino IDE. The code is related to LED
configurations and machine learning voice command detection. Outputs on the Serial Monitor explicitly
display the words ‘yes’ and ‘no’.

35
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Overview

The Arduino Nicla Vision (sometimes called NiclaV) is a development
board that includes two processors that can run tasks in parallel. It is
part of a family of development boards with the same form factor but
designed for specific tasks, such as the Nicla Sense ME and the Nicla
Voice. The Niclas can efficiently run processes created with TensorFlow
Lite. For example, one of the cores of the NiclaV runs a computer vision
algorithm on the fly (inference). At the same time, the other executes
low-level operations like controlling a motor and communicating or
acting as a user interface. The onboard wireless module allows the
simultaneous management of WiFi and Bluetooth Low Energy (BLE)
connectivity.

Hardware

Two Parallel Cores

The central processor is the dual-core STM32H747, including a Cortex
M7 at 480 MHz and a Cortex M4 at 240 MHz. The two cores commu-
nicate via a Remote Procedure Call mechanism that seamlessly allows
calling functions on the other processor. Both processors share all the
on-chip peripherals and can run:

• Arduino sketches on top of the Arm Mbed OS
• Native Mbed applications
• MicroPython / JavaScript via an interpreter
• TensorFlow Lite

https://docs.arduino.cc/hardware/nicla-vision
https://www.bosch-sensortec.com/software-tools/tools/arduino-nicla-sense-me/
https://store-usa.arduino.cc/products/nicla-voice?_gl=1*l3abc6*_ga*MTQ3NzE4Mjk4Mi4xNjQwMDIwOTk5*_ga_NEXN8H46L5*MTY5NjM0Mzk1My4xMDIuMS4xNjk2MzQ0MjQ1LjAuMC4w
https://store-usa.arduino.cc/products/nicla-voice?_gl=1*l3abc6*_ga*MTQ3NzE4Mjk4Mi4xNjQwMDIwOTk5*_ga_NEXN8H46L5*MTY5NjM0Mzk1My4xMDIuMS4xNjk2MzQ0MjQ1LjAuMC4w
https://content.arduino.cc/assets/Arduino-Portenta-H7_Datasheet_stm32h747xi.pdf?_gl=1*6quciu*_ga*MTQ3NzE4Mjk4Mi4xNjQwMDIwOTk5*_ga_NEXN8H46L5*MTY0NzQ0NTg1My4xMS4xLjE2NDc0NDYzMzkuMA..
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Memory

Memory is crucial for embedded machine learning projects. The NiclaV
board can host up to 16 MB of QSPI Flash for storage. However, it is
essential to consider that the MCU SRAM is the one to be used with
machine learning inferences; the STM32H747 is only 1 MB, shared by
both processors. This MCU also has incorporated 2 MB of FLASH,
mainly for code storage.

Sensors

• Camera: A GC2145 2 MP Color CMOS Camera.
• Microphone: The MP34DT05 is an ultra-compact, low-power, om-

nidirectional, digital MEMS microphone built with a capacitive
sensing element and the IC interface.

• 6-Axis IMU: 3D gyroscope and 3D accelerometer data from the
LSM6DSOX 6-axis IMU.

• Time of Flight Sensor: The VL53L1CBV0FY Time-of-Flight sensor
adds accurate and low-power-ranging capabilities to Nicla Vision.
The invisible near-infrared VCSEL laser (including the analog
driver) is encapsulated with receiving optics in an all-in-one small
module below the camera.

Arduino IDE Installation

Start connecting the board (micro USB) to your computer:
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Install the Mbed OS core for Nicla boards in the Arduino IDE. Having
the IDE open, navigate to Tools > Board > Board Manager, look for
Arduino Nicla Vision on the search window, and install the board.

Next, go to Tools > Board > Arduino Mbed OS Nicla Boards and
select Arduino Nicla Vision. Having your board connected to the
USB, you should see the Nicla on Port and select it.

Open the Blink sketch on Examples/Basic and run it us-
ing the IDE Upload button. You should see the Built-in
LED (green RGB) blinking, which means the Nicla board is
correctly installed and functional!

Testing the Microphone

On Arduino IDE, go to Examples > PDM > PDMSerialPlotter, open
it, and run the sketch. Open the Plotter and see the audio representation
from the microphone:
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Vary the frequency of the sound you generate and confirm
that the mic is working correctly.

Testing the IMU

Before testing the IMU, it will be necessary to install the LSM6DSOX
library. To do so, go to Library Manager and look for LSM6DSOX. Install
the library provided by Arduino:

Next, go to Examples > Arduino_LSM6DSOX > SimpleAccelerometer
and run the accelerometer test (you can also run Gyro and board tem-
perature):
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Testing the ToF (Time of Flight) Sensor

As we did with IMU, installing the VL53L1X ToF library is necessary.
To do that, go to Library Manager and look for VL53L1X. Install the
library provided by Pololu:

Next, run the sketch proximity_detection.ino:

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Arduino-IDE/proximity_detection/proximity_detection.ino
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On the Serial Monitor, you will see the distance from the camera to an
object in front of it (max of 4 m).

Testing the Camera

We can also test the camera using, for example, the code provided on
Examples > Camera > CameraCaptureRawBytes. We cannot see the
image directly, but we can get the raw image data generated by the
camera.
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We can use the Web Serial Camera (API) to see the image generated
by the camera. This web application streams the camera image over
Web Serial from camera-equipped Arduino boards.

The Web Serial Camera example shows you how to send image data
over the wire from your Arduino board and how to unpack the data
in JavaScript for rendering. In addition, in the source code of the web
application, we can find some example image filters that show us how
to manipulate pixel data to achieve visual effects.

The Arduino sketch (CameraCaptureWebSerial) for sending the camera
image data can be found here and is also directly available from the
“Examples→Camera” menu in the Arduino IDE when selecting the Nicla
board.

The web application for displaying the camera image can be accessed
here. We may also look at [this tutorial, which explains the setup in
more detail.

Installing the OpenMV IDE
OpenMV IDE is the premier integrated development environment with
OpenMV cameras, similar to the Nicla Vision. It features a powerful
text editor, debug terminal, and frame buffer viewer with a histogram
display. We will use MicroPython to program the camera.

Go to the OpenMV IDE page, download the correct version for your
Operating System, and follow the instructions for its installation on
your computer.

https://labs.arduino.cc/en/labs/web-serial-camera
https://developer.mozilla.org/en-US/docs/Web/API/Web_Serial_API
https://github.com/arduino/ArduinoCore-mbed/tree/main/libraries/Camera/extras/WebSerialCamera
https://github.com/arduino/ArduinoCore-mbed/tree/main/libraries/Camera/examples/CameraCaptureWebSerial
https://arduino.github.io/labs-pages/web-serial-camera/
https://openmv.io/pages/download
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The IDE should open, defaulting to the helloworld_1.py code on its Code
Area. If not, you can open it from Files > Examples > HelloWord >
helloword.py

Any messages sent through a serial connection (using print() or error
messages) will be displayed on the Serial Terminal during run time.
The image captured by a camera will be displayed in the CameraViewer
Area (or Frame Buffer) and in the Histogram area, immediately below
the Camera Viewer.
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Updating the Bootloader

Before connecting the Nicla to the OpenMV IDE, ensure you have
the latest bootloader version. Go to your Arduino IDE, select the
Nicla board, and open the sketch on Examples > STM_32H747_System
STM32H747_manageBootloader. Upload the code to your board. The
Serial Monitor will guide you.

Installing the Firmware

After updating the bootloader, put the Nicla Vision in bootloader
mode by double-pressing the reset button on the board. The built-in
green LED will start fading in and out. Now return to the OpenMV
IDE and click on the connect icon (Left ToolBar):

A pop-up will tell you that a board in DFU mode was detected and
ask how you would like to proceed. First, select Install the latest
release firmware (vX.Y.Z). This action will install the latest OpenMV
firmware on the Nicla Vision.

You can leave the option Erase internal file system unselected and
click [OK].

Nicla’s green LED will start flashing while the OpenMV firmware is
uploaded to the board, and a terminal window will then open, showing
the flashing progress.
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Wait until the green LED stops flashing and fading. When the process
ends, you will see a message saying, “DFU firmware update complete!”.
Press [OK].

A green play button appears when the Nicla Vison connects to the Tool
Bar.
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Also, note that a drive named “NO NAME” will appear on your com-
puter.

Every time you press the [RESET] button on the board, the main.py
script stored on it automatically executes. You can load the main.py
code on the IDE (File > Open File...).

This code is the “Blink” code, confirming that the HW is
OK.

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/main.py
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Testing the Camera

To test the camera, let’s run helloword_1.py. For that, select the script on
File > Examples > HelloWorld > helloword.py,

When clicking the green play button, the MicroPython script (hel-
loworld.py) on the Code Area will be uploaded and run on the Nicla
Vision. On-Camera Viewer, you will start to see the video streaming.
The Serial Monitor will show us the FPS (Frames per second), which
should be around 27fps.

Here is the helloworld.py script:

import sensor, time

sensor.reset() # Reset and initialize
# the sensor.

sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565
# (or GRAYSCALE)

sensor.set_framesize(sensor.QVGA) # Set frame size to
# QVGA (320x240)

sensor.skip_frames(time = 2000) # Wait for settings take
# effect.

clock = time.clock() # Create a clock object
# to track the FPS.

while(True):
clock.tick() # Update the FPS clock.
img = sensor.snapshot() # Take a picture and return
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# the image.
print(clock.fps())

In GitHub, you can find the Python scripts used here.

The code can be split into two parts:

• Setup: Where the libraries are imported, initialized and the vari-
ables are defined and initiated.

• Loop: (while loop) part of the code that runs continually. The
image (img variable) is captured (one frame). Each of those frames
can be used for inference in Machine Learning Applications.

To interrupt the program execution, press the red [X] button.

Note: OpenMV Cam runs about half as fast when connected
to the IDE. The FPS should increase once disconnected.

In the GitHub, You can find other Python scripts. Try to test the onboard
sensors.

Connecting the Nicla Vision to Edge Impulse
Studio

We will need the Edge Impulse Studio later in other labs. Edge Im-
pulse is a leading development platform for machine learning on edge
devices.

Edge Impulse officially supports the Nicla Vision. So, to start, please
create a new project on the Studio and connect the Nicla to it. For that,
follow the steps:

• Download the Arduino CLI for your specific computer architec-
ture (OS)

• Download the most updated EI Firmware.
• Unzip both files and place all the files in the same folder.
• Put the Nicla-Vision on Boot Mode, pressing the reset button

twice.
• Run the uploader (EI FW) corresponding to your OS:

https://github.com/Mjrovai/Arduino_Nicla_Vision
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Micropython
https://www.edgeimpulse.com/
https://www.edgeimpulse.com/
https://arduino.github.io/arduino-cli/1.2/installation/
https://cdn.edgeimpulse.com/firmware/arduino-nicla-vision.zip


Setup 49

• Executing the specific batch code for your OS will upload the
binary arduino-nicla-vision.bin to your board.

Using Chrome, WebUSB can be used to connect the Nicla to
the EI Studio. The EI CLI is not needed.

Go to your project on the Studio, and on the Data Acquisition tab,
select WebUSB (1). A window will pop up; choose the option that shows
that the Nicla is paired (2) and press [Connect] (3).

You can choose which sensor data to pick in the Collect Data section on
the Data Acquisition tab.
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For example. IMU data (inertial):

Or Image (Camera):
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You can also test an external sensor connected to the ADC (Nicla pin 0)
and the other onboard sensors, such as the built-in microphone, the
ToF (Proximity) or a combination of sensors (fusion).

Expanding the Nicla Vision Board (optional)

A last item to explore is that sometimes, during prototyping, it is es-
sential to experiment with external sensors and devices. An excellent
expansion to the Nicla is the Arduino MKR Connector Carrier (Grove
compatible).

The shield has 14 Grove connectors: five single analog inputs (A0-A5),
one double analog input (A5/A6), five single digital I/Os (D0-D4), one
double digital I/O (D5/D6), one I2C (TWI), and one UART (Serial). All
connectors are 5V compatible.

Note that all 17 Nicla Vision pins will be connected to the
Shield Groves, but some Grove connections remain discon-
nected.

https://store-usa.arduino.cc/products/arduino-mkr-connector-carrier-grove-compatible
https://store-usa.arduino.cc/products/arduino-mkr-connector-carrier-grove-compatible
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This shield is MKR compatible and can be used with the Nicla Vision
and Portenta.

For example, suppose that on a TinyML project, you want to send
inference results using a LoRaWAN device and add information about
local luminosity. Often, with offline operations, a local low-power
display such as an OLED is advised. This setup can be seen here:
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The Grove Light Sensor would be connected to one of the single Analog
pins (A0/PC4), the LoRaWAN device to the UART, and the OLED to
the I2C connector.

The Nicla Pins 3 (Tx) and 4 (Rx) are connected with the Serial Shield
connector. The UART communication is used with the LoRaWan device.
Here is a simple code to use the UART:

# UART Test - By: marcelo_rovai - Sat Sep 23 2023

import time
from pyb import UART
from pyb import LED

redLED = LED(1) # built-in red LED

# Init UART object.
# Nicla Vision's UART (TX/RX pins) is on "LP1"
uart = UART("LP1", 9600)

while(True):
uart.write("Hello World!\r\n")
redLED.toggle()
time.sleep_ms(1000)

To verify that the UART is working, you should, for example, connect
another device as the Arduino UNO, displaying “Hello Word” on the
Serial Monitor. Here is the code.

https://wiki.seeedstudio.com/Grove-Light_Sensor/
https://wiki.seeedstudio.com/Grove_LoRa_E5_New_Version/
https://wiki.seeedstudio.com/Grove-OLED-Display-0.96-SSD1315/
https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Arduino-IDE/teste_uart_UNO/teste_uart_UNO.ino
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Below is the Hello World code to be used with the I2C OLED. The Mi-
croPython SSD1306 OLED driver (ssd1306.py), created by Adafruit,
should also be uploaded to the Nicla (the ssd1306.py script can be
found in GitHub).

# Nicla_OLED_Hello_World - By: marcelo_rovai - Sat Sep 30 2023

#Save on device: MicroPython SSD1306 OLED driver,
# I2C and SPI interfaces created by Adafruit
import ssd1306

from machine import I2C
i2c = I2C(1)

oled_width = 128
oled_height = 64
oled = ssd1306.SSD1306_I2C(oled_width, oled_height, i2c)

oled.text('Hello, World', 10, 10)
oled.show()

Finally, here is a simple script to read the ADC value on pin “PC4”
(Nicla pin A0):

# Light Sensor (A0) - By: marcelo_rovai - Wed Oct 4 2023

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/ssd1306.py
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import pyb
from time import sleep

adc = pyb.ADC(pyb.Pin("PC4")) # create an analog object
# from a pin

val = adc.read() # read an analog value

while (True):

val = adc.read()
print ("Light={}".format (val))
sleep (1)

The ADC can be used for other sensor variables, such as Temperature.

Note that the above scripts (downloaded from Github) in-
troduce only how to connect external devices with the Nicla
Vision board using MicroPython.

Summary

The Arduino Nicla Vision is an excellent tiny device for industrial and
professional uses! However, it is powerful, trustworthy, low power, and
has suitable sensors for the most common embedded machine learning
applications such as vision, movement, sensor fusion, and sound.

On the GitHub repository, you will find the last version of
all the code used or commented on in this hands-on lab.

Resources

• Micropython codes
• Arduino Codes

https://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Micropython
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Micropython
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Arduino-IDE
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Figure 1.9: DALL·E 3 Prompt: Cartoon in a 1950s style featuring a compact electronic device with a camera
module placed on a wooden table. The screen displays blue robots on one side and green periquitos on the other.
LED lights on the device indicate classifications, while characters in retro clothing observe with interest.
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Overview

As we initiate our studies into embedded machine learning or TinyML,
it’s impossible to overlook the transformative impact of Computer
Vision (CV) and Artificial Intelligence (AI) in our lives. These two
intertwined disciplines redefine what machines can perceive and ac-
complish, from autonomous vehicles and robotics to healthcare and
surveillance.

More and more, we are facing an artificial intelligence (AI) revolution
where, as stated by Gartner, Edge AI has a very high impact potential,
and it is for now!

In the “bullseye” of the Radar is the Edge Computer Vision, and when we
talk about Machine Learning (ML) applied to vision, the first thing that
comes to mind is Image Classification, a kind of ML “Hello World”!

This lab will explore a computer vision project utilizing Convolutional
Neural Networks (CNNs) for real-time image classification. Lever-
aging TensorFlow’s robust ecosystem, we’ll implement a pre-trained
MobileNet model and adapt it for edge deployment. The focus will be
optimizing the model to run efficiently on resource-constrained hard-
ware without sacrificing accuracy.

We’ll employ techniques like quantization and pruning to reduce the
computational load. By the end of this tutorial, you’ll have a working
prototype capable of classifying images in real-time, all running on
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a low-power embedded system based on the Arduino Nicla Vision
board.

Computer Vision

At its core, computer vision enables machines to interpret and make
decisions based on visual data from the world, essentially mimicking
the capability of the human optical system. Conversely, AI is a broader
field encompassing machine learning, natural language processing, and
robotics, among other technologies. When you bring AI algorithms
into computer vision projects, you supercharge the system’s ability to
understand, interpret, and react to visual stimuli.

When discussing Computer Vision projects applied to embedded de-
vices, the most common applications that come to mind are Image
Classification and Object Detection.

Both models can be implemented on tiny devices like the Arduino Nicla
Vision and used on real projects. In this chapter, we will cover Image
Classification.

Image Classification Project Goal

The first step in any ML project is to define the goal. In this case, the
goal is to detect and classify two specific objects present in one image.
For this project, we will use two small toys: a robot and a small Brazilian
parrot (named Periquito). We will also collect images of a background
where those two objects are absent.
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Data Collection

Once we have defined our Machine Learning project goal, the next and
most crucial step is collecting the dataset. For image capturing, we can
use:

• Web Serial Camera tool,
• Edge Impulse Studio,
• OpenMV IDE,
• A smartphone.

Here, we will use the OpenMV IDE.

Collecting Dataset with OpenMV IDE

First, we should create a folder on our computer where the data will
be saved, for example, “data.” Next, on the OpenMV IDE, we go to
Tools > Dataset Editor and select New Dataset to start the dataset
collection:
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The IDE will ask us to open the file where the data will be saved. Choose
the “data” folder that was created. Note that new icons will appear on
the Left panel.

Using the upper icon (1), enter with the first class name, for example,
“periquito”:

Running the dataset_capture_script.py and clicking on the camera
icon (2) will start capturing images:
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Repeat the same procedure with the other classes.

We suggest around 50 to 60 images from each category. Try
to capture different angles, backgrounds, and light condi-
tions.

The stored images use a QVGA frame size of 320×240 and the RGB565
(color pixel format).

After capturing the dataset, close the Dataset Editor Tool on the Tools
> Dataset Editor.

We will end up with a dataset on our computer that contains three
classes: periquito, robot, and background.
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We should return to Edge Impulse Studio and upload the dataset to our
created project.

Training the model with Edge Impulse Studio

We will use the Edge Impulse Studio to train our model. Enter the
account credentials and create a new project:

Here, you can clone a similar project: NICLA-Vision_Im-
age_Classification.

Dataset

Using the EI Studio (or Studio), we will go over four main steps to have
our model ready for use on the Nicla Vision board: Dataset, Impulse,
Tests, and Deploy (on the Edge Device, in this case, the NiclaV).

https://studio.edgeimpulse.com/public/273858/latest
https://studio.edgeimpulse.com/public/273858/latest
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Regarding the Dataset, it is essential to point out that our Original
Dataset, captured with the OpenMV IDE, will be split into Training,
Validation, and Test. The Test Set will be spared from the beginning and
reserved for use only in the Test phase after training. The Validation
Set will be used during training.

The EI Studio will take a percentage of training data to be
used for validation

On Studio, go to the Data acquisition tab, and on the UPLOAD DATA
section, upload the chosen categories files from your computer:
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Leave to the Studio the splitting of the original dataset into train and
test and choose the label about that specific data:

Repeat the procedure for all three classes.

Selecting a folder and upload all the files at once is possible.

At the end, you should see your “raw data” in the Studio:
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Note that when you start to upload the data, a pop-up window can
appear, asking if you are building an Object Detection project. Select
[NO].

We can always change it in the Dashboard section: One label per
data item (Image Classification):
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Optionally, the Studio allows us to explore the data, showing a complete
view of all the data in the project. We can clear, inspect, or change labels
by clicking on individual data items. In our case, the data seems OK.

The Impulse Design

In this phase, we should define how to:

• Pre-process our data, which consists of resizing the individual
images and determining the color depth to use (be it RGB or
Grayscale) and

• Specify a Model, in this case, it will be the Transfer Learning
(Images) to fine-tune a pre-trained MobileNet V2 image classifi-
cation model on our data. This method performs well even with
relatively small image datasets (around 150 images in our case).
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Transfer Learning with MobileNet offers a streamlined approach to
model training, which is especially beneficial for resource-constrained
environments and projects with limited labeled data. MobileNet,
known for its lightweight architecture, is a pre-trained model that has
already learned valuable features from a large dataset (ImageNet).

By leveraging these learned features, you can train a new model for
your specific task with fewer data and computational resources and yet
achieve competitive accuracy.

This approach significantly reduces training time and computational
cost, making it ideal for quick prototyping and deployment on embed-
ded devices where efficiency is paramount.
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Go to the Impulse Design Tab and create the impulse, defining an image
size of 96x96 and squashing them (squared form, without cropping).
Select Image and Transfer Learning blocks. Save the Impulse.

Image Pre-Processing

All the input QVGA/RGB565 images will be converted to 27,640 features(96×96×3).

Press [Save parameters] and Generate all features:



The Impulse Design 70

Model Design

In 2007, Google introduced MobileNetV1, a family of general-purpose
computer vision neural networks designed with mobile devices in mind
to support classification, detection, and more. MobileNets are small,
low-latency, low-power models parameterized to meet the resource
constraints of various use cases. in 2018, Google launched MobileNetV2:
Inverted Residuals and Linear Bottlenecks.

MobileNet V1 and MobileNet V2 aim at mobile efficiency and embed-
ded vision applications but differ in architectural complexity and perfor-
mance. While both use depthwise separable convolutions to reduce the
computational cost, MobileNet V2 introduces Inverted Residual Blocks
and Linear Bottlenecks to improve performance. These new features
allow V2 to capture more complex features using fewer parameters,
making it computationally more efficient and generally more accurate
than its predecessor. Additionally, V2 employs a non-linear activation
in the intermediate expansion layer. It still uses a linear activation for
the bottleneck layer, a design choice found to preserve important in-
formation through the network. MobileNet V2 offers an optimized
architecture for higher accuracy and efficiency and will be used in this
project.

Although the base MobileNet architecture is already tiny and has low
latency, many times, a specific use case or application may require the
model to be even smaller and faster. MobileNets introduces a straight-
forward parameter 𝛼 (alpha) called width multiplier to construct these
smaller, less computationally expensive models. The role of the width
multiplier 𝛼 is that of thinning a network uniformly at each layer.

https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381


Image Classification 71

Edge Impulse Studio can use both MobileNetV1 (96×96 images) and
V2 (96×96 or 160×160 images), with several different 𝛼 values (from
0.05 to 1.0). For example, you will get the highest accuracy with V2,160×160 images, and 𝛼 = 1.0. Of course, there is a trade-off. The higher
the accuracy, the more memory (around 1.3 MB RAM and 2.6 MB ROM)
will be needed to run the model, implying more latency. The smaller
footprint will be obtained at the other extreme with MobileNetV1 and𝛼 = 0.10 (around 53.2 K RAM and 101 K ROM).

We will use MobileNetV2 96x96 0.1 ( or 0.05) for this project, with an
estimated memory cost of 265.3 KB in RAM. This model should be OK
for the Nicla Vision with 1MB of SRAM. On the Transfer Learning Tab,
select this model:
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Model Training

Another valuable technique to be used with Deep Learning is Data
Augmentation. Data augmentation is a method to improve the accuracy
of machine learning models by creating additional artificial data. A data
augmentation system makes small, random changes to your training
data during the training process (such as flipping, cropping, or rotating
the images).

Looking under the hood, here you can see how Edge Impulse imple-
ments a data Augmentation policy on your data:

# Implements the data augmentation policy
def augment_image(image, label):

# Flips the image randomly
image = tf.image.random_flip_left_right(image)

# Increase the image size, then randomly crop it down to
# the original dimensions
resize_factor = random.uniform(1, 1.2)
new_height = math.floor(resize_factor * INPUT_SHAPE[0])
new_width = math.floor(resize_factor * INPUT_SHAPE[1])
image = tf.image.resize_with_crop_or_pad(image, new_height,

new_width)
image = tf.image.random_crop(image, size=INPUT_SHAPE)

# Vary the brightness of the image
image = tf.image.random_brightness(image, max_delta=0.2)

return image, label

Exposure to these variations during training can help prevent your
model from taking shortcuts by “memorizing” superficial clues in your
training data, meaning it may better reflect the deep underlying patterns
in your dataset.

The final layer of our model will have 12 neurons with a 15% dropout
for overfitting prevention. Here is the Training result:
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The result is excellent, with 77 ms of latency (estimated), which should
result in around 13 fps (frames per second) during inference.

Model Testing

Now, we should take the data set put aside at the start of the project
and run the trained model using it as input:
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The result is, again, excellent.

Deploying the model

At this point, we can deploy the trained model as a firmware (FW) and
use the OpenMV IDE to run it using MicroPython, or we can deploy it
as a C/C++ or an Arduino library.
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Arduino Library

First, Let’s deploy it as an Arduino Library:

We should install the library as.zip on the Arduino IDE and run the
sketch nicla_vision_camera.ino available in Examples under the library
name.

Note that Arduino Nicla Vision has, by default, 512 KB
of RAM allocated for the M7 core and an additional 244
KB on the M4 address space. In the code, this allocation
was changed to 288 kB to guarantee that the model will
run on the device (malloc_addblock((void*)0x30000000,
288 * 1024);).

The result is good, with 86 ms of measured latency.
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Here is a short video showing the inference results: https://youtu.be
/bZPZZJblU-o

OpenMV

It is possible to deploy the trained model to be used with OpenMV in
two ways: as a library and as a firmware (FW). Choosing FW, the Edge
Impulse Studio generates optimized models, libraries, and frameworks
needed to make the inference. Let’s explore this option.

Select OpenMV Firmware on the Deploy Tab and press [Build].

On the computer, we will find a ZIP file. Open it:

https://youtu.be/bZPZZJblU-o
https://youtu.be/bZPZZJblU-o
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Use the Bootloader tool on the OpenMV IDE to load the FW on your
board (1):

Select the appropriate file (.bin for Nicla-Vision):

After the download is finished, press OK:
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If a message says that the FW is outdated, DO NOT UPGRADE. Select
[NO].

Now, open the script ei_image_classification.py that was downloaded
from the Studio and the.bin file for the Nicla.
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Run it. Pointing the camera to the objects we want to classify, the
inference result will be displayed on the Serial Terminal.

The classification result will appear at the Serial Terminal. If it is difficult
to read the result, include a new line in the code to add some delay:

import time
While True:
...

time.sleep_ms(200) # Delay for .2 second

Changing the Code to add labels

The code provided by Edge Impulse can be modified so that we can see,
for test reasons, the inference result directly on the image displayed on
the OpenMV IDE.

Upload the code from GitHub, or modify it as below:

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/nicla_image_classification.py
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# Marcelo Rovai - NICLA Vision - Image Classification
# Adapted from Edge Impulse - OpenMV Image Classification Example
# @24March25

import sensor
import time
import ml

sensor.reset() # Reset and initialize the sensor.
# Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_pixformat(sensor.RGB565)
# Set frame size to QVGA (320x240)
sensor.set_framesize(sensor.QVGA)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.

model = ml.Model("trained")#mobilenet, load_to_fb=True)

clock = time.clock()

while True:
clock.tick()
img = sensor.snapshot()

fps = clock.fps()
lat = clock.avg()
print("**********\nPrediction:")
# Combines labels & confidence into a list of tuples and then
# sorts that list by the confidence values.
sorted_list = sorted(

zip(model.labels, model.predict([img])[0].flatten().tolist()),
key=lambda x: x[1], reverse=True

)

# Print only the class with the highest probability
max_val = sorted_list[0][1]
max_lbl = sorted_list[0][0]

if max_val < 0.5:
max_lbl = 'uncertain'

print("{} with a prob of {:.2f}".format(max_lbl, max_val))
print("FPS: {:.2f} fps ==> latency: {:.0f} ms".format(fps, lat))
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# Draw the label with the highest probability to the image viewer
img.draw_string(
10, 10,
max_lbl + "\n{:.2f}".format(max_val),
mono_space = False,
scale=3
)

time.sleep_ms(500) # Delay for .5 second

Here you can see the result:

Note that the latency (136 ms) is almost double of what we got directly
with the Arduino IDE. This is because we are using the IDE as an
interface and also the time to wait for the camera to be ready. If we start
the clock just before the inference, the latency should drop to around
70 ms.

The NiclaV runs about half as fast when connected to the
IDE. The FPS should increase once disconnected.

Post-Processing with LEDs

When working with embedded machine learning, we are looking for
devices that can continually proceed with the inference and result,
taking some action directly on the physical world and not displaying
the result on a connected computer. To simulate this, we will light up a
different LED for each possible inference result.
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To accomplish that, we should upload the code from GitHub or change
the last code to include the LEDs:

# Marcelo Rovai - NICLA Vision - Image Classification with LEDs
# Adapted from Edge Impulse - OpenMV Image Classification Example
# @24Aug23

import sensor, time, ml
from machine import LED

ledRed = LED("LED_RED")
ledGre = LED("LED_GREEN")
ledBlu = LED("LED_BLUE")

sensor.reset() # Reset and initialize the sensor.
# Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_pixformat(sensor.RGB565)
# Set frame size to QVGA (320x240)
sensor.set_framesize(sensor.QVGA)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.

model = ml.Model("trained")#mobilenet, load_to_fb=True)

ledRed.off()
ledGre.off()
ledBlu.off()

clock = time.clock()

def setLEDs(max_lbl):

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/nicla_image_classification_LED.py
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if max_lbl == 'uncertain’:
ledRed.on()
ledGre.off()
ledBlu.off()

if max_lbl == 'periquito’:
ledRed.off()
ledGre.on()
ledBlu.off()

if max_lbl == 'robot’:
ledRed.off()
ledGre.off()
ledBlu.on()

if max_lbl == 'background’:
ledRed.off()
ledGre.off()
ledBlu.off()

while True:
img = sensor.snapshot()

clock.tick()
fps = clock.fps()
lat = clock.avg()
print("**********\nPrediction:")
sorted_list = sorted(

zip(model.labels, model.predict([img])[0].flatten().tolist()),
key=lambda x: x[1], reverse=True

)

# Print only the class with the highest probability
max_val = sorted_list[0][1]
max_lbl = sorted_list[0][0]

if max_val < 0.5:
max_lbl = 'uncertain'

print("{} with a prob of {:.2f}".format(max_lbl, max_val))
print("FPS: {:.2f} fps ==> latency: {:.0f} ms".format(fps, lat))

# Draw the label with the highest probability to the image viewer
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img.draw_string(
10, 10,
max_lbl + "\n{:.2f}".format(max_val),
mono_space = False,
scale=3
)

setLEDs(max_lbl)
time.sleep_ms(200) # Delay for .2 second

Now, each time that a class scores a result greater than 0.8, the corre-
spondent LED will be lit:

• Led Red 0n: Uncertain (no class is over 0.8)
• Led Green 0n: Periquito > 0.8
• Led Blue 0n: Robot > 0.8
• All LEDs Off: Background > 0.8

Here is the result:

In more detail
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Image Classification (non-official) Benchmark

Several development boards can be used for embedded machine learn-
ing (TinyML), and the most common ones for Computer Vision appli-
cations (consuming low energy), are the ESP32 CAM, the Seeed XIAO
ESP32S3 Sense, the Arduino Nicla Vison, and the Arduino Portenta.

Catching the opportunity, the same trained model was deployed on
the ESP-CAM, the XIAO, and the Portenta (in this one, the model was
trained again, using grayscaled images to be compatible with its camera).
Here is the result, deploying the models as Arduino’s Library:
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Summary

Before we finish, consider that Computer Vision is more than just image
classification. For example, you can develop Edge Machine Learning
projects around vision in several areas, such as:

• Autonomous Vehicles: Use sensor fusion, lidar data, and com-
puter vision algorithms to navigate and make decisions.

• Healthcare: Automated diagnosis of diseases through MRI, X-ray,
and CT scan image analysis

• Retail: Automated checkout systems that identify products as
they pass through a scanner.

• Security and Surveillance: Facial recognition, anomaly detection,
and object tracking in real-time video feeds.

• Augmented Reality: Object detection and classification to overlay
digital information in the real world.

• Industrial Automation: Visual inspection of products, predictive
maintenance, and robot and drone guidance.

• Agriculture: Drone-based crop monitoring and automated har-
vesting.

• Natural Language Processing: Image captioning and visual ques-
tion answering.

• Gesture Recognition: For gaming, sign language translation, and
human-machine interaction.

• Content Recommendation: Image-based recommendation sys-
tems in e-commerce.

Resources

• Micropython codes
• Dataset
• Edge Impulse Project

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Micropython
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/data
https://studio.edgeimpulse.com/public/273858/latest
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Figure 1.10: DALL·E 3 Prompt: Cartoon in the style of the 1940s or 1950s showcasing a spacious industrial
warehouse interior. A conveyor belt is prominently featured, carrying a mixture of toy wheels and boxes. The
wheels are distinguishable with their bright yellow centers and black tires. The boxes are white cubes painted
with alternating black and white patterns. At the end of the moving conveyor stands a retro-styled robot,
equipped with tools and sensors, diligently classifying and counting the arriving wheels and boxes. The overall
aesthetic is reminiscent of mid-century animation with bold lines and a classic color palette.

87
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Overview

This continuation of Image Classification on Nicla Vision is now explor-
ing Object Detection.

Object Detection versus Image Classification

The main task with Image Classification models is to produce a list of
the most probable object categories present on an image, for example,
to identify a tabby cat just after his dinner:

But what happens when the cat jumps near the wine glass? The model
still only recognizes the predominant category on the image, the tabby
cat:
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And what happens if there is not a dominant category on the image?

The model identifies the above image utterly wrong as an “ashcan,”
possibly due to the color tonalities.

The model used in all previous examples is MobileNet,
which was trained with a large dataset, ImageNet.

To solve this issue, we need another type of model, where not only
multiple categories (or labels) can be found but also where the objects
are located on a given image.

As we can imagine, such models are much more complicated and bigger,
for example, the MobileNetV2 SSD FPN-Lite 320x320, trained with
the COCO dataset. This pre-trained object detection model is designed
to locate up to 10 objects within an image, outputting a bounding box
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for each object detected. The below image is the result of such a model
running on a Raspberry Pi:

Those models used for object detection (such as the MobileNet SSD
or YOLO) usually have several MB in size, which is OK for Raspberry
Pi but unsuitable for use with embedded devices, where the RAM is
usually lower than 1 Mbyte.

An innovative solution for Object Detection: FOMO

Edge Impulse launched in 2022, FOMO (Faster Objects, More Objects),
a novel solution for performing object detection on embedded devices,
not only on the Nicla Vision (Cortex M7) but also on Cortex M4F CPUs
(Arduino Nano33 and OpenMV M4 series) and the Espressif ESP32
devices (ESP-CAM and XIAO ESP32S3 Sense).

In this Hands-On lab, we will explore using FOMO with Object Detec-
tion, not entering many details about the model itself. To understand
more about how the model works, you can go into the official FOMO
announcement by Edge Impulse, where Louis Moreau and Mat Kelcey
explain in detail how it works.

The Object Detection Project Goal

All Machine Learning projects need to start with a detailed goal. Let’s
assume we are in an industrial facility and must sort and count wheels
and special boxes.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects
https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects
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In other words, we should perform a multi-label classification, where
each image can have three classes:

• Background (No objects)
• Box
• Wheel

Here are some not labeled image samples that we should use to detect
the objects (wheels and boxes):

We are interested in which object is in the image, its location (centroid),
and how many we can find on it. The object’s size is not detected with
FOMO, as with MobileNet SSD or YOLO, where the Bounding Box is
one of the model outputs.

We will develop the project using the Nicla Vision for image capture
and model inference. The ML project will be developed using the Edge
Impulse Studio. But before starting the object detection project in the
Studio, let’s create a raw dataset (not labeled) with images that contain
the objects to be detected.
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Data Collection

For image capturing, we can use:

• Web Serial Camera tool,
• Edge Impulse Studio,
• OpenMV IDE,
• A smartphone.

Here, we will use the OpenMV IDE.

Collecting Dataset with OpenMV IDE

First, we create a folder on the computer where the data will be saved,
for example, “data.” Next, on the OpenMV IDE, we go to Tools > Dataset
Editor and select New Dataset to start the dataset collection:

Edge impulse suggests that the objects should be similar in size and
not overlap for better performance. This is OK in an industrial facility,
where the camera should be fixed, keeping the same distance from the
objects to be detected. Despite that, we will also try using mixed sizes
and positions to see the result.

We will not create separate folders for our images because
each contains multiple labels.

Connect the Nicla Vision to the OpenMV IDE and run the dataset_-
capture_script.py. Clicking on the Capture Image button will start
capturing images:
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We suggest using around 50 images to mix the objects and vary the
number of each appearing on the scene. Try to capture different angles,
backgrounds, and light conditions.

The stored images use a QVGA frame size 320 × 240 and
RGB565 (color pixel format).

After capturing your dataset, close the Dataset Editor Tool on the Tools
> Dataset Editor.

Edge Impulse Studio

Setup the project

Go to Edge Impulse Studio, enter your credentials at Login (or create
an account), and start a new project.

Here, you can clone the project developed for this hands-on:
NICLA_Vision_Object_Detection.

On the Project Dashboard, go to Project info and select Bounding boxes
(object detection), and at the right-top of the page, select Target, Ar-
duino Nicla Vision (Cortex-M7).

https://www.edgeimpulse.com/
https://studio.edgeimpulse.com/public/292737/latest
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Uploading the unlabeled data

On Studio, go to the Data acquisition tab, and on the UPLOAD DATA
section, upload from your computer files captured.

You can leave for the Studio to split your data automatically
between Train and Test or do it manually.
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All the unlabeled images (51) were uploaded, but they still need to
be labeled appropriately before being used as a dataset in the project.
The Studio has a tool for that purpose, which you can find in the link
Labeling queue (51).

There are two ways you can use to perform AI-assisted labeling on the
Edge Impulse Studio (free version):

• Using yolov5
• Tracking objects between frames

Edge Impulse launched an auto-labeling feature for Enter-
prise customers, easing labeling tasks in object detection
projects.

Ordinary objects can quickly be identified and labeled using an existing
library of pre-trained object detection models from YOLOv5 (trained
with the COCO dataset). But since, in our case, the objects are not part
of COCO datasets, we should select the option of tracking objects.
With this option, once you draw bounding boxes and label the images
in one frame, the objects will be tracked automatically from frame to
frame, partially labeling the new ones (not all are correctly labeled).

If you already have a labeled dataset containing bounding
boxes, import your data using the EI uploader.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/auto-labeler
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Labeling the Dataset

Starting with the first image of your unlabeled data, use your mouse to
drag a box around an object to add a label. Then click Save labels to
advance to the next item.

Continue with this process until the queue is empty. At the end, all
images should have the objects labeled as those samples below:

Next, review the labeled samples on the Data acquisition tab. If one
of the labels is wrong, it can be edited using the three dots menu after
the sample name:
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We will be guided to replace the wrong label and correct the dataset.

The Impulse Design

In this phase, we should define how to:

• Pre-processing consists of resizing the individual images from
320 x 240 to 96 x 96 and squashing them (squared form, with-
out cropping). Afterward, the images are converted from RGB to
Grayscale.

• Design a Model, in this case, “Object Detection.”
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Preprocessing all dataset

In this section, select Color depth as Grayscale, suitable for use with
FOMO models and Save parameters.
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The Studio moves automatically to the next section, Generate features,
where all samples will be pre-processed, resulting in a dataset with
individual 96×96×1 images or 9,216 features.

The feature explorer shows that all samples evidence a good separation
after the feature generation.

One of the samples (46) is apparently in the wrong space,
but clicking on it confirms that the labeling is correct.

Model Design, Training, and Test

We will use FOMO, an object detection model based on MobileNetV2
(alpha 0.35) designed to coarsely segment an image into a grid of back-
ground vs objects of interest (here, boxes and wheels).

FOMO is an innovative machine learning model for object detection,
which can use up to 30 times less energy and memory than traditional
models like Mobilenet SSD and YOLOv5. FOMO can operate on mi-
crocontrollers with less than 200 KB of RAM. The main reason this is
possible is that while other models calculate the object’s size by drawing
a square around it (bounding box), FOMO ignores the size of the image,
providing only the information about where the object is located in the
image, by means of its centroid coordinates.
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How FOMO works?

FOMO takes the image in grayscale and divides it into blocks of pixels
using a factor of 8. For the input of 96x96, the grid would be 12 × 12(96/8 = 12). Next, FOMO will run a classifier through each pixel block
to calculate the probability that there is a box or a wheel in each of
them and, subsequently, determine the regions that have the highest
probability of containing the object (If a pixel block has no objects, it
will be classified as background). From the overlap of the final region,
the FOMO provides the coordinates (related to the image dimensions)
of the centroid of this region.

For training, we should select a pre-trained model. Let’s use the FOMO
(Faster Objects, More Objects) MobileNetV2 0.35. This model
uses around 250 KB of RAM and 80 KB of ROM (Flash), which suits
well with our board since it has 1 MB of RAM and ROM.
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Regarding the training hyper-parameters, the model will be trained
with:

• Epochs: 60,
• Batch size: 32
• Learning Rate: 0.001.

For validation during training, 20% of the dataset (validation_dataset)
will be spared. For the remaining 80% (train_dataset), we will apply Data
Augmentation, which will randomly flip, change the size and bright-
ness of the image, and crop them, artificially increasing the number of
samples on the dataset for training.

As a result, the model ends with an F1 score of around 91% (validation)
and 93% (test data).

Note that FOMO automatically added a 3rd label back-
ground to the two previously defined (box and wheel).
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In object detection tasks, accuracy is generally not the pri-
mary evaluation metric. Object detection involves classi-
fying objects and providing bounding boxes around them,
making it a more complex problem than simple classifica-
tion. The issue is that we do not have the bounding box, only
the centroids. In short, using accuracy as a metric could be
misleading and may not provide a complete understanding
of how well the model is performing. Because of that, we
will use the F1 score.

Test model with “Live Classification”

Since Edge Impulse officially supports the Nicla Vision, let’s connect it
to the Studio. For that, follow the steps:

• Download the last EI Firmware and unzip it.
• Open the zip file on your computer and select the uploader related

to your OS
• Put the Nicla-Vision on Boot Mode, pressing the reset button

twice.
• Execute the specific batch code for your OS to upload the binary

(arduino-nicla-vision.bin) to your board.

Go to Live classification section at EI Studio, and using webUSB,
connect your Nicla Vision:

https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/
https://cdn.edgeimpulse.com/firmware/arduino-nicla-vision.zip
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Once connected, you can use the Nicla to capture actual images to be
tested by the trained model on Edge Impulse Studio.

One thing to note is that the model can produce false positives and
negatives. This can be minimized by defining a proper Confidence
Threshold (use the three dots menu for the setup). Try with 0.8 or
more.
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Deploying the Model

Select OpenMV Firmware on the Deploy Tab and press [Build].

When you try to connect the Nicla with the OpenMV IDE again, it will
try to update its FW. Choose the option Load a specific firmware
instead. Or go to ‘Tools > Runs Bootloader (Load Firmware).

You will find a ZIP file on your computer from the Studio. Open it:

Load the .bin file to your board:
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After the download is finished, a pop-up message will be displayed.
Press OK, and open the script ei_object_detection.py downloaded
from the Studio.

Note: If a Pop-up appears saying that the FW is out of date,
press [NO], to upgrade it.

Before running the script, let’s change a few lines. Note that you can
leave the window definition as 240 × 240 and the camera capturing
images as QVGA/RGB. The captured image will be pre-processed by
the FW deployed from Edge Impulse

import sensor
import time
import ml
from ml.utils import NMS
import math
import image

sensor.reset() # Reset and initialize the sensor.
# Set pixel format (RGB565 or GRAYSCALE)
sensor.set_pixformat(sensor.RGB565)
# Set frame size to QVGA (320x240)
sensor.set_framesize(sensor.QVGA)
sensor.skip_frames(time=2000) # Let the camera adjust.

Redefine the minimum confidence, for example, to 0.8 to minimize false
positives and negatives.

min_confidence = 0.8

Change if necessary, the color of the circles that will be used to display
the detected object’s centroid for a better contrast.

threshold_list = [(math.ceil(min_confidence * 255), 255)]

# Load built-in model
model = ml.Model("trained")
print(model)
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# Alternatively, models can be loaded from the
# filesystem storage.
# model = ml.Model(
# '<object_detection_modelwork>.tflite',
# load_to_fb=True)
# labels = [line.rstrip('\n') for line in open("labels.txt")]

colors = [ # Add more colors if you are detecting more
# than 7 types of classes at once.

(255, 255, 0), # background: yellow (not used)
( 0, 255, 0), # cube: green
(255, 0, 0), # wheel: red
( 0, 0, 255), # not used
(255, 0, 255), # not used
( 0, 255, 255), # not used
(255, 255, 255), # not used

]

Keep the remaining code as it is

# FOMO outputs an image per class where each pixel in the
# image is the centroid of the trained object. So, we will
# get those output images and then run find_blobs() on them
# to extract the centroids. We will also run get_stats() on
# the detected blobs to determine their score.
# The Non-Max-Suppression (NMS) object then filters out
# overlapping detections and maps their position in the
# output image back to the original input image. The
# function then returns a list per class which each contain
# a list of (rect, score) tuples representing the detected
# objects.

def fomo_post_process(model, inputs, outputs):
n, oh, ow, oc = model.output_shape[0]
nms = NMS(ow, oh, inputs[0].roi)
for i in range(oc):

img = image.Image(outputs[0][0, :, :, i] * 255)
blobs = img.find_blobs(

threshold_list,
x_stride=1,
area_threshold=1,
pixels_threshold=1,

)
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for b in blobs:
rect = b.rect()
x, y, w, h = rect
score = (

img.get_statistics(
thresholds=threshold_list, roi=rect

).l_mean()
/ 255.0

)
nms.add_bounding_box(x, y, x + w, y + h, score, i)

return nms.get_bounding_boxes()

clock = time.clock()
while True:

clock.tick()

img = sensor.snapshot()

for i, detection_list in enumerate(
model.predict([img], callback=fomo_post_process)

):
if i == 0:

continue # background class
if len(detection_list) == 0:

continue # no detections for this class?

print("********** %s **********" % model.labels[i])
for (x, y, w, h), score in detection_list:

center_x = math.floor(x + (w / 2))
center_y = math.floor(y + (h / 2))
print(f"x {center_x}\ty {center_y}\tscore {score}")
img.draw_circle((center_x, center_y, 12), color=colors[i])

print(clock.fps(), "fps", end="\n")

and press the green Play button to run the code:
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From the camera’s view, we can see the objects with their centroids
marked with 12 pixel-fixed circles (each circle has a distinct color, de-
pending on its class). On the Serial Terminal, the model shows the
labels detected and their position on the image window (240×240).

Be aware that the coordinate origin is in the upper left cor-
ner.

Note that the frames per second rate is around 8 fps (similar to what
we got with the Image Classification project). This happens because
FOMO is cleverly built over a CNN model, not with an object detection
model like the SSD MobileNet or YOLO. For example, when running a
MobileNetV2 SSD FPN-Lite 320×320 model on a Raspberry Pi 4, the
latency is around 5 times higher (around 1.5 fps)
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Here is a short video showing the inference results: https://youtu.be
/JbpoqRp3BbM

Summary

FOMO is a significant leap in the image processing space, as Louis
Moreau and Mat Kelcey put it during its launch in 2022:

FOMO is a ground-breaking algorithm that brings real-time
object detection, tracking, and counting to microcontrollers
for the first time.

Multiple possibilities exist for exploring object detection (and, more
precisely, counting them) on embedded devices. This can be very useful
on projects counting bees, for example.

Resources

• Edge Impulse Project

https://youtu.be/JbpoqRp3BbM
https://youtu.be/JbpoqRp3BbM
https://studio.edgeimpulse.com/public/292737/latest
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Figure 1.11: DALL·E 3 Prompt: 1950s style cartoon scene set in a vintage audio research room. Two
Afro-American female scientists are at the center. One holds a magnifying glass, closely examining ancient
circuitry, while the other takes notes. On their wooden table, there are multiple boards with sensors, notably
featuring a microphone. Behind these boards, a computer with a large, rounded back displays the Arduino IDE.
The IDE showcases code for LED pin assignments and machine learning inference for voice command detection.
A distinct window in the IDE, the Serial Monitor, reveals outputs indicating the spoken commands ‘yes’ and
‘no’. The room ambiance is nostalgic with vintage lamps, classic audio analysis tools, and charts depicting FFT
graphs and time-domain curves.

Overview

Having already explored the Nicla Vision board in the Image Classifi-
cation and Object Detection applications, we are now shifting our focus
to voice-activated applications with a project on Keyword Spotting
(KWS).

As introduced in the Feature Engineering for Audio Classification Hands-
On tutorial, Keyword Spotting (KWS) is integrated into many voice
recognition systems, enabling devices to respond to specific words or
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phrases. While this technology underpins popular devices like Google
Assistant or Amazon Alexa, it’s equally applicable and feasible on
smaller, low-power devices. This tutorial will guide you through imple-
menting a KWS system using TinyML on the Nicla Vision development
board equipped with a digital microphone.

Our model will be designed to recognize keywords that can trigger
device wake-up or specific actions, bringing them to life with voice-
activated commands.

How does a voice assistant work?

As said, voice assistants on the market, like Google Home or Amazon
Echo-Dot, only react to humans when they are “waked up” by particular
keywords such as ” Hey Google” on the first one and “Alexa” on the
second.

In other words, recognizing voice commands is based on a multi-stage
model or Cascade Detection.
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Stage 1: A small microprocessor inside the Echo Dot or Google Home
continuously listens, waiting for the keyword to be spotted, using a
TinyML model at the edge (KWS application).

Stage 2: Only when triggered by the KWS application on Stage 1 is the
data sent to the cloud and processed on a larger model.

The video below shows an example of a Google Assistant being pro-
grammed on a Raspberry Pi (Stage 2), with an Arduino Nano 33 BLE
as the TinyML device (Stage 1).

https://youtu.be/e_OPgcnsyvM

To explore the above Google Assistant project, please see
the tutorial: Building an Intelligent Voice Assistant From
Scratch.

In this KWS project, we will focus on Stage 1 (KWS or Keyword Spotting),
where we will use the Nicla Vision, which has a digital microphone
that will be used to spot the keyword.

The KWS Hands-On Project

The diagram below gives an idea of how the final KWS application
should work (during inference):

https://youtu.be/e_OPgcnsyvM
https://www.hackster.io/mjrobot/building-an-intelligent-voice-assistant-from-scratch-2199c3
https://www.hackster.io/mjrobot/building-an-intelligent-voice-assistant-from-scratch-2199c3
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Our KWS application will recognize four classes of sound:

• YES (Keyword 1)
• NO (Keyword 2)
• NOISE (no words spoken; only background noise is present)
• UNKNOWN (a mix of different words than YES and NO)

For real-world projects, it is always advisable to include
other sounds besides the keywords, such as “Noise” (or
Background) and “Unknown.”

The Machine Learning workflow

The main component of the KWS application is its model. So, we must
train such a model with our specific keywords, noise, and other words
(the “unknown”):
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Dataset

The critical component of any Machine Learning Workflow is the
dataset. Once we have decided on specific keywords, in our case (YES
and NO), we can take advantage of the dataset developed by Pete War-
den, “Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition.” This dataset has 35 keywords (with +1,000 samples each),
such as yes, no, stop, and go. In words such as yes and no, we can get
1,500 samples.

You can download a small portion of the dataset from Edge Studio
(Keyword spotting pre-built dataset), which includes samples from the
four classes we will use in this project: yes, no, noise, and background.
For this, follow the steps below:

• Download the keywords dataset.
• Unzip the file to a location of your choice.

Uploading the dataset to the Edge Impulse Studio

Initiate a new project at Edge Impulse Studio (EIS) and select the Upload
Existing Data tool in the Data Acquisition section. Choose the files
to be uploaded:

Define the Label, select Automatically split between train and
test, and Upload data to the EIS. Repeat for all classes.

https://arxiv.org/pdf/1804.03209.pdf
https://arxiv.org/pdf/1804.03209.pdf
https://docs.edgeimpulse.com/docs/pre-built-datasets/keyword-spotting
https://cdn.edgeimpulse.com/datasets/keywords2.zip
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The dataset will now appear in the Data acquisition section. Note
that the approximately 6,000 samples (1,500 for each class) are split into
Train (4,800) and Test (1,200) sets.

Capturing additional Audio Data

Although we have a lot of data from Pete’s dataset, collecting some
words spoken by us is advised. When working with accelerometers,
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creating a dataset with data captured by the same type of sensor is
essential. In the case of sound, this is optional because what we will
classify is, in reality, audio data.

The key difference between sound and audio is the type
of energy. Sound is mechanical perturbation (longitudinal
sound waves) that propagate through a medium, causing
variations of pressure in it. Audio is an electrical (analog or
digital) signal representing sound.

When we pronounce a keyword, the sound waves should be converted
to audio data. The conversion should be done by sampling the signal
generated by the microphone at a 16 KHz frequency with 16-bit per
sample amplitude.

So, any device that can generate audio data with this basic specification
(16 KHz/16 bits) will work fine. As a device, we can use the NiclaV, a
computer, or even your mobile phone.

Using the NiclaV and the Edge Impulse Studio

As we learned in the chapter Setup Nicla Vision, EIS officially supports
the Nicla Vision, which simplifies the capture of the data from its sen-
sors, including the microphone. So, please create a new project on EIS
and connect the Nicla to it, following these steps:

• Download the last updated EIS Firmware and unzip it.
• Open the zip file on your computer and select the uploader corre-

sponding to your OS:

https://cdn.edgeimpulse.com/firmware/arduino-nicla-vision.zip


Keyword Spotting (KWS) 119

• Put the NiclaV in Boot Mode by pressing the reset button twice.
• Upload the binary arduino-nicla-vision.bin to your board by run-

ning the batch code corresponding to your OS.

Go to your project on EIS, and on the Data Acquisition tab, select
WebUSB. A window will pop up; choose the option that shows that the
Nicla is paired and press [Connect].

You can choose which sensor data to pick in the Collect Data sec-
tion on the Data Acquisition tab. Select: Built-in microphone, de-
fine your label (for example, yes), the sampling Frequency[16000Hz],
and the Sample length (in milliseconds), for example [10s]. Start
sampling.

Data on Pete’s dataset have a length of 1s, but the recorded samples are
10s long and must be split into 1s samples. Click on three dots after
the sample name and select Split sample.

A window will pop up with the Split tool.
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Once inside the tool, split the data into 1-second (1000 ms) records. If
necessary, add or remove segments. This procedure should be repeated
for all new samples.

Using a smartphone and the EI Studio

You can also use your PC or smartphone to capture audio data, using a
sampling frequency of 16 KHz and a bit depth of 16.

Go to Devices, scan the QR Code using your phone, and click on the link.
A data Collection app will appear in your browser. Select Collecting
Audio, and define your Label, data capture Length, and Category.
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Repeat the same procedure used with the NiclaV.

Note that any app, such as Audacity, can be used for audio
recording, provided you use 16 KHz/16-bit depth samples.

Creating Impulse (Pre-Process / Model
definition)

An impulse takes raw data, uses signal processing to extract features, and
then uses a learning block to classify new data.

Impulse Design

https://www.audacityteam.org/
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First, we will take the data points with a 1-second window, augmenting
the data and sliding that window in 500 ms intervals. Note that the
option zero-pad data is set. It is essential to fill with ‘zeros’ samples
smaller than 1 second (in some cases, some samples can result smaller
than the 1000 ms window on the split tool to avoid noise and spikes).

Each 1-second audio sample should be pre-processed and converted
to an image (for example, 13 × 49 × 1). As discussed in the Feature
Engineering for Audio Classification Hands-On tutorial, we will use Audio
(MFCC), which extracts features from audio signals using Mel Frequency
Cepstral Coefficients, which are well suited for the human voice, our
case here.

Next, we select the Classification block to build our model from
scratch using a Convolution Neural Network (CNN).

Alternatively, you can use the Transfer Learning (Keyword
Spotting) block, which fine-tunes a pre-trained keyword
spotting model on your data. This approach has good
performance with relatively small keyword datasets.

Pre-Processing (MFCC)

The following step is to create the features to be trained in the next
phase:

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
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We could keep the default parameter values, but we will use the DSP
Autotune parameters option.

We will take the Raw features (our 1-second, 16 KHz sampled audio
data) and use the MFCC processing block to calculate the Processed
features. For every 16,000 raw features (16,000 × 1 second), we will
get 637 processed features (13×49).

The result shows that we only used a small amount of memory to pre-
process data (16 KB) and a latency of 34 ms, which is excellent. For
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example, on an Arduino Nano (Cortex-M4f @ 64 MHz), the same pre-
process will take around 480 ms. The parameters chosen, such as the
FFT length [512], will significantly impact the latency.

Now, let’s Save parameters and move to the Generated features tab,
where the actual features will be generated. Using UMAP, a dimension
reduction technique, the Feature explorer shows how the features
are distributed on a two-dimensional plot.

The result seems OK, with a visually clear separation between yes fea-
tures (in red) and no features (in blue). The unknown features seem
nearer to the no space than the yes. This suggests that the keyword no
has more propensity to false positives.

Going under the hood

To understand better how the raw sound is preprocessed, look at the
Feature Engineering for Audio Classification chapter. You can play with the
MFCC features generation by downloading this notebook from GitHub
or [Opening it In Colab]

Model Design and Training

We will use a simple Convolution Neural Network (CNN) model, tested
with 1D and 2D convolutions. The basic architecture has two blocks
of Convolution + MaxPooling ([8] and [16] filters, respectively) and a

https://umap-learn.readthedocs.io/en/latest/
https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb
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Dropout of [0.25] for the 1D and [0.5] for the 2D. For the last layer, after
Flattening, we have [4] neurons, one for each class:

As hyper-parameters, we will have a Learning Rate of [0.005] and a
model trained by [100] epochs. We will also include a data augmenta-
tion method based on SpecAugment. We trained the 1D and the 2D
models with the same hyperparameters. The 1D architecture had a
better overall result (90.5% accuracy when compared with 88% of the
2D, so we will use the 1D.

Using 1D convolutions is more efficient because it requires
fewer parameters than 2D convolutions, making them more
suitable for resource-constrained environments.

https://arxiv.org/abs/1904.08779
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It is also interesting to pay attention to the 1D Confusion Matrix. The
F1 Score for yes is 95%, and for no, 91%. That was expected by what
we saw with the Feature Explorer (no and unknown at close distance).
In trying to improve the result, you can inspect closely the results of
the samples with an error.

Listen to the samples that went wrong. For example, for yes, most
of the mistakes were related to a yes pronounced as “yeh”. You can
acquire additional samples and then retrain your model.

Going under the hood

If you want to understand what is happening “under the hood,” you can
download the pre-processed dataset (MFCC training data) from the
Dashboard tab and run this Jupyter Notebook, playing with the code
or [Opening it In Colab]. For example, you can analyze the accuracy by
each epoch:

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_CNN_training.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_CNN_training.ipynb
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Testing

Testing the model with the data reserved for training (Test Data), we
got an accuracy of approximately 76%.

Inspecting the F1 score, we can see that for YES, we got 0.90, an excellent
result since we expect to use this keyword as the primary “trigger” for
our KWS project. The worst result (0.70) is for UNKNOWN, which is
OK.

For NO, we got 0.72, which was expected, but to improve this result, we
can move the samples that were not correctly classified to the training
dataset and then repeat the training process.

Live Classification

We can proceed to the project’s next step but also consider that it is possi-
ble to perform Live Classification using the NiclaV or a smartphone
to capture live samples, testing the trained model before deployment
on our device.

Deploy and Inference

The EIS will package all the needed libraries, preprocessing functions,
and trained models, downloading them to your computer. Go to the
Deployment section, select Arduino Library, and at the bottom, choose
Quantized (Int8) and press Build.
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When the Build button is selected, a zip file will be created and down-
loaded to your computer. On your Arduino IDE, go to the Sketch tab,
select the option Add .ZIP Library, and Choose the .zip file down-
loaded by EIS:
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Now, it is time for a real test. We will make inferences while completely
disconnected from the EIS. Let’s use the NiclaV code example created
when we deployed the Arduino Library.

In your Arduino IDE, go to the File/Examples tab, look for your project,
and select nicla-vision/nicla-vision_microphone (or nicla-vision_-
microphone_continuous)

Press the reset button twice to put the NiclaV in boot mode, upload the
sketch to your board, and test some real inferences:
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Post-processing

Now that we know the model is working since it detects our keywords,
let’s modify the code to see the result with the NiclaV completely offline
(disconnected from the PC and powered by a battery, a power bank, or
an independent 5V power supply).

The idea is that whenever the keyword YES is detected, the Green LED
will light; if a NO is heard, the Red LED will light, if it is a UNKNOWN,
the Blue LED will light; and in the presence of noise (No Keyword), the
LEDs will be OFF.

We should modify one of the code examples. Let’s do it now with the
nicla-vision_microphone_continuous.

Start with initializing the LEDs:

...
void setup()
{

// Once you finish debugging your code, you can
// comment or delete the Serial part of the code

Serial.begin(115200);
while (!Serial);
Serial.println("Inferencing - Nicla Vision KWS with LEDs");

// Pins for the built-in RGB LEDs on the Arduino NiclaV
pinMode(LEDR, OUTPUT);
pinMode(LEDG, OUTPUT);
pinMode(LEDB, OUTPUT);

// Ensure the LEDs are OFF by default.
// Note: The RGB LEDs on the Arduino Nicla Vision
// are ON when the pin is LOW, OFF when HIGH.
digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, HIGH);
digitalWrite(LEDB, HIGH);

...
}

Create two functions, turn_off_leds() function , to turn off all RGB
LEDs

/*
* @brief turn_off_leds function - turn-off all RGB LEDs
*/
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void turn_off_leds(){
digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, HIGH);
digitalWrite(LEDB, HIGH);

}

Another turn_on_led() function is used to turn on the RGB LEDs
according to the most probable result of the classifier.

/*
* @brief turn_on_leds function used to turn on the RGB LEDs
* @param[in] pred_index
* no: [0] ==> Red ON
* noise: [1] ==> ALL OFF
* unknown: [2] ==> Blue ON
* Yes: [3] ==> Green ON
*/
void turn_on_leds(int pred_index) {
switch (pred_index)
{
case 0:
turn_off_leds();
digitalWrite(LEDR, LOW);
break;

case 1:
turn_off_leds();
break;

case 2:
turn_off_leds();
digitalWrite(LEDB, LOW);
break;

case 3:
turn_off_leds();
digitalWrite(LEDG, LOW);
break;

}
}

And change the // print the predictions portion of the code on
loop():

...
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if (++print_results >= (EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW)) {
// print the predictions
ei_printf("Predictions ");
ei_printf("(DSP: %d ms., Classification: %d ms.,

Anomaly: %d ms.)",
result.timing.dsp, result.timing.classification,
result.timing.anomaly);

ei_printf(": \n");
int pred_index = 0; // Initialize pred_index
float pred_value = 0; // Initialize pred_value
for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {

if (result.classification[ix].value > pred_value){
pred_index = ix;
pred_value = result.classification[ix].value;

}
// ei_printf(" %s: ",
// result.classification[ix].label);
// ei_printf_float(result.classification[ix].value);
// ei_printf("\n");

}
ei_printf(" PREDICTION: ==> %s with probability %.2f\n",

result.classification[pred_index].label,
pred_value);

turn_on_leds (pred_index);

#if EI_CLASSIFIER_HAS_ANOMALY == 1
ei_printf(" anomaly score: ");
ei_printf_float(result.anomaly);
ei_printf("\n");

#endif

print_results = 0;
}

}

...

You can find the complete code on the project’s GitHub.

Upload the sketch to your board and test some real inferences. The
idea is that the Green LED will be ON whenever the keyword YES is
detected, the Red will lit for a NO, and any other word will turn on the
Blue LED. All the LEDs should be off if silence or background noise is

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/KWS/nicla_vision_microphone_continuous_LED
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present. Remember that the same procedure can “trigger” an external
device to perform a desired action instead of turning on an LED, as we
saw in the introduction.

https://youtu.be/25Rd76OTXLY

Summary

You will find the notebooks and code used in this hands-on
tutorial on the GitHub repository.

Before we finish, consider that Sound Classification is more than just
voice. For example, you can develop TinyML projects around sound in
several areas, such as:

• Security (Broken Glass detection, Gunshot)
• Industry (Anomaly Detection)
• Medical (Snore, Cough, Pulmonary diseases)
• Nature (Beehive control, insect sound, pouching mitigation)

Resources

• Subset of Google Speech Commands Dataset
• KWS MFCC Analysis Colab Notebook
• KWS_CNN_training Colab Notebook
• Arduino Post-processing Code
• Edge Impulse Project

https://youtu.be/25Rd76OTXLY
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/KWS
https://cdn.edgeimpulse.com/datasets/keywords2.zip
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_CNN_training.ipynb
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/KWS/nicla_vision_microphone_continuous_LED
https://studio.edgeimpulse.com/public/292418/latest
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Figure 1.12: DALL·E 3 Prompt: 1950s style cartoon illustration depicting a movement research room. In the
center of the room, there’s a simulated container used for transporting goods on trucks, boats, and forklifts. The
container is detailed with rivets and markings typical of industrial cargo boxes. Around the container, the room
is filled with vintage equipment, including an oscilloscope, various sensor arrays, and large paper rolls of
recorded data. The walls are adorned with educational posters about transportation safety and logistics. The
overall ambiance of the room is nostalgic and scientific, with a hint of industrial flair.

Overview

Transportation is the backbone of global commerce. Millions of contain-
ers are transported daily via various means, such as ships, trucks, and
trains, to destinations worldwide. Ensuring these containers’ safe and
efficient transit is a monumental task that requires leveraging modern
technology, and TinyML is undoubtedly one of them.

In this hands-on tutorial, we will work to solve real-world problems
related to transportation. We will develop a Motion Classification and
Anomaly Detection system using the Arduino Nicla Vision board, the
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Arduino IDE, and the Edge Impulse Studio. This project will help us
understand how containers experience different forces and motions
during various phases of transportation, such as terrestrial and mar-
itime transit, vertical movement via forklifts, and stationary periods in
warehouses.

LIGHTBULB Learning Objectives

• Setting up the Arduino Nicla Vision Board
• Data Collection and Preprocessing
• Building the Motion Classification Model
• Implementing Anomaly Detection
• Real-world Testing and Analysis

By the end of this tutorial, you’ll have a working prototype that can
classify different types of motion and detect anomalies during the trans-
portation of containers. This knowledge can be a stepping stone to
more advanced projects in the burgeoning field of TinyML involving
vibration.

IMU Installation and testing

For this project, we will use an accelerometer. As discussed in the
Hands-On Tutorial, Setup Nicla Vision, the Nicla Vision Board has an on-
board 6-axis IMU: 3D gyroscope and 3D accelerometer, the LSM6DSOX.
Let’s verify if the LSM6DSOX IMU library is installed. If not, install
it.

https://www.st.com/en/mems-and-sensors/lsm6dsox.html
https://github.com/arduino-libraries/Arduino_LSM6DSOX
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Next, go to Examples > Arduino_LSM6DSOX > SimpleAccelerometer
and run the accelerometer test. You can check if it works by opening
the IDE Serial Monitor or Plotter. The values are in g (earth gravity),
with a default range of +/- 4g:

Defining the Sampling frequency:

Choosing an appropriate sampling frequency is crucial for capturing
the motion characteristics you’re interested in studying. The Nyquist-
Shannon sampling theorem states that the sampling rate should be at
least twice the highest frequency component in the signal to reconstruct
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it properly. In the context of motion classification and anomaly detection
for transportation, the choice of sampling frequency would depend on
several factors:

1. Nature of the Motion: Different types of transportation (terres-
trial, maritime, etc.) may involve different ranges of motion fre-
quencies. Faster movements may require higher sampling fre-
quencies.

2. Hardware Limitations: The Arduino Nicla Vision board and any
associated sensors may have limitations on how fast they can
sample data.

3. Computational Resources: Higher sampling rates will generate
more data, which might be computationally intensive, especially
critical in a TinyML environment.

4. Battery Life: A higher sampling rate will consume more power. If
the system is battery-operated, this is an important consideration.

5. Data Storage: More frequent sampling will require more storage
space, another crucial consideration for embedded systems with
limited memory.

In many human activity recognition tasks, sampling rates of around
50 Hz to 100 Hz are commonly used. Given that we are simulating
transportation scenarios, which are generally not high-frequency events,
a sampling rate in that range (50-100 Hz) might be a reasonable starting
point.

Let’s define a sketch that will allow us to capture our data with a defined
sampling frequency (for example, 50 Hz):

/*
* Based on Edge Impulse Data Forwarder Example (Arduino)
- https://docs.edgeimpulse.com/docs/cli-data-forwarder

* Developed by M.Rovai @11May23
*/

/* Include ------------------------------------------- */
#include <Arduino_LSM6DSOX.h>

/* Constant defines ---------------------------------- */
#define CONVERT_G_TO_MS2 9.80665f
#define FREQUENCY_HZ 50
#define INTERVAL_MS (1000 / (FREQUENCY_HZ + 1))

static unsigned long last_interval_ms = 0;
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float x, y, z;

void setup() {
Serial.begin(9600);
while (!Serial);

if (!IMU.begin()) {
Serial.println("Failed to initialize IMU!");
while (1);

}
}

void loop() {
if (millis() > last_interval_ms + INTERVAL_MS) {
last_interval_ms = millis();

if (IMU.accelerationAvailable()) {
// Read raw acceleration measurements from the device
IMU.readAcceleration(x, y, z);

// converting to m/s2
float ax_m_s2 = x * CONVERT_G_TO_MS2;
float ay_m_s2 = y * CONVERT_G_TO_MS2;
float az_m_s2 = z * CONVERT_G_TO_MS2;

Serial.print(ax_m_s2);
Serial.print("\t");
Serial.print(ay_m_s2);
Serial.print("\t");
Serial.println(az_m_s2);

}
}

}

Uploading the sketch and inspecting the Serial Monitor, we can see that
we are capturing 50 samples per second.
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Note that with the Nicla board resting on a table (with the
camera facing down), the 𝑧-axis measures around 9.8 m/s2,
the expected earth acceleration.

The Case Study: Simulated Container
Transportation

We will simulate container (or better package) transportation through
different scenarios to make this tutorial more relatable and practical.
Using the built-in accelerometer of the Arduino Nicla Vision board,
we’ll capture motion data by manually simulating the conditions of:

1. Terrestrial Transportation (by road or train)
2. Maritime-associated Transportation
3. Vertical Movement via Fork-Lift
4. Stationary (Idle) period in a Warehouse
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From the above images, we can define for our simulation that primar-
ily horizontal movements (𝑥 or 𝑦 axis) should be associated with the
“Terrestrial class,” Vertical movements (𝑧-axis) with the “Lift Class,”
no activity with the “Idle class,” and movement on all three axes to
Maritime class.

Data Collection

For data collection, we can have several options. In a real case, we can
have our device, for example, connected directly to one container, and
the data collected on a file (for example .CSV) and stored on an SD
card (Via SPI connection) or an offline repo in your computer. Data can
also be sent remotely to a nearby repository, such as a mobile phone,
using Bluetooth (as done in this project: Sensor DataLogger). Once
your dataset is collected and stored as a .CSV file, it can be uploaded to
the Studio using the CSV Wizard tool.

In this video, you can learn alternative ways to send data to
the Edge Impulse Studio.

Connecting the device to Edge Impulse

We will connect the Nicla directly to the Edge Impulse Studio, which
will also be used for data pre-processing, model training, testing, and
deployment. For that, you have two options:

https://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_02_03_03.htm
https://www.hackster.io/mjrobot/sensor-datalogger-50e44d
https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/csv-wizard
https://youtu.be/2KBPq_826WM
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1. Download the latest firmware and connect it directly to the Data
Collection section.

2. Use the CLI Data Forwarder tool to capture sensor data from the
sensor and send it to the Studio.

Option 1 is more straightforward, as we saw in the Setup Nicla Vision
hands-on, but option 2 will give you more flexibility regarding capturing
your data, such as sampling frequency definition. Let’s do it with the
last one.

Please create a new project on the Edge Impulse Studio (EIS) and connect
the Nicla to it, following these steps:

1. Install the Edge Impulse CLI and the Node.js into your computer.
2. Upload a sketch for data capture (the one discussed previously in

this tutorial).
3. Use the CLI Data Forwarder to capture data from the Nicla’s

accelerometer and send it to the Studio, as shown in this diagram:

Start the CLI Data Forwarder on your terminal, entering (if it is the first
time) the following command:

$ edge-impulse-data-forwarder --clean

Next, enter your EI credentials and choose your project, variables (for
example, accX, accY, and accZ), and device name (for example, NiclaV:

https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-installation
https://nodejs.org/en/
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder
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Go to the Devices section on your EI Project and verify if the device is
connected (the dot should be green):

You can clone the project developed for this hands-on:
NICLA Vision Movement Classification.

Data Collection

On the Data Acquisition section, you should see that your board
[NiclaV] is connected. The sensor is available: [sensor with 3 axes
(accX, accY, accZ)] with a sampling frequency of [50 Hz]. The
Studio suggests a sample length of [10000] ms (10 s). The last thing
left is defining the sample label. Let’s start with[terrestrial]:

https://studio.edgeimpulse.com/public/302078/latest
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Terrestrial (palettes in a Truck or Train), moving horizontally. Press
[Start Sample]and move your device horizontally, keeping one direc-
tion over your table. After 10 s, your data will be uploaded to the studio.
Here is how the sample was collected:

As expected, the movement was captured mainly in the 𝑌-axis (green).
In the blue, we see the 𝑍 axis, around -10 m/s2 (the Nicla has the camera
facing up).

As discussed before, we should capture data from all four Transporta-
tion Classes. So, imagine that you have a container with a built-in
accelerometer facing the following situations:

Maritime (pallets in boats into an angry ocean). The movement is
captured on all three axes:
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Lift (Palettes being handled vertically by a Forklift). Movement cap-
tured only in the 𝑍-axis:

Idle (Palettes in a warehouse). No movement detected by the accelerom-
eter:

You can capture, for example, 2 minutes (twelve samples of 10 seconds)
for each of the four classes (a total of 8 minutes of data). Using the
three dots menu after each one of the samples, select 2 of them, re-
serving them for the Test set. Alternatively, you can use the automatic
Train/Test Split tool on the Danger Zone of Dashboard tab. Below,
you can see the resulting dataset:
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Once you have captured your dataset, you can explore it in more detail
using the Data Explorer, a visual tool to find outliers or mislabeled
data (helping to correct them). The data explorer first tries to extract
meaningful features from your data (by applying signal processing and
neural network embeddings) and then uses a dimensionality reduction
algorithm such as PCA or t-SNE to map these features to a 2D space.
This gives you a one-look overview of your complete dataset.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/data-explorer
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
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In our case, the dataset seems OK (good separation). But the PCA
shows we can have issues between maritime (green) and lift (orange).
This is expected, once on a boat, sometimes the movement can be only
“vertical”.

Impulse Design

The next step is the definition of our Impulse, which takes the raw data
and uses signal processing to extract features, passing them as the input
tensor of a learning block to classify new data. Go to Impulse Design
and Create Impulse. The Studio will suggest the basic design. Let’s
also add a second Learning Block for Anomaly Detection.

This second model uses a K-means model. If we imagine that we could
have our known classes as clusters, any sample that could not fit on
that could be an outlier, an anomaly such as a container rolling out of a
ship on the ocean or falling from a Forklift.
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The sampling frequency should be automatically captured, if not, enter
it: [50]Hz. The Studio suggests a Window Size of 2 seconds ([2000]
ms) with a sliding window of [20]ms. What we are defining in this step
is that we will pre-process the captured data (Time-Seres data), creat-
ing a tabular dataset features) that will be the input for a Neural Net-
works Classifier (DNN) and an Anomaly Detection model (K-Means),
as shown below:

Let’s dig into those steps and parameters to understand better what we
are doing here.
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Data Pre-Processing Overview

Data pre-processing is extracting features from the dataset captured
with the accelerometer, which involves processing and analyzing the
raw data. Accelerometers measure the acceleration of an object along
one or more axes (typically three, denoted as 𝑋, 𝑌, and 𝑍). These
measurements can be used to understand various aspects of the object’s
motion, such as movement patterns and vibrations.

Raw accelerometer data can be noisy and contain errors or irrelevant
information. Preprocessing steps, such as filtering and normalization,
can clean and standardize the data, making it more suitable for feature
extraction. In our case, we should divide the data into smaller segments
or windows. This can help focus on specific events or activities within
the dataset, making feature extraction more manageable and meaning-
ful. The window size and overlap (window increase) choice depend on
the application and the frequency of the events of interest. As a thumb
rule, we should try to capture a couple of “cycles of data”.

With a sampling rate (SR) of 50 Hz and a window size of 2
seconds, we will get 100 samples per axis, or 300 in total (3
axis × 2 seconds × 50 samples). We will slide this window
every 200 ms, creating a larger dataset where each instance
has 300 raw features.

Once the data is preprocessed and segmented, you can extract fea-
tures that describe the motion’s characteristics. Some typical features
extracted from accelerometer data include:

• Time-domain features describe the data’s statistical properties
within each segment, such as mean, median, standard deviation,
skewness, kurtosis, and zero-crossing rate.
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• Frequency-domain features are obtained by transforming the
data into the frequency domain using techniques like the Fast
Fourier Transform (FFT). Some typical frequency-domain features
include the power spectrum, spectral energy, dominant frequen-
cies (amplitude and frequency), and spectral entropy.

• Time-frequency domain features combine the time and frequency
domain information, such as the Short-Time Fourier Transform
(STFT) or the Discrete Wavelet Transform (DWT). They can pro-
vide a more detailed understanding of how the signal’s frequency
content changes over time.

In many cases, the number of extracted features can be large, which
may lead to overfitting or increased computational complexity. Feature
selection techniques, such as mutual information, correlation-based
methods, or principal component analysis (PCA), can help identify the
most relevant features for a given application and reduce the dimension-
ality of the dataset. The Studio can help with such feature importance
calculations.

EI Studio Spectral Features

Data preprocessing is a challenging area for embedded machine learn-
ing, still, Edge Impulse helps overcome this with its digital signal pro-
cessing (DSP) preprocessing step and, more specifically, the Spectral
Features Block.

On the Studio, the collected raw dataset will be the input of a Spectral
Analysis block, which is excellent for analyzing repetitive motion, such
as data from accelerometers. This block will perform a DSP (Digital
Signal Processing), extracting features such as FFT or Wavelets.

For our project, once the time signal is continuous, we should use FFT
with, for example, a length of [32].

The per axis/channel Time Domain Statistical features are:

• RMS: 1 feature
• Skewness: 1 feature
• Kurtosis: 1 feature

The per axis/channel Frequency Domain Spectral features are:

• Spectral Power: 16 features (FFT Length/2)
• Skewness: 1 feature

https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Digital_signal_processing#Wavelet
https://en.wikipedia.org/wiki/Root_mean_square
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSkewness
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKurtosis
https://en.wikipedia.org/wiki/Spectral_density
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• Kurtosis: 1 feature

So, for an FFT length of 32 points, the resulting output of the Spectral
Analysis Block will be 21 features per axis (a total of 63 features).

You can learn more about how each feature is calculated by
downloading the notebook Edge Impulse - Spectral Features
Block Analysis TinyML under the hood: Spectral Analysis
or opening it directly on Google CoLab.

Generating features

Once we understand what the pre-processing does, it is time to finish the
job. So, let’s take the raw data (time-series type) and convert it to tabular
data. For that, go to the Spectral Features section on the Parameters
tab, define the main parameters as discussed in the previous section
([FFT] with [32] points), and select[Save Parameters]:

At the top menu, select the Generate Features option and the Generate
Features button. Each 2-second window data will be converted into
one data point of 63 features.

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://www.hackster.io/mjrobot/tinyml-under-the-hood-spectral-analysis-94676c
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
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The Feature Explorer will show those data in 2D using
UMAP. Uniform Manifold Approximation and Projection
(UMAP) is a dimension reduction technique that can be
used for visualization similarly to t-SNE but is also applica-
ble for general non-linear dimension reduction.

The visualization makes it possible to verify that after the feature genera-
tion, the classes present keep their excellent separation, which indicates
that the classifier should work well. Optionally, you can analyze how
important each one of the features is for one class compared with oth-
ers.

Models Training

Our classifier will be a Dense Neural Network (DNN) that will have 63
neurons on its input layer, two hidden layers with 20 and 10 neurons,
and an output layer with four neurons (one per each class), as shown
here:

As hyperparameters, we will use a Learning Rate of [0.005], a Batch
size of [32], and [20]% of data for validation for [30] epochs. After

https://umap-learn.readthedocs.io/en/latest/
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training, we can see that the accuracy is 98.5%. The cost of memory and
latency is meager.

For Anomaly Detection, we will choose the suggested features that are
precisely the most important ones in the Feature Extraction, plus the
accZ RMS. The number of clusters will be [32], as suggested by the
Studio:

Testing

We can verify how our model will behave with unknown data using
20% of the data left behind during the data capture phase. The result
was almost 95%, which is good. You can always work to improve the
results, for example, to understand what went wrong with one of the
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wrong results. If it is a unique situation, you can add it to the training
dataset and then repeat it.

The default minimum threshold for a considered uncertain result is
[0.6] for classification and [0.3] for anomaly. Once we have four
classes (their output sum should be 1.0), you can also set up a lower
threshold for a class to be considered valid (for example, 0.4). You
can Set confidence thresholds on the three dots menu, besides
the Classify all button.

You can also perform Live Classification with your device (which should
still be connected to the Studio).

Be aware that here, you will capture real data with your
device and upload it to the Studio, where an inference will
be taken using the trained model (But the model is NOT in
your device).

Deploy
It is time to deploy the preprocessing block and the trained model to
the Nicla. The Studio will package all the needed libraries, preprocess-
ing functions, and trained models, downloading them to your com-
puter. You should select the option Arduino Library, and at the bot-
tom, you can choose Quantized (Int8) or Unoptimized (float32)
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and [Build]. A Zip file will be created and downloaded to your com-
puter.

On your Arduino IDE, go to the Sketch tab, select Add.ZIP Library,
and Choose the.zip file downloaded by the Studio. A message will
appear in the IDE Terminal: Library installed.

Inference

Now, it is time for a real test. We will make inferences wholly discon-
nected from the Studio. Let’s change one of the code examples created
when you deploy the Arduino Library.

In your Arduino IDE, go to the File/Examples tab and look for your
project, and on examples, select Nicla_vision_fusion:

Note that the code created by Edge Impulse considers a sensor fusion
approach where the IMU (Accelerometer and Gyroscope) and the ToF
are used. At the beginning of the code, you have the libraries related to
our project, IMU and ToF:
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/* Includes ---------------------------------------------- */
#include <NICLA_Vision_Movement_Classification_inferencing.h>
#include <Arduino_LSM6DSOX.h> //IMU
#include "VL53L1X.h" // ToF

You can keep the code this way for testing because the
trained model will use only features pre-processed from
the accelerometer. But consider that you will write your
code only with the needed libraries for a real project.

And that is it!

You can now upload the code to your device and proceed with the
inferences. Press the Nicla [RESET] button twice to put it on boot mode
(disconnect from the Studio if it is still connected), and upload the
sketch to your board.

Now you should try different movements with your board (similar to
those done during data capture), observing the inference result of each
class on the Serial Monitor:

• Idle and lift classes:

• Maritime and terrestrial:
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Note that in all situations above, the value of the anomaly score was
smaller than 0.0. Try a new movement that was not part of the original
dataset, for example, “rolling” the Nicla, facing the camera upside-
down, as a container falling from a boat or even a boat accident:

• Anomaly detection:

In this case, the anomaly is much bigger, over 1.00

Post-processing

Now that we know the model is working since it detects the movements,
we suggest that you modify the code to see the result with the NiclaV
completely offline (disconnected from the PC and powered by a battery,
a power bank, or an independent 5 V power supply).

The idea is to do the same as with the KWS project: if one specific
movement is detected, a specific LED could be lit. For example, if
terrestrial is detected, the Green LED will light; if maritime, the Red LED
will light, if it is a lift, the Blue LED will light; and if no movement
is detected (idle), the LEDs will be OFF. You can also add a condition
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when an anomaly is detected, in this case, for example, a white color
can be used (all e LEDs light simultaneously).

Summary
The notebooks and codeused in this hands-on tutorial will
be found on the GitHub repository.

Before we finish, consider that Movement Classification and Object
Detection can be utilized in many applications across various domains.
Here are some of the potential applications:

Case Applications

Industrial and Manufacturing

• Predictive Maintenance: Detecting anomalies in machinery mo-
tion to predict failures before they occur.

• Quality Control: Monitoring the motion of assembly lines or
robotic arms for precision assessment and deviation detection
from the standard motion pattern.

• Warehouse Logistics: Managing and tracking the movement of
goods with automated systems that classify different types of
motion and detect anomalies in handling.

Healthcare

• Patient Monitoring: Detecting falls or abnormal movements in
the elderly or those with mobility issues.

• Rehabilitation: Monitoring the progress of patients recovering
from injuries by classifying motion patterns during physical ther-
apy sessions.

• Activity Recognition: Classifying types of physical activity for
fitness applications or patient monitoring.

Consumer Electronics

• Gesture Control: Interpreting specific motions to control devices,
such as turning on lights with a hand wave.

• Gaming: Enhancing gaming experiences with motion-controlled
inputs.

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Motion_Classification
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Transportation and Logistics

• Vehicle Telematics: Monitoring vehicle motion for unusual be-
havior such as hard braking, sharp turns, or accidents.

• Cargo Monitoring: Ensuring the integrity of goods during trans-
port by detecting unusual movements that could indicate tamper-
ing or mishandling.

Smart Cities and Infrastructure

• Structural Health Monitoring: Detecting vibrations or move-
ments within structures that could indicate potential failures or
maintenance needs.

• Traffic Management: Analyzing the flow of pedestrians or vehi-
cles to improve urban mobility and safety.

Security and Surveillance

• Intruder Detection: Detecting motion patterns typical of unau-
thorized access or other security breaches.

• Wildlife Monitoring: Detecting poachers or abnormal animal
movements in protected areas.

Agriculture

• Equipment Monitoring: Tracking the performance and usage of
agricultural machinery.

• Animal Behavior Analysis: Monitoring livestock movements to
detect behaviors indicating health issues or stress.

Environmental Monitoring

• Seismic Activity: Detecting irregular motion patterns that pre-
cede earthquakes or other geologically relevant events.

• Oceanography: Studying wave patterns or marine movements
for research and safety purposes.
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Nicla 3D case

For real applications, as some described before, we can add a case to
our device, and Eoin Jordan, from Edge Impulse, developed a great
wearable and machine health case for the Nicla range of boards. It
works with a 10mm magnet, 2M screws, and a 16mm strap for human
and machine health use case scenarios. Here is the link: Arduino Nicla
Voice and Vision Wearable Case.

The applications for motion classification and anomaly detection are ex-
tensive, and the Arduino Nicla Vision is well-suited for scenarios where
low power consumption and edge processing are advantageous. Its
small form factor and efficiency in processing make it an ideal choice for
deploying portable and remote applications where real-time processing
is crucial and connectivity may be limited.

Resources

• Arduino Code
• Edge Impulse Spectral Features Block Colab Notebook
• Edge Impulse Project

https://www.thingiverse.com/thing:5923305
https://www.thingiverse.com/thing:5923305
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Motion_Classification/Niclav_Acc_Data_Capture
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://studio.edgeimpulse.com/public/302078/latest
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Overview

These labs provide a unique opportunity to gain practical experience
with machine learning (ML) systems. Unlike working with large models
that require data center-scale resources, these exercises enable you to
directly interact with hardware and software using TinyML. This hands-
on approach provides a tangible understanding of the challenges and
opportunities in deploying AI, albeit on a small scale. However, the
principles are largely the same as what you would encounter when
working with larger systems.

Where to Buy

The XIAOML Kit bundles the XIAO ESP32S3 Sense with an expansion
board, IMU, OLED display, and SD card toolkit:

• XIAOML Kit (Seeed Studio) (~$40)

Individual components are also available separately from Seeed Stu-
dio.

167

https://www.seeedstudio.com/The-XIAOML-Kit.html
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Pre-requisites

• The XIAOML Kit:
– XIAO ESP32S3 Sense board
– Expansion board with a 6-axis IMU and 0.42” OLED display.
– SD card toolkit:

∗ SD Card and USB adapter for data storage
∗ USB-C Cable for connecting the board to your computer.

• Network: With internet access for downloading the necessary
software.

Setup

• Setup the XIAOML Kit

Exercises

Modal-
ity Task Description Link

Vision Image Classification Learn to classify
images

Link

Vision Object Detection Implement object
detection

Link

Sound Keyword Spotting Explore voice
recognition systems

Link

IMU Motion Classification
and Anomaly
Detection

Classify motion data
and detect anomalies

Link

setup/setup.qmd
image_classification/image_classification.qmd
object_detection/object_detection.qmd
kws/kws.qmd
motion_classification/motion_classification.qmd


Setup

Figure 1.13: DALL·E prompt - 1950s cartoon-style drawing of a XIAO ESP32S3 board with a distinctive
camera module, as shown in the image provided. The board is placed on a classic lab table with various sensors,
including a microphone. Behind the board, a vintage computer screen displays the Arduino IDE in muted
colors, with code focusing on LED pin setups and machine learning inference for voice commands. The Serial
Monitor on the IDE showcases outputs detecting voice commands like ‘yes’ and ‘no’. The scene merges the retro
charm of mid-century labs with modern electronics.

169
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Overview

The XIAOML Kit is designed to provides hands-on experience with
TinyML applications. The kit includes the powerful XIAO ESP32S3
Sense development board and an expansion board that adds essential
sensors for machine learning projects.

Complete XIAOML Kit Components:

• XIAO ESP32S3 Sense: Main development board with integrated
camera sensor, digital microphone, and SD card support

• Expansion Board: Features a 6-axis IMU (LSM6DS3TR-C) and
0.42” OLED display for motion sensing and data visualization

• SD Card Toolkit: Includes SD card and USB adapter for data
storage and model deployment

• USB-C Cable: For connecting the board to your computer
• Antenna and Heat Sinks

฀ Attention

Do not install the heat sinks (or carefully, remove them)
on/from the XIAO ESP32S3 if you want to use the XIAO ML
Kit Expansion Board. See Appendix for more information.

XIAO ESP32S3 Sense - Core Board Features

The XIAO ESP32S3 Sense serves as the heart of the XIAOML Kit, inte-
grating embedded ML computing power with photography and audio
capabilities, making it an ideal platform for TinyML applications in
intelligent voice and vision AI.

https://www.seeedstudio.com/The-XIAOML-Kit.html
https://www.seeedstudio.com/XIAO-ESP32S3-Sense-p-5639.html
https://www.seeedstudio.com/XIAO-ESP32S3-Sense-p-5639.html
https://www.seeedstudio.com/XIAO-ESP32S3-Sense-p-5639.html
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Key Features

• Powerful MCU: ESP32S3 32-bit, dual-core, Xtensa processor op-
erating up to 240 MHz, with Arduino / MicroPython support

• Advanced Functionality: Detachable OV2640 camera sensor for
1600 × 1200 resolution, compatible with OV5640 camera sensor,
plus integrated digital microphone

• Elaborate Power Design: Lithium battery charge management
with four power consumption models, deep sleep mode with
power consumption as low as 14 μA

• Great Memory: 8 MB PSRAM and 8 MB FLASH, supporting SD
card slot for external 32 GB FAT memory

• Outstanding RF Performance: 2.4 GHz Wi-Fi and BLE dual
wireless communication, supports 100m+ remote communica-
tion with U.FL antenna

• Compact Design: 21 × 17.5 mm, adopting the classic XIAO form
factor, suitable for space-limited projects
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Below is the general board pinout:

For more details, please refer to the Seeed Studio Wiki page

Expansion Board Features

The expansion board extends the XIAOML Kit’s capabilities for motion-
based machine learning applications:

Components:

• 6-axis IMU (LSM6DS3TR-C):
– 3-axis accelerometer and 3-axis gyroscope for motion detec-

tion and classification
∗ Accelerometer range: ±2/±4/±8/±16 g
∗ Gyroscope range: ±125/±250/±500/±1000/±2000 dps

https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/
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∗ I2C interface (address: 0x6A)

• 0.42” OLED Display
– Monochrome display (72×40 resolution) for real-time data

visualization
∗ Controller: SSD1306
∗ I2C interface (address: 0x3C)

• Restart Button (EN)
• Battery Connector (BAT+, BAT- )

Complete Kit Assembly

The expansion board connects seamlessly to the XIAO ESP32S3 Sense,
creating a comprehensive platform for multimodal machine learning
experiments covering vision, audio, and motion sensing.

Please pay attention to the mounting orientation of the module:
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Note that

• The EN connection, shown at the bottom of the ESP32S3 Sense, is
available on the expansion board via the RST button.

• The BAT+ and BAT- connections are also available through the
BAT3.7V white connector.

XIAOML Kit Applications:

• Vision: Image classification and object detection using the inte-
grated camera

• Audio: Keyword spotting and voice recognition with the built-in
microphone

• Motion: Activity recognition and anomaly detection using the
IMU sensors

• Multi-modal: Combined sensor fusion for complex ML applica-
tions

Installing the XIAO ESP32S3 Sense on Arduino
IDE

1. Connect the XIAOML Kit to your computer via the USB-C port.
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2. Download and Install the stable version of Arduino IDE according
to your operating system.
[Download Arduino IDE]

3. Open the Arduino IDE and select the Boards Manager (repre-
sented by the UNO Icon).

4. Enter “ESP32”, and select”esp32 by Espressif Systems.” You can
install or update the board support packages.

Do not select “Arduino ESP32 Boards by Arduino”, which
are the support package for the Arduino Nano ESP32 and
not our board.

฀ Attention

Versions 3.x may experience issues when using the XIAO
ESP32S3 Sense with Edge Impulse deploy codes. If this is
the case, use the last 2.0.x stable version (for example, 2.0.17)
instead.

https://www.arduino.cc/en/software
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5. Click Select Board, enter with xiao or esp32s3, and select the
XIAO_ESP32S3 in the boards manager and the corresponding
PORT where the ESP32S3 is connected.

That is it! The device should be OK. Let’s do some tests.

Testing the board with BLINK

The XIAO ESP32S3 Sense features a built-in LED connected to GPIO21.
So, you can run the blink sketch (which can be found under Files/Examples/Basics/Blink.
The sketch uses the LED_BUILTIN Arduino constant, which internally
corresponds to the LED connected to pin 21. Alternatively, you can
change the Blink sketch accordingly.

#define LED_BUILT_IN 21 // This line is optional

void setup() {
pinMode(LED_BUILT_IN, OUTPUT); // Set the pin as output

}

// Remember that the pins work with inverted logic
// LOW to turn on and HIGH to turn off
void loop() {
digitalWrite(LED_BUILT_IN, LOW); //Turn on
delay (1000); //Wait 1 sec
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digitalWrite(LED_BUILT_IN, HIGH); //Turn off
delay (1000); //Wait 1 sec

}

Note that the pins operate with inverted logic: LOW turns
on and HIGH turns off.

Microphone Test

Let’s start with sound detection. Enter with the code below or go to the
GitHub project and download the sketch: XIAOML_Kit_Mic_Test and
run it on the Arduino IDE:

/*
XIAO ESP32S3 Simple Mic Test
(for ESP32 Library version 3.0.x and later)

*/

#include <ESP_I2S.h>
I2SClass I2S;

void setup() {
Serial.begin(115200);
while (!Serial) {

}

// setup 42 PDM clock and 41 PDM data pins

https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Mic_Test/XiaoEsp32s3_Mic_Test
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I2S.setPinsPdmRx(42, 41);

// start I2S at 16 kHz with 16-bits per sample
if (!I2S.begin(I2S_MODE_PDM_RX,

16000,
I2S_DATA_BIT_WIDTH_16BIT,
I2S_SLOT_MODE_MONO)) {

Serial.println("Failed to initialize I2S!");
while (1); // do nothing

}
}

void loop() {
// read a sample
int sample = I2S.read();

if (sample && sample != -1 && sample != 1) {
Serial.println(sample);

}
}

Open the Serial Plotter, and you will see the loudness change curve of
the sound.

When producing sound, you can verify it on the Serial Plotter.

Save recorded sound (.wav audio files) to a microSD card.
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Now, using the onboard SD Card reader, we can save .wav audio files.
To do that, we need first to enable the XIAO PSRAM.

ESP32-S3 has only a few hundred kilobytes of internal RAM
on the MCU chip. This can be insufficient for some purposes,
so up to 16 MB of external PSRAM (pseudo-static RAM)
can be connected with the SPI flash chip (The XIAO has 8
MB of PSRAM). The external memory is incorporated in
the memory map and, with certain restrictions, is usable in
the same way as internal data RAM.

• To turn it on, go to Tools->PSRAM:"OPI PSRAM"->OPI PSRAM

XIAO ESP32S3 Sense supports microSD cards up to 32GB. If
you are ready to purchase a microSD card for XIAO, please
refer to the specifications below. Format the microSD card
to FAT32 format before using it.

Now, insert the FAT32 formatted SD card into the XIAO as shown in
the photo below
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/*
* WAV Recorder for Seeed XIAO ESP32S3 Sense
* (for ESP32 Library version 3.0.x and later)
*/

#include "ESP_I2S.h"
#include "FS.h"
#include "SD.h"

void setup() {
// Create an instance of the I2SClass
I2SClass i2s;

// Create variables to store the audio data
uint8_t *wav_buffer;
size_t wav_size;

// Initialize the serial port
Serial.begin(115200);
while (!Serial) {
delay(10);

}

Serial.println("Initializing I2S bus...");

// Set up the pins used for audio input
i2s.setPinsPdmRx(42, 41);

// start I2S at 16 kHz with 16-bits per sample
if (!i2s.begin(I2S_MODE_PDM_RX,

16000,
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I2S_DATA_BIT_WIDTH_16BIT,
I2S_SLOT_MODE_MONO)) {

Serial.println("Failed to initialize I2S!");
while (1); // do nothing

}

Serial.println("I2S bus initialized.");
Serial.println("Initializing SD card...");

// Set up the pins used for SD card access
if(!SD.begin(21)){
Serial.println("Failed to mount SD Card!");
while (1) ;

}
Serial.println("SD card initialized.");
Serial.println("Recording 20 seconds of audio data...");

// Record 20 seconds of audio data
wav_buffer = i2s.recordWAV(20, &wav_size);

// Create a file on the SD card
File file = SD.open("/arduinor_rec.wav", FILE_WRITE);
if (!file) {

Serial.println("Failed to open file for writing!");
return;

}

Serial.println("Writing audio data to file...");

// Write the audio data to the file
if (file.write(wav_buffer, wav_size) != wav_size) {

Serial.println("Failed to write audio data to file!");
return;

}

// Close the file
file.close();

Serial.println("Application complete.");
}

void loop() {
delay(1000);
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Serial.printf(".");
}

• Save the code, for example, as Wav_Record.ino, and run it in the
Arduino IDE.

• This program is executed only once after the user turns on the
serial monitor (or when the RESET button is pressed). It records
for 20 seconds and saves the recording file to a microSD card as
“arduino_rec.wav.”

• When the “.” is output every second in the serial monitor, the
program execution is complete, and you can play the recorded
sound file using a card reader.

The sound quality is excellent!

The explanation of how the code works is beyond the scope
of this lab, but you can find an excellent description on the
wiki page.

To know more about the File System on the XIAO ESP32S3 Sense, please
refer to this link.

Testing the Camera

For testing (and using the camera, we can use several methods:

• The SenseCraft AI Studio
• The CameraWebServer app on Arduino IDE (See the next section)
• Capturing images and saving them on an SD card (similar to what

we did with audio)

https://wiki.seeedstudio.com/xiao_esp32s3_sense_mic/
https://wiki.seeedstudio.com/xiao_esp32s3_sense_filesystem/
https://github.com/limengdu/SeeedStudio-XIAO-ESP32S3-Sense-camera/tree/main
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Testing the camera with the SenseCraft AI Studio

The easiest way to see the camera working is to use the SenseCraft
AI Studio, a robust platform that offers a wide range of AI models
compatible with various devices, including the XIAO ESP32S3 Sense
and the Grove Vision AI V2.

We can also use the SenseCraft Web Toolkit, a simplified
version of the SenseCraft AI Studio.

Let’s follow the steps below to start the SenseCraft AI:

• Open the SenseCraft AI Vision Workspace in a web browser, such
as Chrome, and sign in (or create an account).

• Having the XIAOML Kit physically connected to the notebook,
select it as below:

https://sensecraft.seeed.cc/ai/home
https://sensecraft.seeed.cc/ai/home
https://seeed-studio.github.io/SenseCraft-Web-Toolkit/#/setup/process
https://sensecraft.seeed.cc/ai/device/local/32
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Note: The WebUSB tool may not function correctly in cer-
tain browsers, such as Safari. Use Chrome instead. Also,
confirm that the Arduino IDE or any other serial device is
not connected to the XIAO.

To see the camera working, we should upload a model. We can try
several Computer Vision models previously uploaded by Seeed Stu-
dio. Use the button [Select Model] and choose among the available
models.
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Passing the cursor over the AI models, we can have some information
about them, such as name, description, category or task (Image Classi-
fication, Object Detection, or Pose/Keypoint Detection), the algorithm
(like YOLO V5 or V8, FOMO, MobileNet V2, etc.) and in some cases,
metrics (Accuracy or mAP).
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We can choose one of the ready-to-use AI models, such as “Person
Classification”, by clicking on it and pressing the [Confirm] button, or
upload our own model.
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In the Preview Area, we can see the streaming generated by the cam-
era.

We will return to the SenseCraft AI Studio in more detail
during the Vision AI labs.

Testing WiFi

Installation of the antenna

The XIAOML Kit arrived fully assembled. First, remove the Sense Ex-
pansion Board (which contains the Camera, Mic, and SD Card Reader)
from the XIAO.

On the bottom left of the front of XIAO ESP32S3, there is a separate
“WiFi/BT Antenna Connector”. To improve your WiFi/Bluetooth sig-
nal, remove the antenna from the package and attach it to the connec-
tor.

There is a small trick to installing the antenna. If you press down hard
on it directly, you will find it very difficult to press and your fingers
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will hurt! The correct way to install the antenna is to insert one side of
the antenna connector into the connector block first, then gently press
down on the other side to ensure the antenna is securely installed.

Removing the antenna is also the case. Do not use brute force to pull
the antenna directly; instead, apply force to one side to lift, making the
antenna easy to remove.

Reinstalling the expansion board is very simple; you just need to align
the connector on the expansion board with the B2B connector on the
XIAO ESP32S3, press it hard, and hear a “click.” The installation is
complete.

One of the XIAO ESP32S3’s differentiators is its WiFi capability. So, let’s
test its radio by scanning the Wi-Fi networks around it. You can do this
by running one of the code examples on the board.

Open the Arduino IDE and select our board and port. Go to Examples
and look for WiFI ==> WiFIScan under the “Examples for the XIAO
ESP32S3”. Upload the sketch to the board.

You should see the Wi-Fi networks (SSIDs and RSSIs) within your de-
vice’s range on the serial monitor. Here is what I got in the lab:



Setup 189

Simple WiFi Server (Turning LED ON/OFF)

Let’s test the device’s capability to behave as a Wi-Fi server. We will
host a simple page on the device that sends commands to turn the XIAO
built-in LED ON and OFF.

Go to Examples and look for WiFI ==> SimpleWiFIServer under the
“Examples for the XIAO ESP32S3”.

Before running the sketch, you should enter your network credentials:

const char* ssid = "Your credentials here";
const char* password = "Your credentials here";

And modify pin 5 to pin 21, where the built-in LED is installed. Also,
let’s modify the webpage (lines 85 and 86) to reflect the correct LED Pin
and that it is active with LOW:

client.print("Click <a href=\"/H\">here</a> to turn the LED on pin 21 OFF.<br>");
client.print("Click <a href=\"/L\">here</a> to turn the LED on pin 21 ON.<br>");

You can monitor your server’s performance using the Serial Monitor.
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Take the IP address shown in the Serial Monitor and enter it in your
browser. You will see a page with links that can turn the built-in LED
of your XIAO ON and OFF.

Using the CameraWebServer

In the Arduino IDE, go to File > Examples > ESP32 > Camera, and
select CameraWebServer

On the board_config.h tab, comment on all cameras’ models, except
the XIAO model pins:
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#define CAMERA_MODEL_XIAO_ESP32S3 // Has PSRAM

Do not forget to check the Tools to see if PSRAM is enabled.

As done before, in the CameraWebServer.ino tab, enter your wifi cre-
dentials and upload the code to the device.

If the code is executed correctly, you should see the address on the
Serial Monitor:

WiFi connecting....
WiFi connected
Camera Ready! Use 'http://192.168.5.60' to connect

Copy the address into your browser and wait for the page to load.
Select the camera resolution (for example, QVGA) and select [START
STREAM]. Wait for a few seconds, depending on your connection. Using
the [Save] button, you can save an image to your computer’s download
area.
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That’s it! You can save the images directly on your computer for use on
projects.

Testing the IMU Sensor (LSM6DS3TR-C)

An Inertial Measurement Unit (IMU) is a sensor that measures motion
and orientation. The LSM6DS3TR-C on your XIAOML kit is a 6-axis
IMU, meaning it combines:

• 3-axis Accelerometer: Measures linear acceleration (including
gravity) along X, Y, and Z axes

• 3-axis Gyroscope: Measures angular velocity (rotation rate)
around X, Y, and Z axes

Technical Specifications:

• Communication: I2C interface at address 0x6A
• Accelerometer Range: ±2/±4/±8/±16 g (we use ±2g by default)
• Gyroscope Range: ±125/±250/±500/±1000/±2000 dps (we use

±250 dps by default)
• Resolution: 16-bit ADC
• Power Consumption: Ultra-low power design
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Coordinate System:

The sensor follows a right-hand coordinate system. When looking at
the IMU sensor with the point mark visible (Expansion Board bottom
view):

• X-axis: Points to the right
• Y-axis: Points forward (away from you)
• Z-axis: Points upward (out of the board)

Required Libraries

Before uploading the code, install the required library:

1. Open the Arduino IDE and select Manage Libraries (represented
by the Books Icon).
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2. For the IMU library, enter “LSM6DS3”, and select”SeeedArduino
LSM6DS3 by Seeed”. You can INSTALL or UPDATE the board
support packages.

฀ Important: Do NOT install “Arduino_LSM6DS3 by Arduino” - that’s
for different boards!

Test Code

Enter with the code below at the Arduino IDE and uploaded it to Kit:

#include <LSM6DS3.h>
#include <Wire.h>

// Create IMU object using I2C interface
// LSM6DS3TR-C sensor is located at I2C address 0x6A
LSM6DS3 myIMU(I2C_MODE, 0x6A);

// Variables to store sensor readings
float accelX, accelY, accelZ; // Accelerometer values (g-force)
float gyroX, gyroY, gyroZ; // Gyroscope values (degrees per second)

void setup() {
// Initialize serial communication at 115200 baud rate
Serial.begin(115200);

// Wait for serial port to connect (useful for debugging)
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while (!Serial) {
delay(10);

}

Serial.println("XIAOML Kit IMU Test");
Serial.println("LSM6DS3TR-C 6-Axis IMU Sensor");
Serial.println("=============================");

// Initialize the IMU sensor
if (myIMU.begin() != 0) {

Serial.println("ERROR: IMU initialization failed!");
Serial.println("Check connections and I2C address");
while(1) {
delay(1000); // Halt execution if IMU fails to initialize

}
} else {
Serial.println("฀ IMU initialized successfully");
Serial.println();

// Print sensor information
Serial.println("Sensor Information:");
Serial.println("- Accelerometer range: ±2g");
Serial.println("- Gyroscope range: ±250 dps");
Serial.println("- Communication: I2C at address 0x6A");
Serial.println();

// Print data format explanation
Serial.println("Data Format:");
Serial.println("AccelX,AccelY,AccelZ,GyroX,GyroY,GyroZ");
Serial.println("Units: g-force (m/s²), degrees/second");
Serial.println();

delay(2000); // Brief pause before starting measurements
}

}

void loop() {
// Read accelerometer data (in g-force units)
accelX = myIMU.readFloatAccelX();
accelY = myIMU.readFloatAccelY();
accelZ = myIMU.readFloatAccelZ();

// Read gyroscope data (in degrees per second)
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gyroX = myIMU.readFloatGyroX();
gyroY = myIMU.readFloatGyroY();
gyroZ = myIMU.readFloatGyroZ();

// Print readable format to Serial Monitor
Serial.print("Accelerometer (g): ");
Serial.print("X="); Serial.print(accelX, 3);
Serial.print(" Y="); Serial.print(accelY, 3);
Serial.print(" Z="); Serial.print(accelZ, 3);

Serial.print(" | Gyroscope (°/s): ");
Serial.print("X="); Serial.print(gyroX, 2);
Serial.print(" Y="); Serial.print(gyroY, 2);
Serial.print(" Z="); Serial.print(gyroZ, 2);
Serial.println();

// Print CSV format for Serial Plotter
Serial.println(String(accelX) + "," + String(accelY) + "," +

String(accelZ) + "," + String(gyroX) + "," +
String(gyroY) + "," + String(gyroZ));

// Update rate: 10 Hz (100ms delay)
delay(100);

}

The Serial monitor will show the values, and the plotter will show their
variation over time. For example, by moving the Kit over the y-axis, we
will see that value 2 (red line) changes accordingly. Note that z-axis is
represented by value 3 (green line), which is near 1.0g. The blue line
(value 1) is related to the x-axis.
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You can select the values 4 to 6 to see the Gyroscope behavior.

Testing the OLED Display (SSD1306)

OLED (Organic Light-Emitting Diode) displays are self-illuminating
screens where each pixel produces its own light. The XIAO ML kit
features a compact 0.42-inch monochrome OLED display, ideal for
displaying sensor data, status information, and simple graphics.

Technical Specifications:

• Size: 0.42 inches diagonal
• Resolution: 72 × 40 pixels
• Controller: SSD1306
• Interface: I2C at address 0x3C
• Colors: Monochrome (black pixels on white background, or vice

versa)
• Viewing: High contrast, visible in bright light
• Power: Low power consumption, no backlight needed

Display Characteristics:

• Pixel-perfect: Each of the 2,880 pixels (72×40) can be individually
controlled
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• Fast refresh: Suitable for animations and real-time data
• No ghosting: Instant pixel response
• Wide viewing angle: Clear from multiple viewing positions

Required Libraries

Before uploading the code, install the required library:

1. Open the Arduino IDE and select the “Manage Libraries” (repre-
sented by the Books Icon).

2. Enter u8g2 and select U8g2 by oliver. You can install or update
the board support packages.
฀ Note: U8g2 is a powerful graphics library supporting many
display types

The U8g2 library is a monochrome graphics library with these fea-
tures:

• Support for many display controllers (including SSD1306)
• Text rendering with various fonts
• Drawing primitives (lines, rectangles, circles)
• Memory-efficient page-based rendering
• Hardware and software I2C support
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Test Code

Enter with the code below at the Arduino IDE and uploaded it to Kit:

#include <U8g2lib.h>
#include <Wire.h>

// Initialize the OLED display
// SSD1306 controller, 72x40 resolution, I2C interface
U8G2_SSD1306_72X40_ER_1_HW_I2C u8g2(U8G2_R2, U8X8_PIN_NONE);

void setup() {
Serial.begin(115200);

Serial.println("XIAOML Kit - Hello World");
Serial.println("==========================");

// Initialize the display
u8g2.begin();

Serial.println("฀ Display initialized");
Serial.println("Showing Hello World message...");

// Clear the display
u8g2.clearDisplay();

}

void loop() {
// Start drawing sequence
u8g2.firstPage();
do {
// Set font
u8g2.setFont(u8g2_font_ncenB08_tr);

// Display "Hello World" centered
u8g2.setCursor(8, 15);
u8g2.print("Hello");

u8g2.setCursor(12, 30);
u8g2.print("World!");

// Add a simple decoration - draw a frame around the text
u8g2.drawFrame(2, 2, 68, 36);
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} while (u8g2.nextPage());

// No delay needed - the display will show continuously
}

If everything works fine, you should see at the display, “Hello World”
inside a rectangle.

OLED - Text Sizes and Positioning

• Note that the text is positioned with setCursor(x, y), in this
case centered:
u8g2.setCursor(8, 15);

• The font used in the code was medium.
u8g2.setFont(u8g2_font_ncenB08_tr);
But other font sizes are available:

– u8g2_font_4x6_tr: Tiny font (4×6 pixels)
– u8g2_font_6x10_tr: Small font (6×10 pixels)
– u8g2_font_ncenB08_tr: Medium bold font
– u8g2_font_ncenB14_tr: Large bold font
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Shapes

The code added a simple decoration, drawing a frame around the text

u8g2.drawFrame(2, 2, 68, 36);

But other shapes are available:

• Rectangle outline: drawFrame(x, y, width, height)
• Filled rectangle: drawBox(x, y, width, height)
• Circle: drawCircle(x, y, radius)
• Line: drawLine(x1, y1, x2, y2)
• Individual pixels: drawPixel(x, y)

Coordinates

The display uses a coordinate system where:

• Origin (0,0): Top-left corner
• X-axis: Increases from left to right (0 to 71)
• Y-axis: Increases from top to bottom (0 to 39)
• Text positioning: setCursor(x, y) where y is the baseline of

text

Display Rotation

• You can change the rotation parameter by using:
– U8G2_R0: Normal orientation
– U8G2_R1: 90° clockwise
– U8G2_R2: 180° (upside down)
– U8G2_R3: 270° clockwise

Custom Characters:

// Draw custom bitmap
static const unsigned char myBitmap[] = {0x00, 0x3c, 0x42, 0x42, 0x3c, 0x00};
u8g2.drawBitmap(x, y, 1, 6, myBitmap);
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Text Measurements:

int width = u8g2.getStrWidth("Hello"); // Get text width
int height = u8g2.getAscent(); // Get font height

The OLED display is now ready to show your sensor data, system status,
or any custom graphics you design for your ML projects!

Summary

The XIAOML Kit with ESP32S3 Sense represents a powerful, yet ac-
cessible entry point into the world of TinyML and embedded machine
learning. Through this setup process, we have systematically tested
every component of the XIAOML Kit, confirming that all sensors and
peripherals are functioning correctly. The ESP32S3’s dual-core pro-
cessor and 8MB of PSRAM provide sufficient computational power
for real-time ML inference, while the OV2640 camera, digital micro-
phone, LSM6DS3TR-C IMU, and 0.42” OLED display create a complete
multimodal sensing platform. WiFi connectivity opens possibilities
for edge-to-cloud ML workflows, and our Arduino IDE development
environment is now properly configured with all necessary libraries.

Beyond mere functionality tests, we’ve gained practical insights into
coordinate systems, data formats, and operational characteristics of each
sensor—knowledge that will prove invaluable when designing ML data
collection and preprocessing pipelines for the upcoming projects.

This setup process demonstrates key principles that extend far beyond
this specific kit. Working with the ESP32S3’s memory limitations and
processing capabilities provides an authentic experience with the re-
source constraints inherent in edge AI—the same considerations that
apply when deploying models on smartphones, IoT devices, or au-
tonomous systems. Having multiple modalities (vision, audio, motion)
on a single platform enables exploration of multimodal ML approaches,
which are increasingly important in real-world AI applications.

Most importantly, from raw sensor data to model inference to user feed-
back via the OLED display, the kit provides a complete ML deployment
cycle in miniature, mirroring the challenges faced in production AI
systems.

With this foundation in place, you’re now equipped to tackle the core
TinyML applications in the following chapters:
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• Vision Projects: Leveraging the camera for image classification
and object detection

• Audio Projects: Processing audio streams for keyword spotting
and voice recognition

• Motion Projects: Using IMU data for activity recognition and
anomaly detection

Each application will build upon the hardware understanding and
software infrastructure we’ve established, demonstrating how artificial
intelligence can be deployed not just in data centers, but in resource-
constrained devices that directly interact with the physical world.

The principles encountered with this kit—real-time processing, sensor
fusion, and edge inference—are the same ones driving the future of AI
deployment in autonomous vehicles, smart cities, medical devices, and
industrial automation. By completing this setup successfully, you’re
now prepared to explore this exciting frontier of embedded machine
learning.

Resources

• XIAOML Kit Code
• XIAO ESP32S3 Sense manual & example code
• Usage of Seeed Studio XIAO ESP32S3 microphone
• File System and XIAO ESP32S3 Sense
• Camera Usage in Seeed Studio XIAO ESP32S3 Sense

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/XIAOML_Kit_code
https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/
https://wiki.seeedstudio.com/xiao_esp32s3_sense_mic/
https://wiki.seeedstudio.com/xiao_esp32s3_sense_filesystem/
https://wiki.seeedstudio.com/xiao_esp32s3_camera_usage/
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Heat Sink Considerations

If you need to use the XIAO ESP32S3 Sense for camera applications
WITHOUT the Expansion Board, you may install the heat sink.

Note that having the heat sink installed, it is not possible to connect the
XIAO ESP32S3 Sense with the Expansion Board.
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Installing the Heat Sink

To ensure optimal cooling for your XIAO ESP32S3 Sense, you should
install the provided heat sink during camera applications. Its design
is specifically tailored to address cooling needs, particularly during
intensive operations such as camera usage.

Two heat sinks are included in the kit, but you can use only
one to guarantee access to the Battery pins.

Installation:

• Ensure your device is powered off and unplugged from any power
source before you start.

• Prioritize covering the Thermal PAD with the heat sink, as it is di-
rectly above the ESP32S3 chip, the primary source of heat. Proper
alignment ensures optimal heat dissipation, and it is essential to
keep the BAT pins as unobstructed as possible.

Now, let’s begin the installation process:

Step 1. Prepare the Heat Sink: Start by removing the protective cover
from the heat sink to expose the thermal adhesive. This will prepare
the heat sink for a secure attachment to the ESP32S3 chip.

Step 2. Assemble the Heat Sink:

After installation, ensure everything is properly secured
with no risk of short circuits. Verify that the heat sink is
properly aligned and securely attached.
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If one heat synk is not enough, a second one can be installed, sharing
both the thermal pad, but in this situation, be aware that all pins became
unavailable.

฀ Attention

Remove carefully the heat sinks before using the IMU ex-
pansion board again
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Figure 1.14: DALL·E prompt - 1950s style cartoon illustration based on a real image by Marcelo Rovai

Overview

We are increasingly facing an artificial intelligence (AI) revolution,
where, as Gartner states, Edge AI and Computer Vision have a very
high impact potential, and it is for now!

209

https://www.researchgate.net/figure/Gartner-2023-Artificial-intelligence-emerging-technologies-impact-radar-T-Nguyen-2023_fig1_372048156
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When we look into Machine Learning (ML) applied to vision, the first
concept that greets us is Image Classification, a kind of ML’s Hello
World that is both simple and profound!

The Seeed Studio XIAOML Kit provides a comprehensive hardware
solution centered around theXIAO ESP32-S3 Sense, featuring an inte-
grated OV3660 camera and SD card support. Those features make the
XIAO ESP32S3 Sense an excellent starting point for exploring TinyML
vision AI.

In this Lab, we will explore Image Classification using the non-code tool
SenseCraft AI and explore a more detailed development with Edge
Impulse Studio and Arduino IDE.

LIGHTBULB Learning Objectives

• Deploy Pre-trained Models using SenseCraft AI Studio for
immediate computer vision applications

• Collect and Manage Image Datasets for custom classifica-
tion tasks with proper data organization

• Train Custom Image Classification Models using transfer
learning with MobileNet V2 architecture

• Optimize Models for Edge Deployment through quantiza-
tion and memory-efficient preprocessing

• Implement Post-processing Pipelines, including GPIO con-
trol and real-time inference integration

• Compare Development Approaches between no-code and
advanced ML platforms for embedded applications

Image Classification

Image classification is a fundamental task in computer vision that in-
volves categorizing entire images into one of several predefined classes.
This process entails analyzing the visual content of an image and as-
signing it a label from a fixed set of categories based on the dominant
object or scene it depicts.

Image classification is crucial in various applications, ranging from
organizing and searching through large databases of images in digital
libraries and social media platforms to enabling autonomous systems
to comprehend their surroundings. Common architectures that have

https://www.seeedstudio.com/xiao-series-page
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significantly advanced the field of image classification include Convolu-
tional Neural Networks (CNNs), such as AlexNet, VGGNet, and ResNet.
These models have demonstrated remarkable accuracy on challenging
datasets, such as ImageNet, by learning hierarchical representations of
visual data.

As the cornerstone of many computer vision systems, image classifica-
tion drives innovation, laying the groundwork for more complex tasks
like object detection and image segmentation, and facilitating a deeper
understanding of visual data across various industries. So, let’s start
exploring the Person Classification model (“Person - No Person”), a
ready-to-use computer vision application on the SenseCraft AI.

Image Classification on the SenseCraft AI Workspace

Start by connecting the XIAOML Kit (or just the XIAO ESP32S3 Sense,
disconnected from the Expansion Board) to the computer via USB-C,
and then open the SenseCraft AI Workspace to connect it.

https://www.image-net.org/index.php
https://sensecraft.seeed.cc/ai/view-model/60768-person-classification?tab=public
https://sensecraft.seeed.cc/ai/device/local/32
https://sensecraft.seeed.cc/ai/device/local/32
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Once connected, select the option [Select Model...] and enter in
the search window: “Person Classification”. From the options available,
select the one trained over the MobileNet V2 (passing the mouse over
the models will open a pop-up window with its main characteristics).

Click on the chosen model and confirm the deployment. A new
firmware for the model should start uploading to our device.

Note that the percentage of models downloaded and firmware
uploaded will be displayed. If not, try disconnecting the
device, then reconnect it and press the boot button.
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After the model is uploaded successfully, we can view the live feed
from the XIAO camera and the classification result (Person or Not a
Person) in the Preview area, along with the inference details displayed
in the Device Logger.

Note that we can also select our Inference Frame Interval,
from “Real-Time” (Default) to 10 seconds, and the Mode
(UART, I2C, etc) as the data is shared by the device (the
default is UART via USB).

At the Device Logger, we can see that the latency of the model is from
52 to 78 ms for pre-processing and around 532ms for inference, which
will give us a total time of a little less than 600ms, or about 1.7 Frames
per second (FPS).

To run the Mobilenet V2 0.35, the XIAO had a peak current
of 160mA at 5.23V, resulting in a power consumption of
830mW.

Post-Processing

An essential step in an Image Classification project pipeline is to define
what we want to do with the inference result. So, imagine that we will
use the XIAO to automatically turn on the room lights if a person is
detected.
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With the SebseCraft AI, we can do it on the Output -> GPIO section.
Click on the Add icon to trigger the action when event conditions are
met. A pop-up window will open, where you can define the action to
be taken. For example, if a person is detected with a confidence of more
than 60% the internal LED should be ON. In a real scenario, a GPIO, for
example, D0, D1, D2, D11, or D12, would be used to trigger a relay to turn
on a light.

Once confirmed, the created Trigger Action will be shown. Press Send
to upload the command to the XIAO.
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Now, pointing the XIAO at a person will make the internal LED go
ON.

We will explore more trigger actions and post-processing
techniques further in this lab.

An Image Classification Project

Let’s create a simple Image Classification project using SenseCraft AI
Studio. Below, we can see a typical machine learning pipeline that will
be used in our project.

On SenseCraft AI Studio: Let’s open the tab Training:

https://sensecraft.seeed.cc/ai/training


An Image Classification Project 216

The default is to train a Classification model with a WebCam if it
is available. Let’s select the XIAOESP32S3 Sense instead. Pressing the
green button [Connect] will cause a Pop-Up window to appear. Select
the corresponding Port and press the blue button [Connect].
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The image streamed from the Grove Vision AI V2 will be displayed.

The Goal

The first step, as we can see in the ML pipeline, is to define a goal. Let’s
imagine that we have an industrial installation that should automatically
sort wheels and boxes.

So, let’s simulate it, classifying, for example, a toy box and a toy wheel.
We should also include a 3rd class of images, background, where there
are no objects in the scene.

Data Collection

Let’s create the classes, following, for example, an alphabetical order:

• Class1: background
• Class 2: box
• Class 3: wheel
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Select one of the classes and keep pressing the green button (Hold
to Record) under the preview area. The collected images (and their
counting) will appear on the Image Samples Screen. Carefully and
slowly, move the camera to capture different angles of the object. To
modify the position or interfere with the image, release the green button,
rearrange the object, and then hold it again to resume the capture.

After collecting the images, review them and delete any incorrect
ones.
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Collect around 50 images from each class and go to Training Step.

Note that it is possible to download the collected images to
be used in another application, for example, with the Edge
Impulse Studio.

Training

Confirm if the correct device is selected (XIAO ESP32S3 Sense) and
press [Start Training]

Test

After training, the inference result can be previewed.
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Note that the model is not running on the device. We are,
in fact, only capturing the images with the device and per-
forming a live preview using the training model, which is
running in the Studio.

Now is the time to really deploy the model in the device.

Deployment

Select the trained model and XIAO ESP32S3 Sense at the Supported
Devices window. And press [Deploy to device].

The SeneCrafit AI will redirect us to the VisionWorkplace tab. Confirm
the deployment, select the Port, and Connect it.
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The model will be flashed into the device. After an automatic reset, the
model will start running on the device. On the Device Logger, we can
see that the inference has a latency of approximately 426 ms, plus a
pre-processing of around 110ms, corresponding to a frame rate of 1.8
frames per second (FPS).

Also, note that in Settings, it is possible to adjust the model’s confi-
dence.
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To run the Image Classification Model, the XIAO ESP32S3
had a peak current of 14mA at 5.23V, resulting in a power
consumption of 730mW.

As before, in the Output –>GPIO, we can turn the GPIOs or the Internal
LED ON based on the detected class. For example, the LED will be
turned ON when the wheel is detected.
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Saving the Model

It is possible to save the model in the SenseCraft AI Studio. The Studio
will retain all our models for later deployment. For that, return to the
Training tab and select the button [Save to SenseCraft]:

Follow the instructions to enter the model’s name, description, image,
and other details.
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Note that the trained model (an Int8 MobileNet V2 with a size of 320KB)
can be downloaded for further use or even analysis, for example, using
Netron. Note that the model uses images of size 224x224x3 as its Input
Tensor. In the next step, we will use different hyperparameters on the
Edge Impulse Studio.

https://github.com/lutzroeder/netron
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Also, the model can be deployed again to the device at any time. Auto-
matically, the Workspace will be open on the SenseCraft AI.

Image Classification Project from a Dataset

The primary objective of our project is to train a model and perform
inference on the XIAO ESP32S3 Sense. For training, we should find
some data (in fact, tons of data!).

But as we already know, first of all, we need a goal! What do we want to
classify?

With TinyML, a set of techniques associated with machine learning
inference on embedded devices, we should limit the classification to
three or four categories due to limitations (mainly memory). We can,
for example, train the images captured for the Box versus Wheel, which
can be downloaded from the SenseCraft AI Studio.

Alternatively, we can use a completely new dataset, such as
one that differentiates apples from bananas and potatoes,
or other categories. If possible, try finding a specific dataset
that includes images from those categories. Kaggle fruit-
and-vegetable-image-recognition is a good start.

https://www.kaggle.com/kritikseth/fruit-and-vegetable-image-recognition
https://www.kaggle.com/kritikseth/fruit-and-vegetable-image-recognition


Training the model with Edge Impulse Studio 226

Let’s download the dataset captured in the previous section. Open
the menu (3 dots) on each of the captured classes and select Export
Data.

The dataset will be downloaded to the computer as a .ZIP file, with one
file for each class. Save them in your working folder and unzip them.
You should have three folders, one for each class.

Optionally, you can add some fresh images, using, for ex-
ample, the code discussed in the setup lab.

Training the model with Edge Impulse Studio
We will use the Edge Impulse Studio to train our model. Edge Im-
pulse is a leading development platform for machine learning on edge
devices.

Enter your account credentials (or create a free account) at Edge Impulse.
Next, create a new project:

https://www.edgeimpulse.com/
https://www.edgeimpulse.com/
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Data Acquisition

Next, go to the Data acquisition section and there, select + Add data.
A pop-up window will appear. Select UPLOAD DATA.

After selection, a new Pop-Up window will appear, asking to update
the data.

• In Upload mode: select a folder and press [Choose Files].
• Go to the folder that contains one of the classes and press [Upload]
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• You will return automatically to the Upload data window.
• Select Automatically split between training and testing
• And enter the label of the images that are in the folder.
• Select [Upload data]
• At this point, the files will start to be uploaded, and after that,

another Pop-Up window will appear asking if you are building
an object detection project. Select [no]
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Repeat the procedure for all classes. Do not forget to change the label’s
name. If you forget and the images are uploaded, please note that they
will be mixed in the Studio. Do not worry, you can manually move the
data between classes further.

Close the Upload Data window and return to the Data acquisition
page. We can see that all dataset was uploaded. Note that on the upper
panel, we can see that we have 158 items, all of which are balanced.
Also, 19% of the images were left for testing.

Impulse Design

An impulse takes raw data (in this case, images), extracts
features (resizes pictures), and then uses a learning block to
classify new data.

Classifying images is the most common application of deep learning,
but a substantial amount of data is required to accomplish this task.
We have around 50 images for each category. Is this number enough?
Not at all! We will need thousands of images to “teach” or “model”
each class, allowing us to differentiate them. However, we can resolve
this issue by retraining a previously trained model using thousands of
images. We refer to this technique as “Transfer Learning” (TL). With
TL, we can fine-tune a pre-trained image classification model on our
data, achieving good performance even with relatively small image
datasets, as in our case.
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With TL, we can fine-tune a pre-trained image classification model on
our data, performing well even with relatively small image datasets
(our case).

So, starting from the raw images, we will resize them (96×96) Pixels
are fed to our Transfer Learning block. Let’s create an Impulse.

At this point, we can also define our target device to monitor
our “budget” (memory and latency). The XIAO ESP32S3 is
not officially supported by Edge Impulse, so let’s consider
the Espressif ESP-EYE, which is similar but slower.

Save the Impulse, as shown above, and go to the Image section.

Pre-processing (Feature Generation)

Besides resizing the images, we can convert them to grayscale or retain
their original RGB color depth. Let’s select [RGB] in the Image section.
Doing that, each data sample will have a dimension of 27,648 features
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(96x96x3). Pressing [Save Parameters] will open a new tab, Generate
Features. Press the button [Generate Features]to generate the fea-
tures.

Model Design, Training, and Test

In 2007, Google introduced MobileNetV1. In 2018, MobileNetV2: In-
verted Residuals and Linear Bottlenecks, was launched, and, in 2019,
the V3. The Mobilinet is a family of general-purpose computer vi-
sion neural networks explicitly designed for mobile devices to support
classification, detection, and other applications. MobileNets are small,
low-latency, low-power models parameterized to meet the resource
constraints of various use cases.

Although the base MobileNet architecture is already compact and has
low latency, a specific use case or application may often require the
model to be even smaller and faster. MobileNets introduce a straight-
forward parameter, α (alpha), called the width multiplier to construct
these smaller, less computationally expensive models. The role of the
width multiplier α is to thin a network uniformly at each layer.

Edge Impulse Studio has available MobileNet V1 (96x96 images) and
V2 (96x96 and 160x160 images), with several different α values (from
0.05 to 1.0). For example, you will get the highest accuracy with V2,
160x160 images, and α=1.0. Of course, there is a trade-off. The higher
the accuracy, the more memory (around 1.3M RAM and 2.6M ROM)
will be needed to run the model, implying more latency. The smaller
footprint will be obtained at another extreme with MobileNet V1 and
α=0.10 (around 53.2K RAM and 101K ROM).

We will use the MobileNet V2 0.35 as our base model (but
a model with a greater alpha can be used here). The final
layer of our model, preceding the output layer, will have 16
neurons with a 10% dropout rate for preventing overfitting.

Another necessary technique to use with deep learning is data aug-
mentation. Data augmentation is a method that can help improve the
accuracy of machine learning models by creating additional artificial
data. A data augmentation system makes small, random changes to
your training data during the training process (such as flipping, crop-
ping, or rotating the images).

Under the hood, here you can see how Edge Impulse implements a data
Augmentation policy on your data:

https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
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# Implements the data augmentation policy
def augment_image(image, label):

# Flips the image randomly
image = tf.image.random_flip_left_right(image)

# Increase the image size, then randomly crop it down to
# the original dimensions
resize_factor = random.uniform(1, 1.2)
new_height = math.floor(resize_factor * INPUT_SHAPE[0])
new_width = math.floor(resize_factor * INPUT_SHAPE[1])
image = tf.image.resize_with_crop_or_pad(image, new_height,

new_width)
image = tf.image.random_crop(image, size=INPUT_SHAPE)

# Vary the brightness of the image
image = tf.image.random_brightness(image, max_delta=0.2)

return image, label

Now, let’s us define the hyperparameters:

• Epochs: 20,
• Bach Size: 32
• Learning Rate: 0.0005
• Validation size: 20%

And, so, we have as a training result:

The model profile predicts 233 KB of RAM and 546 KB of Flash, indi-
cating no problem with the Xiao ESP32S3, which has 8 MB of PSRAM.
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Additionally, the Studio indicates a latency of around 1160 ms, which
is very high. However, this is to be expected, given that we are using
the ESP-EYE, whose CPU is an Extensa LX6, and the ESP32S3 uses a
newer and more powerful Xtensa LX7.

With the test data, we also achieved 100% accuracy, even
with a quantized INT8 model. This result is not typical in
real projects, but our project here is relatively simple, with
two objects that are very distinctive from each other.

Model Deployment

We can deploy the trained model:

• As .TFLITE to be used on the SenseCraft AI
• As an Arduino Library in the Edge Impulse Studio.

Let’s start with the SenseCraft, which is more straightforward and more
intuitive.

Model Deployment on the SenseCraft AI

On the Dashboard, it is possible to download the trained model in
several different formats. Let’s download TensorFlow Lite (int8
quantized), which has a size of 623KB.

OnSenseCraftAI Studio, go to the Workspace tab, select XIAO ESP32S3,
the corresponding Port, and connect the device.

You should see the last model that was uploaded to the device. Select
the green button [Upload Model]. A pop-up window will prompt you
to enter the model name, the model file, and the class names (objects).
We should use labels in alphabetical order: 0: background, 1: box,
and 2: wheel, and then press [Send].
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After a few seconds, the model will be uploaded (“flashed”) to our
device, and the camera image will appear in real-time on the Preview
Sector. The Classification result will be displayed under the image
preview. It is also possible to select the Confidence Threshold of your
inference using the cursor on Settings.

On the Device Logger, we can view the Serial Monitor, where we can
observe the latency, which is approximately 81 ms for pre-processing
and 205 ms for inference, corresponding to a frame rate of 3.4 frames
per second (FPS), what is double of we got, training the model on
SenseCraft, because we are working with smaller images (96x96 versus
224x224).

The total latency is around 4 times faster than the estimation
made in Edge Impulse Studio on an Xtensa LX6 CPU; now
we are performing the inference on an Xtensa LX7 CPU.
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Post-Processing

It is possible to obtain the output of a model inference, including La-
tency, Class ID, and Confidence, as shown on the Device Logger in
SenseCraft AI. This allows us to utilize the XIAO ESP32S3 Sense as
an AI sensor. In other words, we can retrieve the model data using
different communication protocols such as MQTT, UART, I2C, or SPI,
depending on our project requirements.

The idea is similar to what we have done on the Seeed Grove
Vision AI V2 Image Classification Post-Processing Lab.

Below is an example of a connection using the I2C bus.

Please refer to the Seeed Studio Wiki for more information.

Model Deployment as an Arduino Library at EI Studio

On the Deploy section at Edge Impulse Studio, Select Arduino library,
TensorFlow Lite, Quantized(int8), and press [Build]. The trained
model will be downloaded as a .zip Arduino library:

https://www.mlsysbook.ai/contents/labs/seeed/grove_vision_ai_v2/image_classification/image_classification#sec-image-classification-postprocessing-9610
https://www.mlsysbook.ai/contents/labs/seeed/grove_vision_ai_v2/image_classification/image_classification#sec-image-classification-postprocessing-9610
https://wiki.seeedstudio.com/sensecraft-ai/tutorials/sensecraft-ai-output-libraries-xiao/
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Open your Arduino IDE, and under Sketch, go to Include Library and
add .ZIP Library. Next, select the file downloaded from Edge Impulse
Studio and press [Open].
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Go to the Arduino IDE Examples and look for the project by its name (in
this case: “Box_versus_Whell_…Interfering”. Open esp32 -> esp32_-
camera. The sketch esp32_camera.ino will be downloaded to the
IDE.

This sketch was developed for the standard ESP32 and will not work
with the XIAO ESP32S3 Sense. It should be modified. Let’s down-
load the modified one from the project GitHub: Image_class_XIAOML-
Kit.ino.

XIAO ESP32S3 Image Classification Code Explained

The code captures images from the onboard camera, processes them,
and classifies them (in this case, “Box”, “Wheel”, or “Background”)
using the trained model on EI Studio. It runs continuously, performing
real-time inference on the edge device.

In short,:

Camera → JPEG Image → RGB888 Conversion → Resize to 96x96 →
Neural Network → Classification Results → Serial Output

Key Components.

1. Library Includes and Dependencies

#include <Box_versus_Wheel_-_XIAO_ESP32S3_inferencing.h>
#include "edge-impulse-sdk/dsp/image/image.hpp"
#include "esp_camera.h"

• Edge Impulse Inference Library: Contains our trained model
and inference engine

• Image Processing: Provides functions for image manipulation
• ESP Camera: Hardware interface for the camera module

2. Camera Pin Configurations

The XIAO ESP32S3 Sense can work with different camera sensors
(OV2640 or OV3660), which may have different pin configurations. The
code defines three possible configurations:

// Configuration 1: Most common OV2640 configuration
#define CONFIG_1_XCLK_GPIO_NUM 10
#define CONFIG_1_SIOD_GPIO_NUM 40
#define CONFIG_1_SIOC_GPIO_NUM 39
// ... more pins

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/blob/main/XIAOML_Kit_code/image_class_XIAOML-Kit/image_class_XIAOML-Kit.ino
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/blob/main/XIAOML_Kit_code/image_class_XIAOML-Kit/image_class_XIAOML-Kit.ino
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This flexibility allows the code to automatically try different pin map-
pings if the first one doesn’t work, making it more robust across different
hardware revisions.

3. Memory Management Settings

#define EI_CAMERA_RAW_FRAME_BUFFER_COLS 320
#define EI_CAMERA_RAW_FRAME_BUFFER_ROWS 240
#define EI_CLASSIFIER_ALLOCATION_HEAP 1

• Frame Buffer Size: Defines the raw image size (320x240 pixels)
• Heap Allocation: Uses dynamic memory allocation for flexibility
• PSRAM Support: The ESP32S3 has 8MB of PSRAM for storing

large data like images

setup() - Initialization.

void setup() {
Serial.begin(115200);
while (!Serial);

if (ei_camera_init() == false) {
ei_printf("Failed to initialize Camera!\r\n");

} else {
ei_printf("Camera initialized\r\n");

}

ei_sleep(2000); // Wait 2 seconds before starting
}

This function:

1. Initializes serial communication for debugging output
2. Initializes the camera with automatic configuration detection
3. Waits 2 seconds before starting continuous inference

loop() - Main Processing Loop. The loop performs these steps contin-
uously:

Step 1: Memory Allocation

snapshot_buf = (uint8_t*)ps_malloc(EI_CAMERA_RAW_FRAME_BUFFER_COLS *
EI_CAMERA_RAW_FRAME_BUFFER_ROWS *
EI_CAMERA_FRAME_BYTE_SIZE);
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Allocates memory for the image buffer, preferring PSRAM (faster exter-
nal RAM) but falling back to regular heap if needed.

Step 2: Image Capture

if (ei_camera_capture((size_t)EI_CLASSIFIER_INPUT_WIDTH,
(size_t)EI_CLASSIFIER_INPUT_HEIGHT,
snapshot_buf) == false) {

ei_printf("Failed to capture image\r\n");
free(snapshot_buf);
return;

}

Captures an image from the camera and stores it in the buffer.

Step 3: Run Inference

ei_impulse_result_t result = { 0 };
EI_IMPULSE_ERROR err = run_classifier(&signal, &result, false);

Runs the machine learning model on the captured image.

Step 4: Output Results

for (uint16_t i = 0; i < EI_CLASSIFIER_LABEL_COUNT; i++) {
ei_printf(" %s: %.5f\r\n",

ei_classifier_inferencing_categories[i],
result.classification[i].value);

}

Prints the classification results showing confidence scores for each
category.

ei_camera_init() - Smart Camera Initialization. This function im-
plements an intelligent initialization sequence:

bool ei_camera_init(void) {
// Try Configuration 1 (OV2640 common)
update_camera_config(1);
esp_err_t err = esp_camera_init(&camera_config);
if (err == ESP_OK) goto camera_init_success;

// Try Configuration 2 (OV3660)
esp_camera_deinit();
update_camera_config(2);
err = esp_camera_init(&camera_config);
if (err == ESP_OK) goto camera_init_success;
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// Continue trying other configurations...
}

The function:

1. Tries multiple pin configurations
2. Tests different clock frequencies (10MHz or 16MHz)
3. Attempts PSRAM first, then falls back to DRAM
4. Applies sensor-specific settings based on detected hardware

ei_camera_capture() - Image Processing Pipeline.

bool ei_camera_capture(uint32_t img_width, uint32_t img_height, uint8_t *out_buf) {
// 1. Get frame from camera
camera_fb_t *fb = esp_camera_fb_get();

// 2. Convert JPEG to RGB888 format
bool converted = fmt2rgb888(fb->buf, fb->len, PIXFORMAT_JPEG, snapshot_buf);

// 3. Return frame buffer to camera driver
esp_camera_fb_return(fb);

// 4. Resize if needed
if (do_resize) {

ei::image::processing::crop_and_interpolate_rgb888(...);
}

}

This function:

1. Captures a JPEG image from the camera
2. Converts it to RGB888 format (required by the ML model)
3. Resizes the image to match the model’s input size (96x96 pixels)

Inference

• Upload the code to the XIAO ESP32S3 Sense.

฀ Attention

• The Xiao ESP32S3 MUST have the PSRAM enabled.
You can check it on the Arduino IDE upper menu:
Tools–> PSRAM:OPI PSRAM
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• The Arduino Boards package (esp32 by Espressif
Systems) should be version 2.017. Do not update it

• Open the Serial Monitor
• Point the camera at the objects, and check the result on the Serial

Monitor.

Post-Processing

In edge AI applications, the inference result is only as valuable as our
ability to act upon it. While serial output provides detailed informa-
tion for debugging and development, real-world deployments require
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immediate, human-readable feedback that doesn’t depend on external
monitors or connections.

The XIAOML Kit tiny 0.42” OLED display (72×40 pixels) serves as a
crucial post-processing component that transforms raw ML inference
results into immediate, human-readable feedback—displaying detected
class names and confidence levels directly on the device, eliminating
the need for external monitors and enabling truly standalone edge AI
deployment in industrial, agricultural, or retail environments where
instant visual confirmation of AI predictions is essential.

So, let’s modify the sketch to automatically adapt to the model trained
on Edge Impulse by reading the class names and count directly from
the model. The display will show abbreviated class names (3 letters)
with larger fonts for better visibility on the tiny 72x40 pixel display.
Download the code from the GitHub: XIAOML-Kit-Img_Class_OLED_-
Gen.

Running the code, we can see the result:

Summary

The XIAO ESP32S3 Sense is a remarkably capable and flexible platform
for image classification applications. Through this lab, we’ve explored
two distinct development approaches that cater to different skill levels
and project requirements.

• The SenseCraft AI Studio provides an accessible entry point with
its no-code interface, enabling rapid prototyping and deployment
of pre-trained models like person detection. With real-time infer-
ence and integrated post-processing capabilities, it demonstrates
how AI can be deployed without extensive programming or ML
knowledge.

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/XIAOML_Kit_code/XIAOML-Kit-Img_Class_OLED_Gen
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/XIAOML_Kit_code/XIAOML-Kit-Img_Class_OLED_Gen
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• For more advanced applications, Edge Impulse Studio offers
comprehensive machine learning pipeline tools, including custom
dataset management, transfer learning with several pre-trained
models, such as MobileNet, and model optimization.

Key insights from this lab include the importance of image resolution
trade-offs, the effectiveness of transfer learning for small datasets, and
the practical considerations of edge AI deployment, such as power
consumption and memory constraints.

The Lab demonstrates fundamental TinyML principles that extend be-
yond this specific hardware: resource-constrained inference, real-time
processing requirements, and the complete pipeline from data collec-
tion through model deployment to practical applications. With built-in
post-processing capabilities including GPIO control and communica-
tion protocols, the XIAO serves as more than just an inference engine—it
becomes a complete AI sensor platform.

This foundation in image classification prepares you for more complex
computer vision tasks while showcasing how modern edge AI makes so-
phisticated computer vision accessible, cost-effective, and deployable in
real-world embedded applications ranging from industrial automation
to smart home systems.

Resources

• Getting Started with the XIAO ESP32S3
• SenseCraft AI Studio Home
• SenseCraft Vision Workspace
• Dataset example
• Edge Impulse Project
• XIAO as an AI Sensor
• Seeed Arduino SSCMA Library
• XIAOML Kit Code

https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/
https://sensecraft.seeed.cc/ai/home
https://sensecraft.seeed.cc/ai/device/local/32
https://www.kaggle.com/kritikseth/fruit-and-vegetable-image-recognition
https://studio.edgeimpulse.com/public/757065/live
https://wiki.seeedstudio.com/sensecraft-ai/tutorials/sensecraft-ai-output-libraries-xiao/
https://github.com/Seeed-Studio/Seeed_Arduino_SSCMA
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/XIAOML_Kit_code
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Figure 1.15: DALL·E prompt - Cartoon styled after 1950s animations, showing a detailed board with sensors,
particularly a camera, on a table with patterned cloth. Behind the board, a computer with a large back showcases
the Arduino IDE. The IDE’s content hints at LED pin assignments and machine learning inference for detecting
spoken commands. The Serial Monitor, in a distinct window, reveals outputs for the commands ‘yes’ and ‘no’.

Overview

In the last section regarding Computer Vision (CV) and the XIAO
ESP32S3, Image Classification, we learned how to set up and classify
images with this remarkable development board. Continuing our CV
journey, we will explore Object Detection on microcontrollers.

245
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Object Detection versus Image Classification

The main task with Image Classification models is to identify the most
probable object category present on an image, for example, to classify
between a cat or a dog, dominant “objects” in an image:

But what happens if there is no dominant category in the image?
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An image classification model identifies the above image utterly wrong
as an “ashcan,” possibly due to the color tonalities.

The model used in the previous images is MobileNet, which
is trained with a large dataset, ImageNet, running on a Rasp-
berry Pi.

To solve this issue, we need another type of model, where not only
multiple categories (or labels) can be found but also where the objects
are located on a given image.

As we can imagine, such models are much more complicated and bigger,
for example, the MobileNetV2 SSD FPN-Lite 320x320, trained with
the COCO dataset. This pre-trained object detection model is designed
to locate up to 10 objects within an image, outputting a bounding box
for each object detected. The below image is the result of such a model
running on a Raspberry Pi:

Those models used for object detection (such as the MobileNet SSD
or YOLO) usually have several MB in size, which is OK for use with
Raspberry Pi but unsuitable for use with embedded devices, where
the RAM usually has, at most, a few MB as in the case of the XIAO
ESP32S3.

An Innovative Solution for Object Detection: FOMO

Edge Impulse launched in 2022, FOMO (Faster Objects, More Objects),
a novel solution to perform object detection on embedded devices, such

https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
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as the Nicla Vision and Portenta (Cortex M7), on Cortex M4F CPUs
(Arduino Nano33 and OpenMV M4 series) as well the Espressif ESP32
devices (ESP-CAM, ESP-EYE and XIAO ESP32S3 Sense).

In this Hands-On project, we will explore Object Detection using
FOMO.

To understand more about FOMO, you can go into the offi-
cial FOMO announcement by Edge Impulse, where Louis
Moreau and Mat Kelcey explain in detail how it works.

The Object Detection Project Goal

All Machine Learning projects need to start with a detailed goal. Let’s
assume we are in an industrial or rural facility and must sort and count
oranges (fruits) and particular frogs (bugs).

https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects
https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects
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In other words, we should perform a multi-label classification, where
each image can have three classes:

• Background (No objects)
• Fruit
• Bug

Here are some not labeled image samples that we should use to detect
the objects (fruits and bugs):

We are interested in which object is in the image, its location (centroid),
and how many we can find on it. The object’s size is not detected with
FOMO, as with MobileNet SSD or YOLO, where the Bounding Box is
one of the model outputs.

We will develop the project using the XIAO ESP32S3 for image capture
and model inference. The ML project will be developed using the Edge
Impulse Studio. But before starting the object detection project in the
Studio, let’s create a raw dataset (not labeled) with images that contain
the objects to be detected.

Data Collection

You can capture images using the XIAO, your phone, or other devices.
Here, we will use the XIAO with code from the Arduino IDE ESP32
library.

Collecting Dataset with the XIAO ESP32S3

Open the Arduino IDE and select the XIAO_ESP32S3 board (and the
port where it is connected). On File > Examples > ESP32 > Camera,
select CameraWebServer.

On the BOARDS MANAGER panel, confirm that you have installed the
latest “stable” package.
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฀ Attention

Alpha versions (for example, 3.x-alpha) do not work cor-
rectly with the XIAO and Edge Impulse. Use the last stable
version (for example, 2.0.11) instead.

You also should comment on all cameras’ models, except the XIAO
model pins:

#define CAMERA_MODEL_XIAO_ESP32S3 // Has PSRAM

And on Tools, enable the PSRAM. Enter your wifi credentials and
upload the code to the device:

If the code is executed correctly, you should see the address on the
Serial Monitor:

Copy the address on your browser and wait for the page to be uploaded.
Select the camera resolution (for example, QVGA) and select [START
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STREAM]. Wait for a few seconds/minutes, depending on your connec-
tion. You can save an image on your computer download area using
the [Save] button.

Edge impulse suggests that the objects should be similar in size and not
overlapping for better performance. This is OK in an industrial facility,
where the camera should be fixed, keeping the same distance from the
objects to be detected. Despite that, we will also try using mixed sizes
and positions to see the result.

We do not need to create separate folders for our images
because each contains multiple labels.

We suggest using around 50 images to mix the objects and vary the
number of each appearing on the scene. Try to capture different angles,
backgrounds, and light conditions.

The stored images use a QVGA frame size of 320×240 and
RGB565 (color pixel format).

After capturing your dataset, [Stop Stream] and move your images to
a folder.

Edge Impulse Studio

Setup the project

Go to Edge Impulse Studio, enter your credentials at Login (or create
an account), and start a new project.

https://www.edgeimpulse.com/
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Here, you can clone the project developed for this hands-on:
XIAO-ESP32S3-Sense-Object_Detection

On your Project Dashboard, go down and on Project info and select
Bounding boxes (object detection) and Espressif ESP-EYE (most simi-
lar to our board) as your Target Device:

https://studio.edgeimpulse.com/public/315759/latest
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Uploading the unlabeled data

On Studio, go to the Data acquisition tab, and on the UPLOAD DATA
section, upload files captured as a folder from your computer.

You can leave for the Studio to split your data automatically
between Train and Test or do it manually. We will upload
all of them as training.

All the not-labeled images (47) were uploaded but must be labeled
appropriately before being used as a project dataset. The Studio has a
tool for that purpose, which you can find in the link Labeling queue
(47).
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There are two ways you can use to perform AI-assisted labeling on the
Edge Impulse Studio (free version):

• Using yolov5
• Tracking objects between frames

Edge Impulse launched an auto-labeling feature for Enter-
prise customers, easing labeling tasks in object detection
projects.

Ordinary objects can quickly be identified and labeled using an existing
library of pre-trained object detection models from YOLOv5 (trained
with the COCO dataset). But since, in our case, the objects are not part
of COCO datasets, we should select the option of tracking objects. With
this option, once you draw bounding boxes and label the images in one
frame, the objects will be tracked automatically from frame to frame,
partially labeling the new ones (not all are correctly labeled).

You can use the EI uploader to import your data if you
already have a labeled dataset containing bounding boxes.

Labeling the Dataset

Starting with the first image of your unlabeled data, use your mouse to
drag a box around an object to add a label. Then click Save labels to
advance to the next item.

Continue with this process until the queue is empty. At the end, all
images should have the objects labeled as those samples below:

https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/auto-labeler
https://docs.edgeimpulse.com/docs/tools/edge-impulse-cli/cli-uploader#bounding-boxes
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Next, review the labeled samples on the Data acquisition tab. If one
of the labels is wrong, you can edit it using the three dots menu after the
sample name:

You will be guided to replace the wrong label and correct the dataset.
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Balancing the dataset and split Train/Test

After labeling all data, it was realized that the class fruit had many
more samples than the bug. So, 11 new and additional bug images
were collected (ending with 58 images). After labeling them, it is time
to select some images and move them to the test dataset. You can do it
using the three-dot menu after the image name. I selected six images,
representing 13% of the total dataset.
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The Impulse Design

In this phase, you should define how to:

• Pre-processing consists of resizing the individual images from320×240 to 96×96 and squashing them (squared form, without
cropping). Afterward, the images are converted from RGB to
Grayscale.

• Design a Model, in this case, “Object Detection.”
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Preprocessing all dataset

In this section, select Color depth as Grayscale, suitable for use with
FOMO models and Save parameters.

The Studio moves automatically to the next section, Generate features,
where all samples will be pre-processed, resulting in a dataset with
individual 96×96×1 images or 9,216 features.
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The feature explorer shows that all samples evidence a good separation
after the feature generation.

Some samples seem to be in the wrong space, but clicking
on them confirms the correct labeling.

Model Design, Training, and Test

We will use FOMO, an object detection model based on MobileNetV2
(alpha 0.35) designed to coarsely segment an image into a grid of back-
ground vs objects of interest (here, boxes and wheels).

FOMO is an innovative machine learning model for object detection,
which can use up to 30 times less energy and memory than traditional
models like Mobilenet SSD and YOLOv5. FOMO can operate on mi-
crocontrollers with less than 200 KB of RAM. The main reason this is
possible is that while other models calculate the object’s size by drawing
a square around it (bounding box), FOMO ignores the size of the image,
providing only the information about where the object is located in the
image through its centroid coordinates.

How FOMO works?

FOMO takes the image in grayscale and divides it into blocks of pixels
using a factor of 8. For the input of 96×96, the grid would be 12×12
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to calculate the probability that there is a box or a wheel in each of
them and, subsequently, determine the regions that have the highest
probability of containing the object (If a pixel block has no objects, it
will be classified as background). From the overlap of the final region,
the FOMO provides the coordinates (related to the image dimensions)
of the centroid of this region.

For training, we should select a pre-trained model. Let’s use the FOMO
(Faster Objects, More Objects) MobileNetV2 0.35. This model uses
around 250 KB of RAM and 80 KB of ROM (Flash), which suits well
with our board.
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Regarding the training hyper-parameters, the model will be trained
with:

• Epochs: 60
• Batch size: 32
• Learning Rate: 0.001.

For validation during training, 20% of the dataset (validation_dataset)
will be spared. For the remaining 80% (train_dataset), we will apply Data
Augmentation, which will randomly flip, change the size and bright-
ness of the image, and crop them, artificially increasing the number of
samples on the dataset for training.

As a result, the model ends with an overall F1 score of 85%, similar to
the result when using the test data (83%).

Note that FOMO automatically added a 3rd label back-
ground to the two previously defined (box and wheel).
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In object detection tasks, accuracy is generally not the pri-
mary evaluation metric. Object detection involves classi-
fying objects and providing bounding boxes around them,
making it a more complex problem than simple classifica-
tion. The issue is that we do not have the bounding box, only
the centroids. In short, using accuracy as a metric could be
misleading and may not provide a complete understanding
of how well the model is performing. Because of that, we
will use the F1 score.

Test model with “Live Classification”

Once our model is trained, we can test it using the Live Classification
tool. On the correspondent section, click on Connect a development
board icon (a small MCU) and scan the QR code with your phone.

https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/
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Once connected, you can use the smartphone to capture actual images
to be tested by the trained model on Edge Impulse Studio.

One thing to be noted is that the model can produce false positives
and negatives. This can be minimized by defining a proper Confidence
Threshold (use the Three dots menu for the setup). Try with 0.8 or
more.

Deploying the Model (Arduino IDE)

Select the Arduino Library and Quantized (int8) model, enable the EON
Compiler on the Deploy Tab, and press [Build].
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Open your Arduino IDE, and under Sketch, go to Include Library and
add.ZIP Library. Select the file you download from Edge Impulse
Studio, and that’s it!

Under the Examples tab on Arduino IDE, you should find a sketch code
(esp32 > esp32_camera) under your project name.
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You should change lines 32 to 75, which define the camera model and
pins, using the data related to our model. Copy and paste the below
lines, replacing the lines 32-75:

#define PWDN_GPIO_NUM -1
#define RESET_GPIO_NUM -1
#define XCLK_GPIO_NUM 10
#define SIOD_GPIO_NUM 40
#define SIOC_GPIO_NUM 39
#define Y9_GPIO_NUM 48
#define Y8_GPIO_NUM 11
#define Y7_GPIO_NUM 12
#define Y6_GPIO_NUM 14
#define Y5_GPIO_NUM 16
#define Y4_GPIO_NUM 18
#define Y3_GPIO_NUM 17
#define Y2_GPIO_NUM 15
#define VSYNC_GPIO_NUM 38
#define HREF_GPIO_NUM 47
#define PCLK_GPIO_NUM 13

Here you can see the resulting code:
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Upload the code to your XIAO ESP32S3 Sense, and you should be OK
to start detecting fruits and bugs. You can check the result on Serial
Monitor.

Background

Fruits
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Bugs

Note that the model latency is 143 ms, and the frame rate per second
is around 7 fps (similar to what we got with the Image Classification
project). This happens because FOMO is cleverly built over a CNN
model, not with an object detection model like the SSD MobileNet. For
example, when running a MobileNetV2 SSD FPN-Lite 320×320 model
on a Raspberry Pi 4, the latency is around five times higher (around 1.5
fps).

Deploying the Model
(SenseCraft-Web-Toolkit)

As discussed in the Image Classification chapter, verifying inference
with Image models on Arduino IDE is very challenging because we can
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not see what the camera focuses on. Again, let’s use the SenseCraft-
Web Toolkit.

Follow the following steps to start the SenseCraft-Web-Toolkit:

1. Open the SenseCraft-Web-Toolkit website.
2. Connect the XIAO to your computer:

• Having the XIAO connected, select it as below:

• Select the device/Port and press [Connect]:

You can try several Computer Vision models previously
uploaded by Seeed Studio. Try them and have fun!

In our case, we will use the blue button at the bottom of the page:
[Upload Custom AI Model].

https://seeed-studio.github.io/SenseCraft-Web-Toolkit/#/setup/process
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But first, we must download from Edge Impulse Studio our quantized
.tflite model.

3. Go to your project at Edge Impulse Studio, or clone this one:

• XIAO-ESP32S3-CAM-Fruits-vs-Veggies-v1-ESP-NN

4. On Dashboard, download the model (“block output”): Object
Detection model - TensorFlow Lite (int8 quantized)

5. On SenseCraft-Web-Toolkit, use the blue button at the bottom
of the page: [Upload Custom AI Model]. A window will pop
up. Enter the Model file that you downloaded to your computer
from Edge Impulse Studio, choose a Model Name, and enter with
labels (ID: Object):

https://studio.edgeimpulse.com/public/228516/live


Deploying the Model (SenseCraft-Web-Toolkit) 270

Note that you should use the labels trained on EI Studio and
enter them in alphabetic order (in our case, background,
bug, fruit).

After a few seconds (or minutes), the model will be uploaded to your
device, and the camera image will appear in real-time on the Preview
Sector:

The detected objects will be marked (the centroid). You can select the
Confidence of your inference cursor Confidence and IoU, which is used
to assess the accuracy of predicted bounding boxes compared to truth
bounding boxes.

Clicking on the top button (Device Log), you can open a Serial Monitor
to follow the inference, as we did with the Arduino IDE.

On Device Log, you will get information as:

• Preprocess time (image capture and Crop): 3 ms,
• Inference time (model latency): 115 ms,
• Postprocess time (display of the image and marking objects): 1

ms.
• Output tensor (boxes), for example, one of the boxes: [[30,150,

20, 20,97, 2]]; where 30,150, 20, 20 are the coordinates of the box
(around the centroid); 97 is the inference result, and 2 is the class
(in this case 2: fruit).
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Note that in the above example, we got 5 boxes because
none of the fruits got 3 centroids. One solution will be post-
processing, where we can aggregate close centroids in one.

Here are other screenshots:

Summary

FOMO is a significant leap in the image processing space, as Louis
Moreau and Mat Kelcey put it during its launch in 2022:

FOMO is a ground-breaking algorithm that brings real-time
object detection, tracking, and counting to microcontrollers
for the first time.

Multiple possibilities exist for exploring object detection (and, more
precisely, counting them) on embedded devices.

Resources

• Edge Impulse Project

https://studio.edgeimpulse.com/public/315759/latest
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Figure 1.16: DALL·E prompt - 1950s style cartoon illustration based on a real image by Marcelo Rovai
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Overview

Keyword Spotting (KWS) is integral to many voice recognition systems,
enabling devices to respond to specific words or phrases. While this
technology underpins popular devices like Google Assistant or Amazon
Alexa, it’s equally applicable and achievable on smaller, low-power
devices. This lab will guide you through implementing a KWS system
using TinyML on the XIAO ESP32S3 microcontroller board.

The XIAO ESP32S3, equipped with Espressif’s ESP32-S3 chip, is a com-
pact and potent microcontroller offering a dual-core Xtensa LX7 pro-
cessor, integrated Wi-Fi, and Bluetooth. Its balance of computational
power, energy efficiency, and versatile connectivity makes it a fantastic
platform for TinyML applications. Also, with its expansion board, we
will have access to the “sense” part of the device, which has a camera,
an SD card slot, and a digital microphone. The integrated microphone
and the SD card will be essential in this project.

We will use the Edge Impulse Studio, a powerful, user-friendly platform
that simplifies creating and deploying machine learning models onto
edge devices. We’ll train a KWS model step-by-step, optimizing and
deploying it onto the XIAO ESP32S3 Sense.

Our model will be designed to recognize keywords that can trigger
device wake-up or specific actions (in the case of “YES”), bringing your
projects to life with voice-activated commands.

Leveraging our experience with TensorFlow Lite for Microcontrollers
(the engine “under the hood” on the EI Studio), we’ll create a KWS
system capable of real-time machine learning on the device.

As we progress through the lab, we’ll break down each process stage –
from data collection and preparation to model training and deployment
– to provide a comprehensive understanding of implementing a KWS
system on a microcontroller.

LIGHTBULB Learning Objectives

• Understand Voice Assistant Architecture including cas-
caded detection systems and the role of edge-based key-
word spotting as the first stage of voice processing pipelines

• Master Audio Data Collection Techniques using both of-
fline methods (XIAO ESP32S3 microphone with SD card

https://www.edgeimpulse.com/


Keyword Spotting (KWS) 275

storage) and online methods (smartphone integration with
Edge Impulse Studio)

• Implement Digital Signal Processing for Audio including
I2S protocol fundamentals, audio sampling at 16kHz/16-
bit, and conversion between time-domain audio signals and
frequency-domain features using MFCC

• Train Convolutional Neural Networks for Audio Classifi-
cation using transfer learning techniques, data augmenta-
tion strategies, and model optimization for four-class classi-
fication (YES, NO, NOISE, UNKNOWN)

• Deploy Optimized Models on Microcontrollers through
quantization (INT8), memory management with PSRAM,
and real-time inference optimization for embedded systems

• Develop Complete Post-Processing Pipelines including
confidence thresholding, GPIO control for external devices,
OLED display integration, and creating standalone AI sen-
sor systems

• Compare Development Workflows between no-code plat-
forms (Edge Impulse Studio) and traditional embedded
programming (Arduino IDE) for TinyML applications

The KWS Project

How does a voice assistant work?

Keyword Spotting (KWS) is critical to many voice assistants, enabling
devices to respond to specific words or phrases. To start, it is essential
to realize that Voice Assistants on the market, like Google Home or
Amazon Echo-Dot, only react to humans when they are “waked up” by
particular keywords such as “ Hey Google” on the first one and “Alexa”
on the second.
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In other words, recognizing voice commands is based on a multi-stage
model or Cascade Detection.

Stage 1: A smaller microprocessor inside the Echo Dot or Google Home
continuously listens to the sound, waiting for the keyword to be spot-
ted. For such detection, a TinyML model at the edge is used (KWS
application).



Keyword Spotting (KWS) 277

Stage 2: Only when triggered by the KWS application on Stage 1 is the
data sent to the cloud and processed on a larger model.

The video below shows an example where I emulate a Google Assistant
on a Raspberry Pi (Stage 2), having an Arduino Nano 33 BLE as the
tinyML device (Stage 1).

If you want to go deeper on the full project, please see my tu-
torial: Building an Intelligent Voice Assistant From Scratch.

In this lab, we will focus on Stage 1 (KWS or Keyword Spotting), where
we will use the XIAO ESP2S3 Sense, which has a digital microphone
for spotting the keyword.

The Inference Pipeline

The diagram below will give an idea of how the final KWS application
should work (during inference):

Our KWS application will recognize four classes of sound:

• YES (Keyword 1)
• NO (Keyword 2)
• NOISE (no keywords spoken, only background noise is present)
• UNKNOWN (a mix of different words than YES and NO)

Optionally for real-world projects, it is always advised to
include different words than keywords, such as “Noise” (or
Background) and “Unknown.”

https://www.hackster.io/mjrobot/building-an-intelligent-voice-assistant-from-scratch-2199c3
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The Machine Learning workflow

The main component of the KWS application is its model. So, we must
train such a model with our specific keywords, noise, and other words
(the “unknown”):

Dataset

The critical component of Machine Learning Workflow is the dataset.
Once we have decided on specific keywords (YES and NO), we can
take advantage of the dataset developed by Pete Warden, “Speech Com-
mands: A Dataset for Limited-Vocabulary Speech Recognition.” This
dataset has 35 keywords (with +1,000 samples each), such as yes, no,
stop, and go. In other words, we can get 1,500 samples of yes and no.

You can download a small portion of the dataset from Edge Studio
(Keyword spotting pre-built dataset), which includes samples from the
four classes we will use in this project: yes, no, noise, and background.
For this, follow the steps below:

• Download the keywords dataset.
• Unzip the file in a location of your choice.

Although we have a lot of data from Pete’s dataset, collecting some
words spoken by us is advised. When working with accelerometers,
creating a dataset with data captured by the same type of sensor was es-
sential. In the case of sound, the classification differs because it involves,
in reality, audio data.

The key difference between sound and audio is their form
of energy. Sound is mechanical wave energy (longitudinal
sound waves) that propagate through a medium causing

https://arxiv.org/pdf/1804.03209.pdf
https://arxiv.org/pdf/1804.03209.pdf
https://docs.edgeimpulse.com/docs/pre-built-datasets/keyword-spotting
https://cdn.edgeimpulse.com/datasets/keywords2.zip
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variations in pressure within the medium. Audio is made
of electrical energy (analog or digital signals) that represent
sound electrically.

The sound waves should be converted to audio data when we speak
a keyword. The conversion should be done by sampling the signal
generated by the microphone in 16 kHz with a 16-bit depth.

So, any device that can generate audio data with this basic specification
(16 kHz/16 bits) will work fine. As a device, we can use the proper
XIAO ESP32S3 Sense, a computer, or even your mobile phone.

Capturing online AudioData with Edge Impulse and a smartphone

In the lab Motion Classification and Anomaly Detection, we connect
our device directly to Edge Impulse Studio for data capturing (having
a sampling frequency of 50 Hz to 100 Hz). For such low frequency,
we could use the EI CLI function Data Forwarder, but according to Jan
Jongboom, Edge Impulse CTO, audio (16 kHz) goes too fast for the data
forwarder to be captured. So, once we have the digital data captured by
the microphone, we can turn it into a WAV file to be sent to the Studio
via Data Uploader (same as we will do with Pete’s dataset).

If we want to collect audio data directly on the Studio, we
can use any smartphone connected online with it. We will
not explore this option here, but you can easily follow EI
documentation.

Capturing (offline) Audio Data with the XIAO ESP32S3
Sense

The built-in microphone is the MSM261D3526H1CPM, a PDM digital
output MEMS microphone with Multi-modes. Internally, it is connected
to the ESP32S3 via an I2S bus using pins IO41 (Clock) and IO41 (Data).

https://docs.edgeimpulse.com/docs/development-platforms/using-your-mobile-phone
https://files.seeedstudio.com/wiki/XIAO-BLE/mic-MSM261D3526H1CPM-ENG.pdf
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What is I2S?

I2S, or Inter-IC Sound, is a standard protocol for transmitting digital
audio from one device to another. It was initially developed by Philips
Semiconductor (now NXP Semiconductors). It is commonly used in
audio devices such as digital signal processors, digital audio processors,
and, more recently, microcontrollers with digital audio capabilities (our
case here).

The I2S protocol consists of at least three lines:

1. Bit (or Serial) clock line (BCLK or CLK): This line toggles to indicate
the start of a new bit of data (pin IO42).

2. Word select line (WS): This line toggles to indicate the start of a new
word (left channel or right channel). The Word select clock (WS) fre-
quency defines the sample rate. In our case, L/R on the microphone is
set to ground, meaning that we will use only the left channel (mono).

3. Data line (SD): This line carries the audio data (pin IO41)

In an I2S data stream, the data is sent as a sequence of frames, each
containing a left-channel word and a right-channel word. This makes
I2S particularly suited for transmitting stereo audio data. However, it
can also be used for mono or multichannel audio with additional data
lines.

Let’s start understanding how to capture raw data using the microphone.
Go to the GitHub project and download the sketch: XIAOEsp2s3_Mic_-
Test:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Mic_Test/XiaoEsp32s3_Mic_Test
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Mic_Test/XiaoEsp32s3_Mic_Test
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฀ Attention

• The Xiao ESP32S3 MUST have the PSRAM enabled.
You can check it on the Arduino IDE upper menu:
Tools–> PSRAM:OPI PSRAM

• The Arduino Library (esp32 by Espressif Systems
should be version 2.017. Please do not update it.

/*
XIAO ESP32S3 Simple Mic Test

*/

#include <I2S.h>

void setup() {
Serial.begin(115200);
while (!Serial) {
}

// start I2S at 16 kHz with 16-bits per sample
I2S.setAllPins(-1, 42, 41, -1, -1);
if (!I2S.begin(PDM_MONO_MODE, 16000, 16)) {

Serial.println("Failed to initialize I2S!");
while (1); // do nothing

}
}

void loop() {
// read a sample
int sample = I2S.read();

if (sample && sample != -1 && sample != 1) {
Serial.println(sample);

}
}

This code is a simple microphone test for the XIAO ESP32S3 using the
I2S (Inter-IC Sound) interface. It sets up the I2S interface to capture
audio data at a sample rate of 16 kHz with 16 bits per sample and then
continuously reads samples from the microphone and prints them to
the serial monitor.

Let’s dig into the code’s main parts:
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• Include the I2S library: This library provides functions to config-
ure and use the I2S interface, which is a standard for connecting
digital audio devices.

• I2S.setAllPins(–1, 42, 41, –1, –1): This sets up the I2S pins. The
parameters are (–1, 42, 41, –1, –1), where the second parameter
(42) is the PIN for the I2S clock (CLK), and the third parameter
(41) is the PIN for the I2S data (DATA) line. The other parameters
are set to –1, meaning those pins are not used.

• I2S.begin(PDM_MONO_MODE, 16000, 16): This initializes the
I2S interface in Pulse Density Modulation (PDM) mono mode,
with a sample rate of 16 kHz and 16 bits per sample. If the ini-
tialization fails, an error message is printed, and the program
halts.

• int sample = I2S.read(): This reads an audio sample from the I2S
interface.

If the sample is valid, it is printed on the Serial Monitor and Plotter.

Below is a test “whispering” in two different tones.

Save Recorded Sound Samples

Let’s use the onboard SD Card reader to save .wav audio files; we must
habilitate the XIAO PSRAM first.

ESP32-S3 has only a few hundred kilobytes of internal RAM
on the MCU chip. It can be insufficient for some purposes
so that ESP32-S3 can use up to 16 MB of external PSRAM
(Pseudo-static RAM) connected in parallel with the SPI flash
chip. The external memory is incorporated in the memory

https://espressif-docs.readthedocs-hosted.com/projects/arduino-esp32/en/latest/api/i2s.html
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map and, with certain restrictions, is usable in the same way
as internal data RAM.

For a start, Insert the SD Card on the XIAO as shown in the photo below
(the SD Card should be formatted to FAT32).

Turn the PSRAM function of the ESP-32 chip on (Arduino IDE): Tools>PSRAM:
“OPI PSRAM”>OPI PSRAM
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• Download the sketch Wav_Record_dataset, which you can find
on the project’s GitHub.

This code records audio using the I2S interface of the Seeed XIAO
ESP32S3 Sense board, saves the recording as a.wav file on an SD card,
and allows for control of the recording process through commands sent
from the serial monitor. The name of the audio file is customizable (it
should be the class labels to be used with the training), and multiple
recordings can be made, each saved in a new file. The code also includes
functionality to increase the volume of the recordings.

Let’s break down the most essential parts of it:

#include <I2S.h>
#include "FS.h"
#include "SD.h"
#include "SPI.h"

Those are the necessary libraries for the program. I2S.h allows for audio
input, FS.h provides file system handling capabilities, SD.h enables
the program to interact with an SD card, and SPI.h handles the SPI
communication with the SD card.

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Wav_Record_dataset
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#define RECORD_TIME 10
#define SAMPLE_RATE 16000U
#define SAMPLE_BITS 16
#define WAV_HEADER_SIZE 44
#define VOLUME_GAIN 2

Here, various constants are defined for the program.

• RECORD_TIME specifies the length of the audio recording in
seconds.

• SAMPLE_RATE and SAMPLE_BITS define the audio quality of
the recording.

• WAV_HEADER_SIZE specifies the size of the .wav file header.
• VOLUME_GAIN is used to increase the volume of the recording.

int fileNumber = 1;
String baseFileName;
bool isRecording = false;

These variables keep track of the current file number (to create unique
file names), the base file name, and whether the system is currently
recording.

void setup() {
Serial.begin(115200);
while (!Serial);

I2S.setAllPins(-1, 42, 41, -1, -1);
if (!I2S.begin(PDM_MONO_MODE, SAMPLE_RATE, SAMPLE_BITS)) {

Serial.println("Failed to initialize I2S!");
while (1);

}

if(!SD.begin(21)){
Serial.println("Failed to mount SD Card!");
while (1);

}
Serial.printf("Enter with the label name\n");

}

The setup function initializes the serial communication, I2S interface for
audio input, and SD card interface. If the I2S did not initialize or the SD
card fails to mount, it will print an error message and halt execution.
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void loop() {
if (Serial.available() > 0) {
String command = Serial.readStringUntil('\n');
command.trim();
if (command == "rec") {
isRecording = true;

} else {
baseFileName = command;
fileNumber = 1; //reset file number each time a new

basefile name is set
Serial.printf("Send rec for starting recording label \n");

}
}
if (isRecording && baseFileName != "") {
String fileName = "/" + baseFileName + "."

+ String(fileNumber) + ".wav";
fileNumber++;
record_wav(fileName);
delay(1000); // delay to avoid recording multiple files

at once
isRecording = false;

}
}

In the main loop, the program waits for a command from the serial
monitor. If the command is rec, the program starts recording. Other-
wise, the command is assumed to be the base name for the .wav files. If
it’s currently recording and a base file name is set, it records the audio
and saves it as a.wav file. The file names are generated by appending
the file number to the base file name.

void record_wav(String fileName)
{
...

File file = SD.open(fileName.c_str(), FILE_WRITE);
...
rec_buffer = (uint8_t *)ps_malloc(record_size);
...

esp_i2s::i2s_read(esp_i2s::I2S_NUM_0,
rec_buffer,
record_size,
&sample_size,
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portMAX_DELAY);
...

}

This function records audio and saves it as a.wav file with the given
name. It starts by initializing the sample_size and record_size variables.
record_size is calculated based on the sample rate, size, and desired
recording time. Let’s dig into the essential sections;

File file = SD.open(fileName.c_str(), FILE_WRITE);
// Write the header to the WAV file
uint8_t wav_header[WAV_HEADER_SIZE];
generate_wav_header(wav_header, record_size, SAMPLE_RATE);
file.write(wav_header, WAV_HEADER_SIZE);

This section of the code opens the file on the SD card for writing and
then generates the .wav file header using the generate_wav_header
function. It then writes the header to the file.

// PSRAM malloc for recording
rec_buffer = (uint8_t *)ps_malloc(record_size);
if (rec_buffer == NULL) {
Serial.printf("malloc failed!\n");
while(1) ;

}
Serial.printf("Buffer: %d bytes\n", ESP.getPsramSize()

- ESP.getFreePsram());

The ps_malloc function allocates memory in the PSRAM for the record-
ing. If the allocation fails (i.e., rec_buffer is NULL), it prints an error
message and halts execution.

// Start recording
esp_i2s::i2s_read(esp_i2s::I2S_NUM_0,

rec_buffer,
record_size,
&sample_size,
portMAX_DELAY);

if (sample_size == 0) {
Serial.printf("Record Failed!\n");

} else {
Serial.printf("Record %d bytes\n", sample_size);

}

The i2s_read function reads audio data from the microphone into rec_-
buffer. It prints an error message if no data is read (sample_size is
0).
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// Increase volume
for (uint32_t i = 0; i < sample_size; i += SAMPLE_BITS/8) {
(*(uint16_t *)(rec_buffer+i)) <<= VOLUME_GAIN;

}

This section of the code increases the recording volume by shifting the
sample values by VOLUME_GAIN.

// Write data to the WAV file
Serial.printf("Writing to the file ...\n");
if (file.write(rec_buffer, record_size) != record_size)
Serial.printf("Write file Failed!\n");

free(rec_buffer);
file.close();
Serial.printf("Recording complete: \n");
Serial.printf("Send rec for a new sample or enter

a new label\n\n");

Finally, the audio data is written to the .wav file. If the write operation
fails, it prints an error message. After writing, the memory allocated
for rec_buffer is freed, and the file is closed. The function finishes by
printing a completion message and prompting the user to send a new
command.

void generate_wav_header(uint8_t *wav_header,
uint32_t wav_size,
uint32_t sample_rate)

{
...
memcpy(wav_header, set_wav_header, sizeof(set_wav_header));

}

The generate_wav_header function creates a.wav file header based on
the parameters (wav_size and sample_rate). It generates an array of
bytes according to the .wav file format, which includes fields for the file
size, audio format, number of channels, sample rate, byte rate, block
alignment, bits per sample, and data size. The generated header is then
copied into the wav_header array passed to the function.

Now, upload the code to the XIAO and get samples from the keywords
(yes and no). You can also capture noise and other words.

The Serial monitor will prompt you to receive the label to be recorded.
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Send the label (for example, yes). The program will wait for another
command: rec

And the program will start recording new samples every time a com-
mand rec is sent. The files will be saved as yes.1.wav, yes.2.wav,
yes.3.wav, etc., until a new label (for example, no) is sent. In this
case, you should send the command rec for each new sample, which
will be saved as no.1.wav, no.2.wav, no.3.wav, etc.
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Ultimately, we will get the saved files on the SD card.

The files are ready to be uploaded to Edge Impulse Studio

Capturing (offline) Audio Data Apps

There are many ways to capture audio data; the simplest one is to use
a mobile phone or a PC as a connected device on the Edge Impulse
Studio.

The PC or smartphone should capture audio data with a
sampling frequency of 16 kHz and a bit depth of 16 Bits.

Another alternative is to use dedicated apps. A good app for that is
Voice Recorder Pro (IOS). You should save your records as .wav files and
send them to your computer.

https://docs.edgeimpulse.com/docs/edge-ai-hardware/using-your-mobile-phone
https://docs.edgeimpulse.com/docs/edge-ai-hardware/using-your-mobile-phone
https://www.bejbej.ca/app/voicerecordpro
https://www.bejbej.ca/app/voicerecordpro
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Training model with Edge Impulse Studio

Uploading the Data

When the raw dataset is defined and collected (Pete’s dataset + recorded
keywords), we should initiate a new project at Edge Impulse Studio:

Once the project is created, select the Upload Existing Data tool in the
Data Acquisition section. Choose the files to be uploaded:
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And upload them to the Studio (You can automatically split data in
train/test). Repeat to all classes and all raw data.

The samples will now appear in the Data acquisition section.
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All data on Pete’s dataset have a 1 s length, but the samples recorded in
the previous section have 10 s and must be split into 1s samples to be
compatible.

Click on three dots after the sample name and select Split sample.

Once inside the tool, split the data into 1-second records. If necessary,
add or remove segments:

This procedure should be repeated for all samples.

Note: For longer audio files (minutes), first, split into 10-
second segments and after that, use the tool again to get the
final 1-second splits.

Suppose we do not split data automatically in train/test during upload.
In that case, we can do it manually (using the three dots menu, moving
samples individually) or using Perform Train / Test Split on Dashboard
– Danger Zone.



Training model with Edge Impulse Studio 294

We can optionally check all datasets using the tab Data Ex-
plorer.

Creating Impulse (Pre-Process / Model definition)

An impulse takes raw data, uses signal processing to extract features, and
then uses a learning block to classify new data.

First, we will take the data points with a 1-second window, augmenting
the data, sliding that window each 500 ms. Note that the option zero-
pad data is set. It is essential to fill with zeros samples smaller than 1
second (in some cases, I reduced the 1000 ms window on the split tool
to avoid noises and spikes).

Each 1-second audio sample should be pre-processed and converted to
an image (for example, 13×49×1). We will use MFCC, which extracts
features from audio signals using Mel Frequency Cepstral Coefficients,
which are great for the human voice.

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum


Keyword Spotting (KWS) 295

Next, we select KERAS for classification and build our model from
scratch by doing Image Classification using Convolution Neural Net-
work).

Pre-Processing (MFCC)

The next step is to create the images to be trained in the next phase:

We can keep the default parameter values or take advantage of the DSP
Autotuneparameters option, which we will do.

The result will not spend much memory to pre-process data (only 16KB).
Still, the estimated processing time is high, 675 ms for an Espressif ESP-
EYE (the closest reference available), with a 240 kHz clock (same as our
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device), but with a smaller CPU (XTensa LX6, versus the LX7 on the
ESP32S). The real inference time should be smaller.

Suppose we need to reduce the inference time later. In that case, we
should return to the pre-processing stage and, for example, reduce
the FFT length to 256, change the Number of coefficients, or another
parameter.

For now, let’s keep the parameters defined by the Autotuning tool. Save
parameters and generate the features.

If you want to go further with converting temporal serial
data into images using FFT, Spectrogram, etc., you can play
with this CoLab: Audio Raw Data Analysis.

Model Design and Training

We will use a Convolution Neural Network (CNN) model. The basic
architecture is defined with two blocks of Conv1D + MaxPooling (with
8 and 16 neurons, respectively) and a 0.25 Dropout. And on the last
layer, after Flattening four neurons, one for each class:

https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/2_Applications_Deploy/Class_24/IESTI01_Audio_Raw_Data_Analisys.ipynb
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As hyper-parameters, we will have a Learning Rate of 0.005 and a
model that will be trained by 100 epochs. We will also include data
augmentation, as some noise. The result seems OK:

If you want to understand what is happening “under the hood,” you
can download the dataset and run a Jupyter Notebook playing with the
code. For example, you can analyze the accuracy by each epoch:



Testing 298

This CoLab Notebook can explain how you can go further: KWS Clas-
sifier Project - Looking “Under the hood Training/xiao_esp32s3_key-
word_spotting_project_nn_classifier.ipynb).”

Testing
Testing the model with the data put apart before training (Test Data),
we got an accuracy of approximately 87%.

Inspecting the F1 score, we can see that for YES, we got 0.95, an excellent
result once we used this keyword to “trigger” our postprocessing stage
(turn on the built-in LED). Even for NO, we got 0.90. The worst result
is for unknown, what is OK.

We can proceed with the project, but it is possible to perform Live
Classification using a smartphone before deployment on our device. Go
to the Live Classification section and click on Connect a Development
board:

https://colab.research.google.com/github/Mjrovai/XIAO-ESP32S3-Sense/blob/main/KWS
https://colab.research.google.com/github/Mjrovai/XIAO-ESP32S3-Sense/blob/main/KWS
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Point your phone to the barcode and select the link.

Your phone will be connected to the Studio. Select the option Classifi-
cation on the app, and when it is running, start testing your keywords,
confirming that the model is working with live and real data:

Deploy and Inference
The Studio will package all the needed libraries, preprocessing func-
tions, and trained models, downloading them to your computer. Select
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the Arduino Library option, then choose Quantized (Int8) from the
bottom menu and press Build.

Now it is time for a real test. We will make inferences wholly discon-
nected from the Studio. Let’s change one of the ESP32 code examples
created when you deploy the Arduino Library.

In your Arduino IDE, go to the File/Examples tab look for your project,
and select esp32/esp32_microphone:
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This code was created for the ESP-EYE built-in microphone, which
should be adapted for our device.

Start changing the libraries to handle the I2S bus:

By:

#include <I2S.h>
#define SAMPLE_RATE 16000U
#define SAMPLE_BITS 16

Initialize the IS2 microphone at setup(), including the lines:

void setup()
{
...

I2S.setAllPins(-1, 42, 41, -1, -1);
if (!I2S.begin(PDM_MONO_MODE, SAMPLE_RATE, SAMPLE_BITS)) {
Serial.println("Failed to initialize I2S!");

while (1) ;
...
}

On the static void capture_samples(void* arg) function, replace the line
153 that reads data from I2S mic:

By:

/* read data at once from i2s */
esp_i2s::i2s_read(esp_i2s::I2S_NUM_0,

(void*)sampleBuffer,
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i2s_bytes_to_read,
&bytes_read, 100);

On function static bool microphone_inference_start(uint32_t n_sam-
ples), we should comment or delete lines 198 to 200, where the micro-
phone initialization function is called. This is unnecessary because the
I2S microphone was already initialized during the setup().

Finally, on static void microphone_inference_end(void) function, re-
place line 243:

By:

static void microphone_inference_end(void)
{

free(sampleBuffer);
ei_free(inference.buffer);

}

You can find the complete code on the project’s GitHub. Upload the
sketch to your board and test some real inferences:

฀ Attention

• The Xiao ESP32S3 MUST have the PSRAM enabled.
You can check it on the Arduino IDE upper menu:
Tools–> PSRAM:OPI PSRAM

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/xiao_esp32s3_microphone
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• The Arduino Library (esp32 by Espressif Systems
should be version 2.017. Please do not update it.

Postprocessing

In edge AI applications, the inference result is only as valuable as our
ability to act upon it. While serial output provides detailed informa-
tion for debugging and development, real-world deployments require
immediate, human-readable feedback that doesn’t depend on external
monitors or connections.

Let’s explore two post-processing approaches. Using the internal
XIAO’s LED and the OLED on the XIAOML Kit.

With LED

Now that we know the model is working by detecting our keywords,
let’s modify the code to see the internal LED go on every time a YES is
detected.

You should initialize the LED:

#define LED_BUILT_IN 21
...
void setup()
{
...
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pinMode(LED_BUILT_IN, OUTPUT); // Set the pin as output
digitalWrite(LED_BUILT_IN, HIGH); //Turn off

...
}

And change the // print the predictions portion of the previous code
(on loop():

int pred_index = 0; // Initialize pred_index
float pred_value = 0; // Initialize pred_value

// print the predictions
ei_printf("Predictions ");
ei_printf("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)",

result.timing.dsp, result.timing.classification,
result.timing.anomaly);

ei_printf(": \n");
for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {

ei_printf(" %s: ", result.classification[ix].label);
ei_printf_float(result.classification[ix].value);
ei_printf("\n");

if (result.classification[ix].value > pred_value){
pred_index = ix;
pred_value = result.classification[ix].value;

}
}

// show the inference result on LED
if (pred_index == 3){

digitalWrite(LED_BUILT_IN, LOW); //Turn on
}
else{

digitalWrite(LED_BUILT_IN, HIGH); //Turn off
}

You can find the complete code on the project’s GitHub. Upload the
sketch to your board and test some real inferences:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/xiao_esp32s3_microphone_led
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The idea is that the LED will be ON whenever the keyword YES is
detected. In the same way, instead of turning on an LED, this could be
a “trigger” for an external device, as we saw in the introduction.

With OLED Display

The XIAOML Kit tiny 0.42” OLED display (72×40 pixels) serves as a
crucial post-processing component that transforms raw ML inference
results into immediate, human-readable feedback—displaying detected
class names and confidence levels directly on the device, eliminating
the need for external monitors and enabling truly standalone edge AI
deployment in industrial, agricultural, or retail environments where
instant visual confirmation of AI predictions is essential.

So, let’s modify the sketch to automatically adapt to the model trained
on Edge Impulse by reading the class names and count directly from
the model. Download the code from GitHub: xiaoml-kit_kws_oled.

Running the code, we can see the result:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/XIAOML_Kit_code/xiaoml-kit_kws_oled
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Summary

This lab demonstrated the complete development cycle of a keyword
spotting system using the XIAOML Kit, showcasing how modern
TinyML platforms make sophisticated audio AI accessible on resource-
constrained devices. Through hands-on implementation, we’ve bridged
the gap between theoretical machine learning concepts and practical
embedded AI deployment.

Technical Achievements:

The project successfully implemented a complete audio processing
pipeline from raw sound capture through real-time inference. Using
the XIAO ESP32S3’s integrated digital microphone, we captured audio
data at professional quality (16kHz/16-bit) and processed it using Mel
Frequency Cepstral Coefficients (MFCC) for feature extraction. The
deployed CNN model achieved excellent accuracy in distinguishing be-
tween our target keywords (“YES”, “NO”) and background conditions
(“NOISE”, “UNKNOWN”), with inference times suitable for real-time
applications.

Platform Integration:

Edge Impulse Studio proved invaluable as a comprehensive MLOps plat-
form for embedded systems, handling everything from data collection
and labeling through model training, optimization, and deployment.
The seamless integration between cloud-based training and edge de-
ployment exemplifies modern TinyML workflows, while the Arduino
IDE provided the flexibility needed for custom post-processing imple-
mentations.

Real-World Applications:

The techniques learned extend far beyond simple keyword detection.
Voice-activated control systems, industrial safety monitoring through
sound classification, medical applications for respiratory analysis, and
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environmental monitoring for wildlife or equipment sounds all leverage
similar audio processing approaches. The cascaded detection archi-
tecture demonstrated here—using edge-based KWS to trigger more
complex cloud processing—is fundamental to modern voice assistant
systems.

Embedded AI Principles:

This project highlighted crucial TinyML considerations, including
power management, memory optimization through PSRAM utilization,
and the trade-offs between model complexity and inference speed.
The successful deployment of a neural network performing real-time
audio analysis on a microcontroller demonstrates how AI capabili-
ties, once requiring powerful desktop computers, can now operate on
battery-powered devices.

Development Methodology:

We explored multiple development pathways, from data collection
strategies (offline SD card storage versus online streaming) to deploy-
ment options (Edge Impulse’s automated library generation versus
custom Arduino implementation). This flexibility is crucial for adapt-
ing to various project requirements and constraints.

Future Directions:

The foundation established here enables the exploration of more ad-
vanced audio AI applications. Multi-keyword recognition, speaker
identification, emotion detection from voice, and environmental sound
classification all build upon the same core techniques. The integration
capabilities demonstrated with OLED displays and GPIO control il-
lustrate how KWS can serve as the intelligent interface for broader IoT
systems.

Consider that Sound Classification encompasses much more than just
voice recognition. This project’s techniques apply across numerous
domains:

• Security Applications: Broken glass detection, intrusion moni-
toring, gunshot detection

• Industrial IoT: Machinery health monitoring, anomaly detection
in manufacturing equipment

• Healthcare: Sleep disorder monitoring, respiratory condition
assessment, elderly care systems

• Environmental Monitoring: Wildlife tracking, urban noise anal-
ysis, smart building acoustic management
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• Smart Home Integration: Multi-room voice control, appliance
status monitoring through sound signatures

Key Takeaways:

The XIAOML Kit proves that professional-grade AI development is
achievable with accessible tools and modest budgets. The combination
of capable hardware (ESP32S3 with PSRAM and integrated sensors),
mature development platforms (Edge Impulse Studio), and compre-
hensive software libraries creates an environment where complex AI
concepts become tangible, working systems.

This lab demonstrates that the future of AI isn’t just in massive data
centers, but in intelligent edge devices that can process, understand,
and respond to their environment in real-time—opening possibilities
for ubiquitous, privacy-preserving, and responsive artificial intelligence
systems.

Resources

• XIAO ESP32S3 Codes
• XIAOML Kit Code
• Subset of Google Speech Commands Dataset
• KWS MFCC Analysis Colab Notebook
• KWS CNN training Colab Notebook
• XIAO ESP32S3 Post-processing Code
• Edge Impulse Project

https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/XIAOML_Kit_code
https://cdn.edgeimpulse.com/datasets/keywords2.zip
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_CNN_training.ipynb
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/xiao_esp32s3_microphone_led
https://studio.edgeimpulse.com/public/230109/live
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Figure 1.17: DALL·E prompt - 1950s style cartoon illustration set in a vintage audio lab. Scientists,
dressed in classic attire with white lab coats, are intently analyzing audio data on large chalkboards.
The boards display intricate FFT (Fast Fourier Transform) graphs and time-domain curves. Antique
audio equipment is scattered around, but the data representations are clear and detailed, indicating
their focus on audio analysis.

Overview

Transportation is the backbone of global commerce. Millions of con-
tainers are transported daily via various means, such as ships, trucks,
and trains, to destinations worldwide. Ensuring the safe and efficient
transit of these containers is a monumental task that requires leverag-
ing modern technology, and TinyML is undoubtedly one of the key
solutions.

In this hands-on lab, we will work to solve real-world problems re-
lated to transportation. We will develop a Motion Classification and
Anomaly Detection system using the XIAOML Kit, the Arduino IDE,
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and the Edge Impulse Studio. This project will help us understand
how containers experience different forces and motions during vari-
ous phases of transportation, including terrestrial and maritime transit,
vertical movement via forklifts, and periods of stationary storage in
warehouses.

LIGHTBULB Learning Objectives

• Setting up the XIAOML Kit
• Data Collection and Preprocessing
• Building the Motion Classification Model
• Implementing Anomaly Detection
• Real-world Testing and Analysis

By the end of this lab, you’ll have a working prototype that can classify
different types of motion and detect anomalies during the transporta-
tion of containers. This knowledge can serve as a stepping stone to
more advanced projects in the burgeoning field of TinyML, particularly
those involving vibration.

Installing the IMU

The XIAOML Kit comes with a built-in LSM6DS3TR-C 6-axis IMU
sensor on the expansion board, eliminating the need for external sen-
sor connections. This integrated approach offers a clean and reliable
platform for motion-based machine learning applications.

The LSM6DS3TR-C combines a 3-axis accelerometer and 3-axis gyro-
scope in a single package, connected via I2C to the XIAO ESP32S3 at
address 0x6A that provides:

• Accelerometer ranges: ±2/±4/±8/±16 g (we’ll use ±2g by default)
• Gyroscope ranges: ±125/±250/±500/±1000/±2000 dps (we’ll use

±250 dps by default)
• Resolution: 16-bit ADC
• Communication: I2C interface at address 0x6A
• Power: Ultra-low power design
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Coordinate System: The sensor operates within a right-handed coor-
dinate system. When looking at the expansion board from the bottom
(where you can see the IMU sensor with the point mark):

• X-axis: Points to the right
• Y-axis: Points forward (away from you)
• Z-axis: Points upward (out of the board)

Setting Up the Hardware

Since the XIAOML Kit comes pre-assembled with the expansion board,
no additional hardware connections are required. The LSM6DS3TR-C
IMU is already properly connected via I2C.

What’s Already Connected:

• LSM6DS3TR-C IMU → I2C (SDA/SCL) → XIAO ESP32S3
• I2C Address: 0x6A
• Power: 3.3V from XIAO ESP32S3

Required Library: You should have the library installed during the
Setup. If not, install the Seeed Arduino LSM6DS3 library following the
steps:

1. Open Arduino IDE Library Manager
2. Search for “LSM6DS3”
3. Install “Seeed Arduino LSM6DS3” by Seeed Studio
4. Important: Do NOT install “Arduino_LSM6DS3 by Arduino” -

that’s for different boards!
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Testing the IMU Sensor

Let’s start with a simple test to verify the IMU is working correctly.
Upload this code to test the sensor:

#include <LSM6DS3.h>
#include <Wire.h>

// Create IMU object using I2C interface
LSM6DS3 myIMU(I2C_MODE, 0x6A);

float accelX, accelY, accelZ;
float gyroX, gyroY, gyroZ;

void setup() {
Serial.begin(115200);
while (!Serial) delay(10);

Serial.println("XIAOML Kit IMU Test");
Serial.println("LSM6DS3TR-C 6-Axis IMU");
Serial.println("====================");

// Initialize the IMU
if (myIMU.begin() != 0) {

Serial.println("ERROR: IMU initialization failed!");
while(1) delay(1000);

} else {
Serial.println("฀ IMU initialized successfully");
Serial.println("Data Format: AccelX,AccelY,AccelZ,"

"GyroX,GyroY,GyroZ");
Serial.println("Units: g-force, degrees/second");
Serial.println();

}
}

void loop() {
// Read accelerometer data (in g-force)
accelX = myIMU.readFloatAccelX();
accelY = myIMU.readFloatAccelY();
accelZ = myIMU.readFloatAccelZ();

// Read gyroscope data (in degrees per second)
gyroX = myIMU.readFloatGyroX();
gyroY = myIMU.readFloatGyroY();
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gyroZ = myIMU.readFloatGyroZ();

// Print readable format
Serial.print("Accel (g): X="); Serial.print(accelX, 3);
Serial.print(" Y="); Serial.print(accelY, 3);
Serial.print(" Z="); Serial.print(accelZ, 3);
Serial.print(" | Gyro (°/s): X="); Serial.print(gyroX, 2);
Serial.print(" Y="); Serial.print(gyroY, 2);
Serial.print(" Z="); Serial.println(gyroZ, 2);

delay(100); // 10 Hz update rate
}

When the kit is resting flat on a table, you should see:

• Z-axis acceleration around +1.0g (gravity)
• X and Y acceleration near 0.0g
• All gyroscope values near 0.0°/s

Move the kit around to see the values change accordingly.

The TinyML Motion Classification Project

We will simulate container (or, more accurately, package) transportation
through various scenarios to make this tutorial more relatable and
practical.

Using the accelerometer of the XIAOML Kit, we’ll capture motion data
by manually simulating the conditions of:
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• Maritime (pallets on boats) - Movement in all axes with wave-like
patterns

• Terrestrial (pallets on trucks/trains) - Primarily horizontal move-
ment

• Lift (pallets being moved by forklift) - Primarily vertical move-
ment

• Idle (pallets in storage) - Minimal movement

From the above image, we can define for our simulation that primar-
ily horizontal movements (𝑥 or 𝑦 axis) should be associated with the
“Terrestrial class.” Vertical movements (𝑧-axis) with the “Lift Class,”
no activity with the “Idle class,” and movement on all three axes to
Maritime class.

Data Collection

For data collection, we have several options available. In a real-world
scenario, we can have our device, for example, connected directly to
one container, and the collected data stored in a file (for example, CSV)
on an SD card. Data can also be sent remotely to a nearby repository,
such as a mobile phone, using Wi-Fi or Bluetooth (as demonstrated in
this project: Sensor DataLogger). Once your dataset is collected and
stored as a .CSV file, it can be uploaded to the Studio using the CSV
Wizard tool.

In this video, you can learn alternative ways to send data to
the Edge Impulse Studio.

Preparing the Data Collection Code

In this lab, we will connect the Kit directly to the Edge Impulse Studio,
which will also be used for data pre-processing, model training, testing,
and deployment.

https://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_02_03_03.htm
https://www.hackster.io/mjrobot/sensor-datalogger-50e44d
https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/csv-wizard
https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/csv-wizard
https://youtu.be/2KBPq_826WM
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For data collection, we should first connect the Kit to Edge Impulse
Studio, which will also be used for data pre-processing, model training,
testing, and deployment.

Follow the instructions here to install Node.js and Edge
Impulse CLI on your computer.

Once the XIAOML Kit is not a fully supported development board by
Edge Impulse, we should, for example, use the CLI Data Forwarder to
capture data from our sensor and send it to the Studio, as shown in this
diagram:

We’ll modify our test code to output data in a format suitable for Edge
Impulse:

#include <LSM6DS3.h>
#include <Wire.h>

#define FREQUENCY_HZ 50
#define INTERVAL_MS (1000 / (FREQUENCY_HZ + 1))

LSM6DS3 myIMU(I2C_MODE, 0x6A);
static unsigned long last_interval_ms = 0;

void setup() {
Serial.begin(115200);
while (!Serial) delay(10);

https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-installation
https://nodejs.org/en/
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder


Motion Classification and Anomaly Detection 317

Serial.println("XIAOML Kit - Motion Data Collection");
Serial.println("LSM6DS3TR-C IMU Sensor");

// Initialize IMU
if (myIMU.begin() != 0) {

Serial.println("ERROR: IMU initialization failed!");
while(1) delay(1000);

}

delay(2000);
Serial.println("Starting data collection in 3 seconds...");
delay(3000);

}

void loop() {
if (millis() > last_interval_ms + INTERVAL_MS) {

last_interval_ms = millis();

// Read accelerometer data
float ax = myIMU.readFloatAccelX();
float ay = myIMU.readFloatAccelY();
float az = myIMU.readFloatAccelZ();

// Convert to m/s² (multiply by 9.81)
float ax_ms2 = ax * 9.81;
float ay_ms2 = ay * 9.81;
float az_ms2 = az * 9.81;

// Output in Edge Impulse format
Serial.print(ax_ms2);
Serial.print("\t");
Serial.print(ay_ms2);
Serial.print("\t");
Serial.println(az_ms2);

}
}

Upload the code to the Arduino IDE. We should see the accelerometer
values (converted to m/s²) at the Serial Monitor:
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Keep the code running, but turn off the SerialMonitor. The
data generated by the Kit will be sent to the Edge Impulse
Studio via Serial Connection.

Connecting to Edge Impulse for Data Collection

Create an Edge Impulse Project - Go to Edge Impulse Studio and create
a new project - Choose a descriptive name (keep under 63 characters
for Arduino library compatibility)
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Set upCLIData Forwarder - Install Edge Impulse CLI on your computer
- Confirm that the XIAOML Kit is connected to the computer, the code is
running and the Serial Monitor is OFF, otherwise we can get an error.
- On the Computer Terminal, run: edge-impulse-data-forwarder --
clean - Enter your Edge Impulse credentials - Select your project and
configure device settings

• Go to the Edge Impulse Studio Project. On the Device section is
possible to verify if the kit is correctly connected (the dot should
be green).

Data Collection at the Studio

As discussed before, we should capture data from all four Transporta-
tion Classes. Imagine that you have a container with a built-in ac-
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celerometer (In this case, our XIAOML Kit). Now imagine your con-
tainer is on a boat, facing an angry ocean:

Or in a Truck, travelling on a road, or being moved with a forklift, etc.

Movement Simulation

Maritime Class:

• Hold the kit and simulate boat movement
• Move in all three axes with wave-like, undulating motions
• Include gentle rolling and pitching movements

Terrestrial Class:

• Move the kit horizontally in straight lines (left to right and vice
versa)

• Simulate truck/train vibrations with small horizontal shakes
• Occasional gentle bumps and turns

Lift Class:

• Move the kit primarily in vertical directions (up and down)
• Simulate forklift operations: up, pause, down
• Include some short horizontal positioning movements

Idle Class:
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• Place the kit on a stable surface
• Minimal to no movement
• Capture environmental vibrations and sensor noise

Data Acquisition

On the Data Acquisition section, you should see that your board
[xiaoml-kit] is connected. The sensor is available: [sensor with
3 axes (accX, accY, accZ)] with a sampling frequency of [50 Hz].
The Studio suggests a sample length of [10000] ms (10 s). The last thing
left is defining the sample label. Let’s start, for example, with[terrestrial].

Press [Start Sample]and move your kit horizontally (left to right),
keeping it in one direction. After 10 seconds, our data will be uploaded
to the Studio.

Below is one sample (raw data) of 10 seconds of collected data. It is
notable that the ondulatory movement predominantly occurs along the
Y-axis (left-right). The other axes are almost stationary (the X-axis is
centered around zero, and the Z-axis is centered around 9.8 ms² due to
gravity).

You should capture, for example, around 2 minutes (ten to twelve sam-
ples of 10 seconds each) for each of the four classes. Using the 3 dots
after each sample, select two and move them to the Test set. Alter-
natively, you can use the Automatic Train/Test Split tool on the
Danger Zone of the Dashboard tab. Below, it is possible to see the result
datasets:
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Data Pre-Processing

The raw data type captured by the accelerometer is a “time series” and
should be converted to “tabular data”. We can do this conversion using
a sliding window over the sample data. For example, in the below
figure,

We can see 10 seconds of accelerometer data captured with a sample
rate (SR) of 50 Hz. A 2-second window will capture 300 data points (3
axes × 2 seconds × 50 samples). We will slide this window every 200ms,
creating a larger dataset where each instance has 300 raw features.
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You should use the best SR for your case, considering
Nyquist’s theorem, which states that a periodic signal must
be sampled at more than twice the signal’s highest frequency
component.

Data preprocessing is a challenging area for embedded machine learn-
ing. Still, Edge Impulse helps overcome this with its digital signal
processing (DSP) preprocessing step and, more specifically, the Spectral
Features.

On the Studio, this dataset will be the input of a Spectral Analysis
block, which is excellent for analyzing repetitive motion, such as data
from accelerometers. This block will perform a DSP (Digital Signal
Processing), extracting features such as “FFT” or “Wavelets”. In the
most common case, FFT, the Time Domain Statistical features per
axis/channel are:

• RMS
• Skewness
• Kurtosis

And the Frequency Domain Spectral features per axis/channel are:

• Spectral Power
• Skewness
• Kurtosis
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For example, for an FFT length of 32 points, the Spectral Analysis Block’s
resulting output will be 21 features per axis (a total of 63 features).

Those 63 features will serve as the input tensor for a Neural Network
Classifier and the Anomaly Detection model (K-Means).

You can learn more by digging into the lab DSP Spectral
Features

Model Design

Our classifier will be a Dense Neural Network (DNN) that will have 63
neurons on its input layer, two hidden layers with 20 and 10 neurons,
and an output layer with four neurons (one per each class), as shown
here:
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Impulse Design

An impulse takes raw data, uses signal processing to extract features,
and then uses a learning block (Dense model) to classify new data.

We also utilize a second model, the K-means, which can be used for
Anomaly Detection. If we imagine that we could have our known
classes as clusters, any sample that cannot fit into one of these clusters
could be an outlier, an anomaly (for example, a container rolling out of
a ship on the ocean or being upside down on the floor).

Imagine our XIAOML Kit rolling or moving upside-down,
on a movement complement different from the one trained
on.

Below the final Impulse design:
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Generating features

At this point in our project, we have defined the pre-processing method,
and the model has been designed. Now, it is time to have the job
done. First, let’s convert the raw data (time-series type) into tabular
data. Go to the Spectral Features tab and select [Save Parameters].
Alternatively, instead of using the default values, we can select the
[Autotune parameters] button. In this case, the Studio will define
new hyperparameters, as the filter design and FFT length, based on the
raw data.
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At the top menu, select the Generate features tab, and there, select
the options, Calculate feature importance, Normalize features,
and press the [Generate features] button. Each 2-second window of
data (300 datapoints) will be converted into a single tabular data point
with 63 features.

The Feature Explorer will display this data in 2D using
UMAP. Uniform Manifold Approximation and Projection
(UMAP) is a dimensionality reduction technique that can be
used for visualization, similar to t-SNE, but also for general
non-linear dimensionality reduction.

The visualization enables one to verify that the classes present an excel-
lent separation, indicating that the classifier should perform well.

https://umap-learn.readthedocs.io/en/latest/
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Optionally, you can analyze the relative importance of each feature for
one class compared with other classes.

Training

Our classifier will be a Dense Neural Network (DNN) that will have 63
neurons on its input layer, two hidden layers with 20 and 10 neurons,
and an output layer with four neurons (one per each class), as shown
here:
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As hyperparameters, we will use a Learning Rate of 0.005 and 20% of
the data for validation for 30 epochs. After training, we can see that the
accuracy is 100%.

For anomaly detection, we should choose the suggested features that
are precisely the most important in feature extraction. The number
of clusters will be 32, as suggested by the Studio. After training, we
can select some data for testing, such as maritime data. The resulting
Anomaly score was min: -0.1642, max: 0.0738, avg: -0.0867.

When changing the data, it is possible to realize that small or negative
Anomaly Scores indicate that the data are normal.
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Testing

Using 20% of the data left behind during the data capture phase, we
can verify how our model will behave with unknown data; if not 100%
(what is expected), the result was very good (8%).

You should also use your kit (which is still connected to the Studio)
and perform some Live Classification. For example, let’s test some
“terrestrial” movement:
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Be aware that here, you will capture real data with your
device and upload it to the Studio, where an inference will
be made using the trained model (note that the model is not
on your device).

Deploy

Now it is time for magic! The Studio will package all the needed li-
braries, preprocessing functions, and trained models, downloading
them to your computer. You should select the Arduino Library option,
and then, at the bottom, choose Quantized (Int8) and click [Build]. A
ZIP file will be created and downloaded to your computer.
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On your Arduino IDE, go to the Sketch tab, select the option Add.ZIP
Library, and Choose the.zip file downloaded by the Studio:

Inference

Now, it is time for a real test. We will make inferences that are wholly
disconnected from the Studio. Let’s change one of the code examples
created when you deploy the Arduino Library.

In your Arduino IDE, go to the File/Examples tab and look for your
project, and in examples, select nano_ble_sense_accelerometer:

Of course, this is not your board, but we can have the code working
with only a few changes.

For example, at the beginning of the code, you have the library related
to Arduino Sense IMU:

/* Includes -------------------------------------------- */
#include <XIAOML_Kit_Motion_Class_-_AD_inferencing.h>
#include <Arduino_LSM9DS1.h>

Change the “includes” portion with the code related to the IMU:

#include <XIAOML_Kit_Motion_Class_-_AD_inferencing.h>
#include <LSM6DS3.h>
#include <Wire.h>

Change the Constant Defines
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// IMU setup
LSM6DS3 myIMU(I2C_MODE, 0x6A);

// Inference settings
#define CONVERT_G_TO_MS2 9.81f
#define MAX_ACCEPTED_RANGE 2.0f * CONVERT_G_TO_MS2

On the setup function, initiate the IMU:

// Initialize IMU
if (myIMU.begin() != 0) {

Serial.println("ERROR: IMU initialization failed!");
return;

}

At the loop function, the buffers buffer[ix], buffer[ix + 1], and buffer[ix
+ 2] will receive the 3-axis data captured by the accelerometer. In the
original code, you have the line:

IMU.readAcceleration(buffer[ix], buffer[ix + 1], buffer[ix + 2]);

Change it with this block of code:

// Read IMU data
float x = myIMU.readFloatAccelX();
float y = myIMU.readFloatAccelY();
float z = myIMU.readFloatAccelZ();

You should reorder the following two blocks of code. First, you make
the conversion to raw data to “Meters per squared second (m/s2)”,
followed by the test regarding the maximum acceptance range (that
here is in m/s2, but on Arduino, was in Gs):

// Convert to m/s²
buffer[i + 0] = x * CONVERT_G_TO_MS2;
buffer[i + 1] = y * CONVERT_G_TO_MS2;
buffer[i + 2] = z * CONVERT_G_TO_MS2;

// Apply range limiting
for (int j = 0; j < 3; j++) {

if (fabs(buffer[i + j]) > MAX_ACCEPTED_RANGE) {
buffer[i + j] = copysign(MAX_ACCEPTED_RANGE, buffer[i + j]);

}
}

And this is enough. We can also adjust how the inference is displayed
in the Serial Monitor. You can now upload the complete code below to
your device and proceed with the inferences.
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// Motion Classification with LSM6DS3TR-C IMU
#include <XIAOML_Kit_Motion_Class_-_AD_inferencing.h>
#include <LSM6DS3.h>
#include <Wire.h>

// IMU setup
LSM6DS3 myIMU(I2C_MODE, 0x6A);

// Inference settings
#define CONVERT_G_TO_MS2 9.81f
#define MAX_ACCEPTED_RANGE 2.0f * CONVERT_G_TO_MS2

static bool debug_nn = false;
static float buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE] = { 0 };
static float inference_buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE];

void setup() {
Serial.begin(115200);
while (!Serial) delay(10);

Serial.println("XIAOML Kit - Motion Classification");
Serial.println("LSM6DS3TR-C IMU Inference");

// Initialize IMU
if (myIMU.begin() != 0) {

Serial.println("ERROR: IMU initialization failed!");
return;

}

Serial.println("฀ IMU initialized");

if (EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME != 3) {
Serial.println("ERROR: EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME"

"should be 3");
return;

}

Serial.println("฀ Model loaded");
Serial.println("Starting motion classification...");

}

void loop() {
ei_printf("\nStarting inferencing in 2 seconds...\n");
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delay(2000);

ei_printf("Sampling...\n");

// Clear buffer
for (size_t i = 0; i < EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; i++) {

buffer[i] = 0.0f;
}

// Collect accelerometer data
for (int i = 0; i < EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; i += 3) {

uint64_t next_tick = micros() +
(EI_CLASSIFIER_INTERVAL_MS * 1000);

// Read IMU data
float x = myIMU.readFloatAccelX();
float y = myIMU.readFloatAccelY();
float z = myIMU.readFloatAccelZ();

// Convert to m/s²
buffer[i + 0] = x * CONVERT_G_TO_MS2;
buffer[i + 1] = y * CONVERT_G_TO_MS2;
buffer[i + 2] = z * CONVERT_G_TO_MS2;

// Apply range limiting
for (int j = 0; j < 3; j++) {

if (fabs(buffer[i + j]) > MAX_ACCEPTED_RANGE) {
buffer[i + j] = copysign(MAX_ACCEPTED_RANGE,

buffer[i + j]);
}

}

delayMicroseconds(next_tick - micros());
}

// Copy to inference buffer
for (int i = 0; i < EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; i++) {

inference_buffer[i] = buffer[i];
}

// Create signal from buffer
signal_t signal;
int err = numpy::signal_from_buffer(inference_buffer,



Inference 336

EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);
if (err != 0) {

ei_printf("ERROR: Failed to create signal from buffer (%d)\n",
err);

return;
}

// Run the classifier
ei_impulse_result_t result = { 0 };
err = run_classifier(&signal, &result, debug_nn);
if (err != EI_IMPULSE_OK) {

ei_printf("ERROR: Failed to run classifier (%d)\n", err);
return;

}

// Print predictions
ei_printf("Predictions (DSP: %d ms, Classification: %d ms, "

"Anomaly: %d ms):\n",
result.timing.dsp, result.timing.classification, result.timing.anomaly);

for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
ei_printf(" %s: %.5f\n", result.classification[ix].label,

result.classification[ix].value);
}

// Print anomaly score
#if EI_CLASSIFIER_HAS_ANOMALY == 1

ei_printf("Anomaly score: %.3f\n", result.anomaly);
#endif

// Determine prediction
float max_confidence = 0.0;
String predicted_class = "unknown";

for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
if (result.classification[ix].value > max_confidence) {

max_confidence = result.classification[ix].value;
predicted_class = String(result.classification[ix].label);

}
}

// Display result with confidence threshold
if (max_confidence > 0.6) {
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ei_printf("\n฀ PREDICTION: %s (%.1f%% confidence)\n",
predicted_class.c_str(), max_confidence * 100);

} else {
ei_printf("\n฀ UNCERTAIN: Highest confidence is %s (%.1f%%)\n",

predicted_class.c_str(), max_confidence * 100);
}

// Check for anomaly
#if EI_CLASSIFIER_HAS_ANOMALY == 1

if (result.anomaly > 0.5) {
ei_printf("฀ ANOMALY DETECTED! Score: %.3f\n", result.anomaly);

}
#endif

delay(1000);
}

void ei_printf(const char *format, ...) {
static char print_buf[1024] = { 0 };
va_list args;
va_start(args, format);
int r = vsnprintf(print_buf, sizeof(print_buf), format, args);
va_end(args);
if (r > 0) {

Serial.write(print_buf);
}

}

The complete code is available on the Lab’s GitHub.

Now you should try your movements, seeing the result of the inference
of each class on the images:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/XIAOML_Kit_code/motion_class_ad_inference
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And, of course, some “anomaly”, for example, putting the XIAO upside-
down. The anomaly score will be over 0.5:



Motion Classification and Anomaly Detection 339

Post-Processing

Now that we know the model is working, we suggest modifying the
code to see the result with the Kit completely offline (disconnected from
the PC and powered by a battery, a power bank, or an independent 5V
power supply).

The idea is that if a specific movement is detected, a corresponding
message will appear on the OLED display.

The modified inference code to have the OLED display is available on
the Lab’s GitHub.

Summary

This lab demonstrated how to build a complete motion classification
system using the XIAOML Kit’s built-in LSM6DS3TR-C IMU sensor.
Key achievements include:

Technical Implementation:

• Utilized the integrated 6-axis IMU for motion sensing
• Collected labeled training data for four transportation scenarios
• Implemented spectral feature extraction for time-series analysis
• Deployed a neural network classifier optimized for microcon-

troller inference
• Added anomaly detection for identifying unusual movements

Machine Learning Pipeline:

• Data collection directly from embedded sensors
• Feature engineering using frequency domain analysis
• Model training and optimization in Edge Impulse

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/XIAOML_Kit_code/motion_class_ad_inference_oled
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• Real-time inference on resource-constrained hardware
• Performance monitoring and validation

Practical Applications: The techniques learned apply directly to real-
world scenarios, including:

• Asset tracking and logistics monitoring
• Predictive maintenance for machinery
• Human activity recognition
• Vehicle and equipment monitoring
• IoT sensor networks for smart cities

Key Learnings:

• Working with IMU coordinate systems and sensor fusion
• Balancing model accuracy with inference speed on edge devices
• Implementing robust data collection and preprocessing pipelines
• Deploying machine learning models to embedded systems
• Integrating multiple sensors (IMU + display) for complete solu-

tions

The integration of motion classification with the XIAOML Kit demon-
strates how modern embedded systems can perform sophisticated AI
tasks locally, enabling real-time decision-making without reliance on
the cloud. This approach is fundamental to the future of edge AI in
industrial IoT, autonomous systems, and smart device applications.

Resources

• XIAOML KIT Code
• DSP Spectral Features
• Edge Impulse Project
• Edge Impulse Spectral Features Block Colab Notebook
• Edge Impulse Documentation
• Edge Impulse Spectral Features
• Seeed Studio LSM6DS3 Library

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/XIAOML_Kit_code
https://studio.edgeimpulse.com/public/750061/live
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://docs.edgeimpulse.com/
https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://github.com/Seeed-Studio/Seeed_Arduino_LSM6DS3
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Overview

These labs offer an opportunity to gain practical experience with ma-
chine learning (ML) systems on a high-end, yet compact, embedded
device, the Seeed Studio Grove Vision AI V2. Unlike working with
large models requiring data center-scale resources, these labs allow you
to interact with hardware and software using TinyML directly. This
hands-on approach provides a tangible understanding of the challenges
and opportunities in deploying AI, albeit on a small scale. However,
the principles are essentially the same as what you would encounter
when working with larger or even smaller systems.

The Grove Vision AI V2 occupies a unique position in the embedded AI
landscape, bridging the gap between basic microcontroller solutions,
such as the Seeed XIAO ESP32S3 Sense or Arduino Nicla Vision, and
more powerful single-board computers, like the Raspberry Pi. At its
heart lies the Himax WiseEye2 HX6538 processor, featuring a dual-core
Arm Cortex-M55 and an integrated ARM Ethos-U55 neural network
unit.

The Arm Ethos-U55 represents a specialized machine learning proces-
sor class, specifically designed as a microNPU to accelerate ML infer-
ence in area-constrained embedded and IoT devices. This powerful
combination of the Ethos-U55 with the AI-capable Cortex-M55 proces-
sor delivers a remarkable 480x uplift in ML performance over existing
Cortex-M-based systems. Operating at 400 MHz with configurable
internal system memory (SRAM) up to 2.4 MB, the Grove Vision AI
V2 offers professional-grade computer vision capabilities while main-
taining the power efficiency and compact form factor essential for edge
applications.

This positioning makes it an ideal platform for learning advanced
TinyML concepts, offering the simplicity and reduced power require-
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ments of smaller systems while providing capabilities that far exceed
those of traditional microcontroller-based solutions.

Figure 1.18: Grove - Vision AI Module V2. Source: SEEED Studio.

Where to Buy

The Grove Vision AI V2 is available from Seeed Studio:

• Grove Vision AI V2 (Seeed Studio) (~$25)

You will also need a compatible camera module (Raspberry Pi OV5647)
and optionally a master controller like the XIAO ESP32S3.

Pre-requisites

• Grove Vision AI V2 Board: Ensure you have the Grove Vision
AI V2 Board.

• Raspberry Pi OV5647 Camera Module: The camera should be
connected to the Grove Vision AI V2 Board for image capture.

• Master Controller: Can be a Seeed XIAO ESP32S3, a XIAO
ESP32C6, or other devices.

• USB-C Cable: This is for connecting the board to your computer.
• Network: With internet access for downloading the necessary

software.
• XIAO Expansion Board Base: This helps connect the Master

Device to the Physical World (optional).

https://www.seeedstudio.com/Grove-Vision-AI-Module-V2-p-5851.html
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Setup and No-Code Applications

• Setup and No-Code Apps

Exercises

Modality
:=============
Vision

Task
:=====================
Image
Classification

Description
:===========================
Learn to classify
images

Link |
:====================================================+
Link

Vision Object
Detection

Implement object
detection

TBD

setup_and_no_code_apps/setup_and_no_code_apps.qmd
image_classification/image_classification.qmd




Setup and No-Code Appli-
cations

In this Lab, we will explore computer vision (CV) applications using
the Seeed Studio Grove Vision AI Module V2, a powerful yet compact
device specifically designed for embedded machine learning applica-
tions. Based on the Himax WiseEye2 chip, this module is designed to
enable AI capabilities on edge devices, making it an ideal tool for Edge
Machine Learning (ML) applications.

Introduction

349

https://wiki.seeedstudio.com/grove_vision_ai_v2/
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Grove Vision AI Module (V2) Overview

The Grove Vision AI (V2) is an MCU-based vision AI module that
utilizes a Himax WiseEye2 HX6538 processor featuring a dual-core
Arm Cortex-M55 and an integrated ARM Ethos-U55 neural network
unit. The Arm Ethos-U55 is a machine learning (ML) processor class,
specifically designed as a microNPU, to accelerate ML inference in area-
constrained embedded and IoT devices. The Ethos-U55, combined with
the AI-capable Cortex-M55 processor, provides a 480x uplift in ML
performance over existing Cortex-M-based systems. Its clock frequency
is 400 MHz, and its internal system memory (SRAM) is configurable,
with a maximum capacity of 2.4 MB.

Note: Based on Seeed Studio documentation, besides the
Himax internal memory of 2.5MB (2.4MB SRAM + 64KB
ROM), the Grove Vision AI (V2) is also equipped with a
16MB/133 MHz external flash.

https://www.himax.com.tw/products/intelligent-sensing/always-on-smart-sensing/wiseeye2-ai-processor/
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55
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Below is a block Diagram of the Grove Vision AI (V2) system, including
a camera and a master controller.

With interfaces like IIC, UART, SPI, and Type-C, the Grove Vision
AI (V2) can be easily connected to devices such as XIAO, Raspberry
Pi, BeagleBoard, and ESP-based products for further development.
For instance, integrating Grove Vision AI V2 with one of the devices
from the XIAO family makes it easy to access the data resulting from
inference on the device through the Arduino IDE or MicroPython, and
conveniently connect to the cloud or dedicated servers, such as Home
Assistance.

Using the I2C Grove connector, the Grove Vision AI V2 can
be easily connected with any Master Device.
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Besides performance, another area to comment on is Power Consump-
tion. For example, in a comparative test against the XIAO ESP32S3
Sense, running Swift-YOLO Tiny 96x96, despite achieving higher per-
formance (30 FPS vs. 5.5 FPS), the Grove Vision AI V2 exhibited lower
power consumption (0.35 W vs. 0.45 W) when compared with the XIAO
ESP32S3 Sense.

The above comparison (and with other devices) can be found
in the article 2024 MCU AI Vision Boards: Performance
Comparison, which confirms the power of Grove Vision AI
(V2).

Camera Installation

Having the Grove Vision AI (V2) and camera ready, you can connect, for
example, a Raspberry Pi OV5647 Camera Module via the CSI cable.

https://www.hackster.io/limengdu0117/2024-mcu-ai-vision-boards-performance-comparison-998505
https://www.hackster.io/limengdu0117/2024-mcu-ai-vision-boards-performance-comparison-998505
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When connecting, please pay attention to the direction of
the row of pins and ensure they are plugged in correctly,
not in the opposite direction.

The SenseCraft AI Studio

The SenseCraft AI Studio is a robust platform that offers a wide range
of AI models compatible with various devices, including the XIAO
ESP32S3 Sense and the Grove Vision AI V2. In this lab, we will walk
through the process of using an AI model with the Grove Vision AI
V2 and preview the model’s output. We will also explore some key
concepts, settings, and how to optimize the model’s performance.

Models can also be deployed using the SenseCraft Web Toolkit, a
simplified version of the SenseCraft AI Studio.

We can start using the SenseCraft Web Toolkit for simplicity,
or go directly to the SenseCraft AI Studio, which has more
resources.

https://sensecraft.seeed.cc/ai/home
https://seeed-studio.github.io/SenseCraft-Web-Toolkit/#/setup/process
https://sensecraft.seeed.cc/ai/model
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The SenseCraft Web-Toolkit

The SenseCraft Web Toolkit is a visual model deployment tool included
in the SSCMA(Seeed SenseCraft Model Assistant). This tool enables
us to deploy models to various platforms with ease through simple
operations. The tool offers a user-friendly interface and does not require
any coding.

The SenseCraft Web Toolkit is based on the Himax AI Web Toolkit,
which can (optionally) be downloaded from here. Once downloaded
and unzipped to the local PC, double-click index.html to run it lo-
cally.

But in our case, let’s follow the steps below to start the SenseCraft-
Web-Toolkit:

• Open the SenseCraft-Web-Toolkit website on a web browser as
Chrome.

• Connect Grove Vision AI (V2) to your computer using a Type-C
cable.

• Having the XIAO connected, select it as below:

https://sensecraftma.seeed.cc/
https://github.com/HimaxWiseEyePlus/Seeed_Grove_Vision_AI_Module_V2/releases/download/v1.1/Himax_AI_web_toolkit.zip
https://seeed-studio.github.io/SenseCraft-Web-Toolkit/#/setup/process
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• Select the device/Port and press [Connect]:

Note: The WebUSB tool may not function correctly in cer-
tain browsers, such as Safari. Use Chrome instead.

We can try several Basic Computer Vision models previously uploaded
by Seeed Studio. Passing the cursor over the AI models, we can have
some information about them, such as name, description, category
(Image Classification, Object Detection, or Pose/Keypoint Detection),
the algorithm (like YOLO V5 or V8, FOMO, MobileNet V2, etc.) and
metrics (Accuracy or mAP).

We can choose one of those ready-to-use AI models by clicking on it
and pressing the [Send] button, or upload our model.

For the SenseCraft AI platform, follow the instructions here.

https://wiki.seeedstudio.com/sensecraft_ai_pretrained_models_for_grove_visionai_v2/
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Exploring CV AI models

Object Detection

Object detection is a pivotal technology in computer vision that fo-
cuses on identifying and locating objects within digital images or video
frames. Unlike image classification, which categorizes an entire image
into a single label, object detection recognizes multiple objects within
the image and determines their precise locations, typically represented
by bounding boxes. This capability is crucial for a wide range of appli-
cations, including autonomous vehicles, security, surveillance systems,
and augmented reality, where understanding the context and content
of the visual environment is essential.

Common architectures that have set the benchmark in object detection
include the YOLO (You Only Look Once), SSD (Single Shot MultiBox
Detector), FOMO (Faster Objects, More Objects), and Faster R-CNN
(Region-based Convolutional Neural Networks) models.

Let’s choose one of the ready-to-use AI models, such as Person Detec-
tion, which was trained using the Swift-YOLO algorithm.

Once the model is uploaded successfully, you can see the live feed from
the Grove Vision AI (V2) camera in the Preview area on the right. Also,
the inference details can be shown on the Serial Monitor by clicking on
the [Device Log] button at the top.
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In the SenseCraft AI Studio, the Device Logger is always on
the screen.

Pointing the camera at me, only one person was detected, so that the
model output will be a single “box”. Looking in detail, the module
sends continuously two lines of information:

perf (Performance), displays latency in milliseconds.

• Preprocess time (image capture and Crop): 7ms;
• Inference time (model latency): 76ms (13 fps)
• Postprocess time (display of the image and inclusion of data): less

than 0ms.

boxes: Show the objects detected in the image. In this case, only one.

• The box has the x, y, w, and h coordinates of (245, 292,449,392),
and the object (person, label 0) was captured with a value of .89.

If we point the camera at an image with several people, we will get one
box for each person (object):
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On the SenseCraft AI Studio, the inference latency (48ms)
is lower than on the SenseCraft ToolKit (76ms), due to a
distinct deployment implementation.

Power Consumption

The peak power consumption running this Swift-YOLO model was 410
milliwatts.

Preview Settings

We can see that in the Settings, two settings options can be adjusted to
optimize the model’s recognition accuracy.
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• Confidence: Refers to the level of certainty or probability assigned
to its predictions by a model. This value determines the minimum
confidence level required for the model to consider a detection
as valid. A higher confidence threshold will result in fewer de-
tections but with higher certainty, while a lower threshold will
allow more detections but may include some false positives.

• IoU: Used to assess the accuracy of predicted bounding boxes
compared to truth bounding boxes. IoU is a metric that measures
the overlap between the predicted bounding box and the ground
truth bounding box. It is used to determine the accuracy of the
object detection. The IoU threshold sets the minimum IoU value
required for a detection to be considered a true positive. Adjusting
this threshold can help in fine-tuning the model’s precision and
recall.

Experiment with different values for the Confidence Thresh-
old and IoU Threshold to find the optimal balance between
detecting persons accurately and minimizing false positives.
The best settings may vary depending on our specific appli-
cation and the characteristics of the images or video feed.

Pose/Keypoint Detection

Pose or keypoint detection is a sophisticated area within computer vi-
sion that focuses on identifying specific points of interest within an
image or video frame, often related to human bodies, faces, or other
objects of interest. This technology can detect and map out the var-
ious keypoints of a subject, such as the joints on a human body or
the features of a face, enabling the analysis of postures, movements,
and gestures. This has profound implications for various applications,
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including augmented reality, human-computer interaction, sports ana-
lytics, and healthcare monitoring, where understanding human motion
and activity is crucial.

Unlike general object detection, which identifies and locates objects,
pose detection drills down to a finer level of detail, capturing the nu-
anced positions and orientations of specific parts. Leading architectures
in this field include OpenPose, AlphaPose, and PoseNet, each designed
to tackle the challenges of pose estimation with varying degrees of
complexity and precision. Through advancements in deep learning
and neural networks, pose detection has become increasingly accurate
and efficient, offering real-time insights into the intricate dynamics of
subjects captured in visual data.

So, let’s explore this popular CV application, Pose/Keypoint Detection.

Stop the current model inference by pressing [Stop] in the Preview
area. Select the model and press [Send]. Once the model is uploaded
successfully, you can view the live feed from the Grove Vision AI (V2)
camera in the Preview area on the right, along with the inference details
displayed in the Serial Monitor (accessible by clicking the [Device Log]
button at the top).
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The YOLOV8 Pose model was trained using the COCO-Pose Dataset,
which contains 200K images labeled with 17 keypoints for pose estima-
tion tasks.

Let’s look at a single screenshot of the inference (to simplify, let’s analyse
an image with a single person in it). We can note that we have two
lines, one with the inference performance in milliseconds (121 ms) and
a second line with the keypoints as below:

• 1 box of info, the same as we got with the object detection example
(box coordinates (113, 119, 67, 208), inference result (90), label (0).

• 17 groups of 4 numbers represent the 17 “joints” of the body,
where ‘0’ is the nose, ‘1’ and ‘2’ are the eyes, ‘15’ and’ 16’ are the
feet, and so on.

To understand a pose estimation project more deeply, please
refer to the tutorial: Exploring AI at the Edge! - Pose Esti-
mation.

https://docs.ultralytics.com/datasets/pose/coco/
https://www.hackster.io/mjrobot/exploring-ai-at-the-edge-97588d#toc-pose-estimation-10
https://www.hackster.io/mjrobot/exploring-ai-at-the-edge-97588d#toc-pose-estimation-10
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Image Classification

Image classification is a foundational task within computer vision aimed
at categorizing entire images into one of several predefined classes. This
process involves analyzing the visual content of an image and assigning
it a label from a fixed set of categories based on the predominant object
or scene it contains.

Image classification is crucial in various applications, ranging from
organizing and searching through large databases of images in digital
libraries and social media platforms to enabling autonomous systems
to comprehend their surroundings. Common architectures that have
significantly advanced the field of image classification include Convolu-
tional Neural Networks (CNNs), such as AlexNet, VGGNet, and ResNet.
These models have demonstrated remarkable accuracy on challenging
datasets, such as ImageNet, by learning hierarchical representations of
visual data.

As the cornerstone of many computer vision systems, image classifica-
tion drives innovation, laying the groundwork for more complex tasks
like object detection and image segmentation, and facilitating a deeper
understanding of visual data across various industries. So, let’s also
explore this computer vision application.

This example is available on the SenseCraft ToolKit, but not
in the SenseCraft AI Studio. In the last one, it is possible to
find other examples of Image Classification.

After the model is uploaded successfully, we can view the live feed from
the Grove Vision AI (V2) camera in the Preview area on the right, along
with the inference details displayed in the Serial Monitor (by clicking
the [Device Log] button at the top).
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As a result, we will receive a score and the class as output.

For example, [99, 1] means class: 1 (Person) with a score of 0.99. Once
this model is a binary classification, class 0 will be “No Person” (or
Background). The Inference latency is 15ms or around 70fps.

Power Consumption

To run the Mobilenet V2 0.35, the Grove Vision AI V2 had a peak current
of 80mA at 5.24V, resulting in a power consumption of 420mW.

Running the same model on XIAO ESP32S3 Sense, the power consump-
tion was 523mW with a latency of 291ms.
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Exploring Other Models on SenseCraft AI Studio

Several public AI models can also be downloaded from the SenseCraft
AI WebPage. For example, you can run a Swift-YOLO model, detecting
traffic lights as shown here:

The latency of this model is approximately 86 ms, with an average
power consumption of 420 mW.

An Image Classification Project

Let’s create a complete Image Classification project, using the SenseCraft
AI Studio.

On SenseCraft AI Studio: Let’s open the tab Training:

https://sensecraft.seeed.cc/ai/model
https://sensecraft.seeed.cc/ai/model
https://sensecraft.seeed.cc/ai/view-model/60281-traffic-light-detection?tab=public
https://sensecraft.seeed.cc/ai/view-model/60281-traffic-light-detection?tab=public
https://sensecraft.seeed.cc/ai/training
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The default is to train a Classification model with a WebCam if
it is available. Let’s select the Grove Vision AI V2 instead. Pressing
the green button[Connect], a Pop-Up window will appear. Select the
corresponding Port and press the blue button [Connect].

The image streamed from the Grove Vision AI V2 will be displayed.
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The Goal

The first step is always to define a goal. Let’s classify, for example, two
simple objects—for instance, a toy box and a toy wheel. We should also
include a 3rd class of images, background, where no object is in the
scene.

Data Collection

Let’s create the classes, following, for example, an alphabetical order:

• Class1: background
• Class 2: box
• Class 3: wheel
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Select one of the classes and keep pressing the green button under the
preview area. The collected images will appear on the Image Samples
Screen.

After collecting the images, review them and delete any incorrect
ones.

Collect around 50 images from each class and go to Training Step:

Training

Confirm if the correct device is selected (Grove Vision AI V2) and
press [Start Training]
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Test

After training, the inference result can be previewed.

Note that the model is not running on the device. We are,
in fact, only capturing the images with the device and per-
forming a live preview using the training model, which is
running in the Studio.

Now is time to really deploy the model in the device:
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Deployment

Select the trained model on [Deploy to device], select the Grove Vi-
sion AI V2:

The Studio will redirect us to the Vision Workplace tab. Confirm the
deployment, select the appropriate Port, and connect it:

The model will be flashed into the device. After an automatic reset,
the model will start running on the device. On the Device Logger,
we can see that the inference has a latency of approximately 8 ms,
corresponding to a frame rate of 125 frames per second (FPS).

Also, note that it is possible to adjust the model’s confidence.
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To run the Image Classification Model, the Grove Vision
AI V2 had a peak current of 80mA at 5.24V, resulting in a
power consumption of 420mW.

Saving the Model

It is possible to save the model in the SenseCraft AI Studio. The Studio
will keep all our models, which can be deployed later. For that, return
to the Training tab and select the button [Save to SenseCraft]:

Summary

In this lab, we explored several computer vision (CV) applications
using the Seeed Studio Grove Vision AI Module V2, demonstrating its
exceptional capabilities as a powerful yet compact device specifically
designed for embedded machine learning applications.

https://wiki.seeedstudio.com/grove_vision_ai_v2/
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Performance Excellence: The Grove Vision AI V2 demonstrated re-
markable performance across multiple computer vision tasks. With its
Himax WiseEye2 chip featuring a dual-core Arm Cortex-M55 and in-
tegrated ARM Ethos-U55 neural network unit, the device delivered:

• Image Classification: 15 ms inference time (67 FPS)
• Object Detection (Person): 48 ms to 76 ms inference time (21 FPS

to 13 FPS)
• Pose Detection: 121 ms real-time keypoint detection with 17-joint

tracking (8 FPS)

Power Efficiency Leadership: One of the most compelling advantages
of the Grove Vision AI V2 is its superior power efficiency. Comparative
testing revealed significant improvements over traditional embedded
platforms:

• Grove Vision AI V2: 80 mA (410 mW) peak consumption (60+
FPS)

• XIAO ESP32S3: Performing similar CV tasks (Image Classifica-
tion) 523 mW (3+ FPS)

Practical Implementation: The device’s versatility was demonstrated
through a comprehensive end-to-end project, encompassing dataset
creation, model training, deployment, and offline inference.

Developer-Friendly Ecosystem: The SenseCraft AI Studio, with its
no-code deployment and integration capabilities for custom applica-
tions, makes the Grove Vision AI V2 accessible to both beginners and
advanced developers. The extensive library of pre-trained models and
support for custom model deployment provide flexibility for diverse
applications.

The Grove Vision AI V2 represents a significant advancement in edge
AI hardware, offering professional-grade computer vision capabilities
in a compact, energy-efficient package that democratizes AI deploy-
ment for embedded applications across industrial, IoT, and educational
domains.

Key Takeaways

This Lab demonstrates that sophisticated computer vision applications
are not limited to cloud-based solutions or power-hungry hardware, as
the Raspberry Pi or Jetson Nanos – they can now be deployed effectively
at the edge with remarkable efficiency and performance.
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Optionally, we can have the XIAO Vision AI Camera. This innovative
vision solution seamlessly combines the Grove Vision AI V2 module,
XIAO ESP32-C3 controller, and an OV5647 camera, all housed in a
custom 3D-printed enclosure:

Resources

SenseCraft AI Studio Instructions.

SenseCraft-Web-Toolkit website.

SenseCraft AI Studio

Himax AI Web Toolkit

Himax examples

https://www.seeedstudio.com/XIAO-Vision-AI-Camera-p-6450.html
https://wiki.seeedstudio.com/sensecraft_ai_pretrained_models_for_grove_visionai_v2/
https://seeed-studio.github.io/SenseCraft-Web-Toolkit/#/setup/process
https://sensecraft.seeed.cc/ai/model
https://github.com/HimaxWiseEyePlus/Seeed_Grove_Vision_AI_Module_V2/releases/download/v1.1/Himax_AI_web_toolkit.zip
https://github.com/Seeed-Studio/wiki-documents/blob/docusaurus-version/docs/Sensor/Grove/Grove_Sensors/AI-powered/Grove-vision-ai-v2/Development/grove-vision-ai-v2-himax-sdk.md
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Using Seeed StudioGrove Vision AIModule V2 (HimaxWiseEye2)

In this Lab, we will explore Image Classification using the Seeed Studio
Grove Vision AI Module V2, a powerful yet compact device specifically
designed for embedded machine learning applications. Based on the

373

https://wiki.seeedstudio.com/grove_vision_ai_v2/
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HimaxWiseEye2 chip, this module is designed to enable AI capabilities
on edge devices, making it an ideal tool for Edge Machine Learning
(ML) applications.

Introduction

So far, we have explored several computer vision models previously
uploaded by Seeed Studio or used the SenseCraft AI Studio for Image
Classification, without choosing a specific model. Let’s now develop
our Image Classification project from scratch, where we will select our
data and model.

Below, we can see the project’s main steps and where we will work with
them:

Project Goal

The first step in any machine learning (ML) project is defining the goal.
In this case, the goal is to detect and classify two specific objects present
in a single image. For this project, we will use two small toys: a robot
and a small Brazilian parrot (named Periquito). Also, we will collect
images of a background where those two objects are absent.
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Data Collection

With the Machine Learning project goal defined, dataset collection is
the next and most crucial step. Suppose your project utilizes images
that are publicly available on datasets, for example, to be used on a
Person Detection project. In that case, you can download the Wake
Vision dataset for use in the project.

But, in our case, we define a project where the images do not exist
publicly, so we need to generate them. We can use a phone, computer
camera, or other devices to capture the photos, offline or connected to
the Edge Impulse Studio.

If you want to use the Grove Vision AI V2 to capture your dataset, you
can use the SenseCraft AI Studio as we did in the previous Lab, or the
camera_web_server sketch as we will describe later in the Postprocess-
ing / Getting the Video Stream section of this Lab.

https://edgeai.modelnova.ai/datasets/details/wake-vision
https://edgeai.modelnova.ai/datasets/details/wake-vision
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In this Lab, we will use the SenseCraft AI Studio to collect the dataset.

Collecting Data with the SenseCraft AI Studio

On SenseCraft AI Studio: Let’s open the tab Training.

The default is to train a Classification model with a WebCam if it is
available. Let’s select the Grove Vision AI V2 instead. Pressing the
green button[Connect] (1), a Pop-Up window will appear. Select the
corresponding Port (2) and press the blue button [Connect] (3).

The image streamed from the Grove Vision AI V2 will be displayed.

Image Collection

Let’s create the classes, following, for example, an alphabetical order:

• Class1: background
• Class 2: periquito
• Class 3: robot

https://sensecraft.seeed.cc/ai/training
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Select one of the classes (note that a green line will be around the
window) and keep pressing the green button under the preview area.
The collected images will appear on the Image Samples Screen.

After collecting the images, review them and, if necessary, delete any
incorrect ones.
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Collect around 50 images from each class. After you collect the three
classes, open the menu on each of them and select Export Data.

In the Download area of the Computer, we will get three zip files, each
one with its corresponding class name. Each Zip file contains a folder
with the images.

Uploading the dataset to the Edge Impulse Studio

We will use the Edge Impulse Studio to train our model. Edge Im-
pulse is a leading development platform for machine learning on edge
devices.

• Enter your account credentials (or create a free account) at Edge
Impulse.

• Next, create a new project:

https://www.edgeimpulse.com/
https://www.edgeimpulse.com/
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The dataset comprises approximately 50 images per label,
with 40 for training and 10 for testing.

Impulse Design and Pre-Processing

Impulse Design

An impulse takes raw data (in this case, images), extracts features (re-
sizes pictures), and then uses a learning block to classify new data.

Classifying images is the most common application of deep learning,
but a substantial amount of data is required to accomplish this task.
We have around 50 images for each category. Is this number enough?
Not at all! We will need thousands of images to “teach” or “model”
each class, allowing us to differentiate them. However, we can resolve
this issue by retraining a previously trained model using thousands of
images. We refer to this technique as “Transfer Learning” (TL). With
TL, we can fine-tune a pre-trained image classification model on our
data, achieving good performance even with relatively small image
datasets, as in our case.
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So, starting from the raw images, we will resize them (96x96) pixels and
feed them to our Transfer Learning block:

For comparison, we will keep the image size as 96 x 96. How-
ever, keep in mind that with the Grove Vision AI Module
V2 and its internal SRAM of 2.4 MB, larger images can be
utilized (for example, 160 x 160).

Also select the Targetdevice (Himax WiseEye2 (M55 400 MHz + U55))
on the up-right corner.

Pre-processing (Feature generation)

Besides resizing the images, we can convert them to grayscale or retain
their original RGB color depth. Let’s select [RGB] in the Image section.
Doing that, each data sample will have a dimension of 27,648 features
(96x96x3). Pressing [Save Parameters] will open a new tab, Generate
Features. Press the button [Generate Features]to generate the fea-
tures.

Model Design, Training, and Test

In 2007, Google introduced MobileNetV1. In 2018, MobileNetV2: In-
verted Residuals and Linear Bottlenecks, was launched, and, in 2019,
the V3. The Mobilinet is a family of general-purpose computer vi-
sion neural networks explicitly designed for mobile devices to support

https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
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classification, detection, and other applications. MobileNets are small,
low-latency, low-power models parameterized to meet the resource
constraints of various use cases.

Although the base MobileNet architecture is already compact and has
low latency, a specific use case or application may often require the
model to be even smaller and faster. MobileNets introduce a straight-
forward parameter, α (alpha), called the width multiplier to construct
these smaller, less computationally expensive models. The role of the
width multiplier α is to thin a network uniformly at each layer.

Edge Impulse Studio has available MobileNet V1 (96x96 images) and
V2 (96x96 and 160x160 images), with several different α values (from
0.05 to 1.0). For example, you will get the highest accuracy with V2,
160x160 images, and α=1.0. Of course, there is a trade-off. The higher
the accuracy, the more memory (around 1.3M RAM and 2.6M ROM)
will be needed to run the model, implying more latency. The smaller
footprint will be obtained at another extreme with MobileNet V1 and
α=0.10 (around 53.2K RAM and 101K ROM).

For comparison, we will use the MobileNet V2 0.1 as our
base model (but a model with a greater alpha can be used
here). The final layer of our model, preceding the output
layer, will have 8 neurons with a 10% dropout rate for pre-
venting overfitting.

Another necessary technique to use with deep learning is data aug-
mentation. Data augmentation is a method that can help improve the
accuracy of machine learning models by creating additional artificial
data. A data augmentation system makes small, random changes to
your training data during the training process (such as flipping, crop-
ping, or rotating the images).

Set the Hyperparameters:

• Epochs: 20,
• Bach Size: 32
• Learning Rate: 0.0005
• Validation size: 20%

Training result:
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The model profile predicts 146 KB of RAM and 187 KB of Flash, indi-
cating no problem with the Grove AI Vision (V2), which has almost 2.5
MB of internal SRAM. Additionally, the Studio indicates a latency of
around 4 ms.

Despite this, with a 100% accuracy on the Validation set
when using the spare data for testing, we confirmed an
Accuracy of 81%, using the Quantized (Int8) trained model.
However, it is sufficient for our purposes in this lab.

Model Deployment

On the Deployment tab, we should select: Seeed Grove Vision AI
Module V2 (Himax WiseEye2) and press [Build]. A ZIP file will be
downloaded to our computer.

The Zip file contains the model_vela.tflite, which is a TensorFlow
Lite (TFLite) model optimized for neural processing units (NPUs) using
the Vela compiler, a tool developed by Arm to adapt TFLite models for
Ethos-U NPUs.

We can flash the model following the instructions in the README.txt or
use the SenseCraft AI Studio. We will use the latter.
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Deploy the model on the SenseCraft AI Studio

On SenseCraft AI Studio, go to the Vision Workspace tab, and connect
the device:

You should see the last model that was uploaded to the device. Select
the green button [Upload Model]. A pop-up window will ask for the
model name, the model file, and to enter the class names (objects).
We should use labels following alphabetical order: 0: background, 1:
periquito, and 2: robot, and then press [Send].
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After a few seconds, the model will be uploaded (“flashed”) to our
device, and the camera image will appear in real-time on the Preview
Sector. The Classification result will be displayed under the image
preview. It is also possible to select the Confidence Threshold of your
inference using the cursor on Settings.

On the Device Logger, we can view the Serial Monitor, where we can
observe the latency, which is approximately 1 to 2 ms for pre-processing
and 4 to 5 ms for inference, aligning with the estimates made in Edge
Impulse Studio.

Here are other screenshots:
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The power consumption of this model is approximately 70 mA, equiva-
lent to 0.4 W.

Image Classification (non-official) Benchmark

Several development boards can be used for embedded machine learn-
ing (tinyML), and the most common ones (so far) for Computer Vision
applications (with low energy) are the ESP32 CAM, the Seeed XIAO
ESP32S3 Sense, and the Arduino Nicla Vision.

Taking advantage of this opportunity, a similarly trained model, Mo-
bilenetV2 96x96, with an alpha of 0.1, was also deployed on the ESP-
CAM, the XIAO, and a Raspberry Pi Zero W2. Here is the result:

The Grove Vision AI V2 with an ARM Ethos-U55 was ap-
proximately 14 times faster than devices with an ARM-M7,
and more than 100 times faster than an Xtensa LX6 (ESP-
CAM). Even when compared to a Raspberry Pi, with a much
more powerful CPU, the U55 reduces latency by almost half.
Additionally, the power consumption is lower than that of
other devices (see the full article here for power consump-
tion comparison).

https://www.hackster.io/limengdu0117/2024-mcu-ai-vision-boards-performance-comparison-998505
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Postprocessing

Now that we have the model uploaded to the board and working cor-
rectly, classifying our images, let’s connect a Master Device to export the
inference result to it and see the result completely offline (disconnected
from the PC and, for example, powered by a battery).

Note that we can use any microcontroller as a Master Con-
troller, such as the XIAO, Arduino, or Raspberry Pi.

Getting the Video Stream

The image processing and model inference are processed locally in
Grove Vision AI (V2), and we want the result to be output to the XIAO
(Master Controller) via IIC. For that, we will use the Arduino SSMA
library. This library’s primary purpose is to process Grove Vision AI’s
data stream, which does not involve model inference.

The Grove Vision AI (V2) communicates (Inference result)
with the XIAO via the IIC; the device’s IIC address is 0x62.
Image information transfer is via the USB serial port.

Step 1: Download the Arduino SSMA library as a zip file from its
GitHub:

Step 2: Install it in the Arduino IDE (sketch > Include Library >
Add .Zip Library).

Step 3: Install the ArduinoJSON library.

https://github.com/Seeed-Studio/Seeed_Arduino_SSCMA/
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Step 4: Install the Eigen Library

Step 3: Now, connect the XIAO and Grove Vision AI (V2) via the socket
(a row of pins) located at the back of the device.
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CAUTION: Please note the direction of the connection,
Grove Vision AI’s Type-C connector should be in the same
direction as XIAO’s Type-C connector.

Step 5: Connect the XIAO USB-C port to your computer

Step 6: In the Arduino IDE, select the Xiao board and the corresponding
USB port.

Once we want to stream the video to a webpage, we will use the XIAO
ESP32S3, which has wifi and enough memory to handle images. Select
XIAO_ESP32S3 and the appropriate USB Port:

By default, the PSRAM is disabled. Open the Tools menu and on
PSRAM: "OPI PSRAM"select OPI PSRAM.
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Step 7: Open the example in Arduino IDE:

File -> Examples -> Seeed_Arduino_SSCMA -> camera_web_server.

And edit the ssid and password in the camera_web_server.ino sketch
to match the Wi-Fi network.

Step 8: Upload the sketch to the board and open the Serial Monitor.
When connected to the Wi-Fi network, the board’s IP address will be
displayed.
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Open the address using a web browser. A Video App will be available.
To see only the video stream from the Grove Vision AI V2, press [Sample
Only] and [Start Stream].

If you want to create an image dataset, you can use this app, saving
frames of the video generated by the device. Pressing [Save Frame],
the image will be saved in the download area of our desktop.
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Opening the Appwithout selecting [Sample Only], the inference result
should appear on the video screen, but this does not happen for Image
Classification. For Object Detection or Pose Estimation, the result is
embedded with the video stream.

For example, if the model is a Person Detection using YoloV8:

Getting the Inference Result

• Go to File -> Examples -> Seeed_Arduino_SSCMA -> inference_-
class.

• Upload the sketch to the board, and open the Serial Monitor.
• Pointing the camera at one of our objects, we can see the inference

result on the Serial Terminal.
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The inference running on the Arduino IDE had an average
consumption of 160 mA or 800 mW and a peak of 330 mA
1.65 W when transmitting the image to the App.

Postprocessing with LED

The idea behind our postprocessing is that whenever a specific image is
detected (for example, the Periquito - Label:1), the User LED is turned
on. If the Robot or a background is detected, the LED will be off.

Copy the below code and past it to your IDE:

#include <Seeed_Arduino_SSCMA.h>
SSCMA AI;

void setup()
{

AI.begin();

Serial.begin(115200);
while (!Serial);
Serial.println("Inferencing - Grove AI V2 / XIAO ESP32S3");

// Pins for the built-in LED
pinMode(LED_BUILTIN, OUTPUT);
// Ensure the LED is OFF by default.
// Note: The LED is ON when the pin is LOW, OFF when HIGH.
digitalWrite(LED_BUILTIN, HIGH);

}

void loop()
{
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if (!AI.invoke()){
Serial.println("\nInvoke Success");
Serial.print("Latency [ms]: prepocess=");
Serial.print(AI.perf().prepocess);
Serial.print(", inference=");
Serial.print(AI.perf().inference);
Serial.print(", postpocess=");
Serial.println(AI.perf().postprocess);
int pred_index = AI.classes()[0].target;
Serial.print("Result= Label: ");
Serial.print(pred_index);
Serial.print(", score=");
Serial.println(AI.classes()[0].score);
turn_on_led(pred_index);

}
}

/**
* @brief turn_off_led function - turn-off the User LED
*/
void turn_off_led(){

digitalWrite(LED_BUILTIN, HIGH);
}

/**
* @brief turn_on_led function used to turn on the User LED
* @param[in] pred_index
* label 0: [0] ==> ALL OFF
* label 1: [1] ==> LED ON
* label 2: [2] ==> ALL OFF
* label 3: [3] ==> ALL OFF
*/
void turn_on_led(int pred_index) {

switch (pred_index)
{

case 0:
turn_off_led();
break;

case 1:
turn_off_led();
digitalWrite(LED_BUILTIN, LOW);
break;

case 2:



Introduction 394

turn_off_led();
break;

case 3:
turn_off_led();
break;

}
}

This sketch uses the Seeed_Arduino_SSCMA.h library to interface with
the Grove Vision AI Module V2. The AI module and the LED are ini-
tialized in the setup() function, and serial communication is started.

The loop() function repeatedly calls the invoke() method to perform
inference using the built-in algorithms of the Grove Vision AI Module
V2. Upon a successful inference, the sketch prints out performance
metrics to the serial monitor, including preprocessing, inference, and
postprocessing times.

The sketch processes and prints out detailed information about the
results of the inference:

• (AI.classes()[0]) that identifies the class of image (.target)
and its confidence score (.score).

• The inference result (class) is stored in the integer variable pred_-
index, which will be used as an input to the function turn_-
on_led(). As a result, the LED will turn ON, depending on the
classification result.

Here is the result:

If the Periquito is detected (Label:1), the LED is ON:

If the Robot is detected (Label:2) the LED is OFF (Same for Background
(Label:0):
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Therefore, we can now power the Grove Vision AI V2 + Xiao ESP32S3
with an external battery, and the inference result will be displayed by
the LED completely offline. The consumption is approximately 165 mA
or 825 mW.

It is also possible to send the result using Wifi, BLE, or
other communication protocols available on the used Master
Device.

Optional: Post-processing on external devices

Of course, one of the significant advantages of working with EdgeAI is
that devices can run entirely disconnected from the cloud, allowing for
seamless interactions with the real world. We did it in the last section,
but using the internal Xiao LED. Now, we will connect external LEDs
(which could be any actuator).

The LEDS should be connected to the XIAO ground via a
220-ohm resistor.
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The idea is to modify the previous sketch to handle the three external
LEDs.

GOAL: Whenever the image of a Periquito is detected, the LED Green
will be ON; if it is a Robot, the LED Yellow will be ON; if it is a Back-
ground, the LED Red will be ON.

The image processing and model inference are processed locally in
Grove Vision AI (V2), and we want the result to be output to the XIAO
via IIC. For that, we will use the Arduino SSMA library again.

Here the sketch to be used:

#include <Seeed_Arduino_SSCMA.h>
SSCMA AI;

// Define the LED pin according to the pin diagram
// The LEDS negative lead should be connected to the XIAO ground
// via a 220-ohm resistor.
int LEDR = D1; # XIAO ESP32S3 Pin 1
int LEDY = D2; # XIAO ESP32S3 Pin 2
int LEDG = D3; # XIAO ESP32S3 Pin 3

void setup()
{

AI.begin();

Serial.begin(115200);
while (!Serial);
Serial.println("Inferencing - Grove AI V2 / XIAO ESP32S3");

// Initialize the external LEDs
pinMode(LEDR, OUTPUT);
pinMode(LEDY, OUTPUT);
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pinMode(LEDG, OUTPUT);
// Ensure the LEDs are OFF by default.
// Note: The LEDs are ON when the pin is HIGH, OFF when LOW.
digitalWrite(LEDR, LOW);
digitalWrite(LEDY, LOW);
digitalWrite(LEDG, LOW);

}

void loop()
{

if (!AI.invoke()){
Serial.println("\nInvoke Success");
Serial.print("Latency [ms]: prepocess=");
Serial.print(AI.perf().prepocess);
Serial.print(", inference=");
Serial.print(AI.perf().inference);
Serial.print(", postpocess=");
Serial.println(AI.perf().postprocess);
int pred_index = AI.classes()[0].target;
Serial.print("Result= Label: ");
Serial.print(pred_index);
Serial.print(", score=");
Serial.println(AI.classes()[0].score);
turn_on_leds(pred_index);

}
}

/**
* @brief turn_off_leds function - turn-off all LEDs
*/
void turn_off_leds(){

digitalWrite(LEDR, LOW);
digitalWrite(LEDY, LOW);
digitalWrite(LEDG, LOW);

}

/**
* @brief turn_on_leds function used to turn on a specific LED
* @param[in] pred_index
* label 0: [0] ==> Red ON
* label 1: [1] ==> Green ON
* label 2: [2] ==> Yellow ON
*/



Introduction 398

void turn_on_leds(int pred_index) {
switch (pred_index)
{

case 0:
turn_off_leds();
digitalWrite(LEDR, HIGH);
break;

case 1:
turn_off_leds();
digitalWrite(LEDG, HIGH);
break;

case 2:
turn_off_leds();
digitalWrite(LEDY, HIGH);
break;

case 3:
turn_off_leds();
break;

}
}

We should connect the Grove Vision AI V2 with the XIAO using its
I2C Grove connector. For the XIAO, we will use an Expansion Board
for the facility (although it is possible to connect the I2C directly to the
XIAO’s pins). We will power the boards using the USB-C connector,
but a battery can also be used.

https://wiki.seeedstudio.com/Seeeduino-XIAO-Expansion-Board/
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Here is the result:

The power consumption reached a peak of 240 mA (Green
LED), equivalent to 1.2 W. Driving the Yellow and Red LEDs
consumes 14 mA, equivalent to 0.7 W. Sending information
to the terminal via serial has no impact on power consump-
tion.

Summary

In this lab, we’ve explored the complete process of developing an image
classification system using the Seeed Studio Grove Vision AI Module
V2 powered by the Himax WiseEye2 chip. We’ve walked through every
stage of the machine learning workflow, from defining our project goals
to deploying a working model with real-world interactions.

The Grove Vision AI V2 has demonstrated impressive performance,
with inference times of just 4-5ms, dramatically outperforming other
common tinyML platforms. Our benchmark comparison showed it to
be approximately 14 times faster than ARM-M7 devices and over 100
times faster than an Xtensa LX6 (ESP-CAM). Even when compared to
a Raspberry Pi Zero W2, the Edge TPU architecture delivered nearly
twice the speed while consuming less power.

Through this project, we’ve seen how transfer learning enables us to
achieve good classification results with a relatively small dataset of cus-
tom images. The MobileNetV2 model with an alpha of 0.1 provided an
excellent balance of accuracy and efficiency for our three-class problem,
requiring only 146 KB of RAM and 187 KB of Flash memory, well within
the capabilities of the Grove Vision AI Module V2’s 2.4 MB internal
SRAM.

We also explored several deployment options, from viewing inference
results through the SenseCraft AI Studio to creating a standalone system
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with visual feedback using LEDs. The ability to stream video to a
web browser and process inference results locally demonstrates the
versatility of edge AI systems for real-world applications.

The power consumption of our final system remained impressively low,
ranging from approximately 70mA (0.4W) for basic inference to 240mA
(1.2W) when driving external components. This efficiency makes the
Grove Vision AI Module V2 an excellent choice for battery-powered
applications where power consumption is critical.

This lab has demonstrated that sophisticated computer vision tasks can
now be performed entirely at the edge, without reliance on cloud ser-
vices or powerful computers. With tools like Edge Impulse Studio and
SenseCraft AI Studio, the development process has become accessible
even to those without extensive machine learning expertise.

As edge AI technology continues to evolve, we can expect even more
powerful capabilities from compact, energy-efficient devices like the
Grove Vision AI Module V2, opening up new possibilities for smart
sensors, IoT applications, and embedded intelligence in everyday ob-
jects.

Resources

Collecting Images with SenseCraft AI Studio.

Edge Impulse Studio Project

SenseCraft AI Studio - Vision Workplace (Deploy Models)

Other Himax examples

Arduino Sketches

https://sensecraft.seeed.cc/ai/training
https://studio.edgeimpulse.com/public/712491/live
https://sensecraft.seeed.cc/ai/device/local/36
https://github.com/Seeed-Studio/wiki-documents/blob/docusaurus-version/docs/Sensor/Grove/Grove_Sensors/AI-powered/Grove-vision-ai-v2/Development/grove-vision-ai-v2-himax-sdk.md
https://github.com/Mjrovai/Seeed-Grove-Vision-AI-V2/tree/main/Arduino_Sketches
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Overview

These labs offer invaluable hands-on experience with machine learning
systems, leveraging the versatility and accessibility of the Raspberry
Pi platform. Unlike working with large-scale models that demand
extensive cloud resources, these exercises allow you to directly interact
with hardware and software in a compact yet powerful edge computing
environment. You’ll gain practical insights into deploying AI at the
edge by utilizing Raspberry Pi’s capabilities, from the efficient Pi Zero to
the more robust Pi 4 or Pi 5 models. This approach provides a tangible
understanding of the challenges and opportunities in implementing
machine learning solutions in resource-constrained settings. While
we’re working at a smaller scale, the principles and techniques you’ll
learn are fundamentally similar to those used in larger systems. The
Raspberry Pi’s ability to run a whole operating system and its extensive
GPIO capabilities allow for a rich learning experience that bridges
the gap between theoretical knowledge and real-world application.
Through these labs, you’ll grasp the intricacies of EdgeML and develop
skills applicable to a wide range of AI deployment scenarios.

Figure 1.19: Raspberry Pi Zero 2-W and Raspberry Pi 5 with Camera
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Where to Buy

Raspberry Pi boards are available from authorized resellers world-
wide:

• Raspberry Pi Products (Official site with reseller locator)
• Raspberry Pi Zero 2 W: ~$15
• Raspberry Pi 4 (4GB): ~$55
• Raspberry Pi 5 (4GB): ~$60
• Raspberry Pi 5 (8GB): ~$80

Camera modules, power adapters, and SD cards are available from the
same resellers.

Pre-requisites

• Raspberry Pi: Ensure you have at least one of the boards: the
Raspberry Pi Zero 2 W, Raspberry Pi 4 or 5 for the Vision Labs,
and the Raspberry 5 for the GenAi labs.

• Power Adapter: To Power on the boards.
– Raspberry Pi Zero 2-W: 2.5 W with a Micro-USB adapter
– Raspberry Pi 4 or 5: 3.5 W with a USB-C adapter

• Network: With internet access for downloading the necessary
software and controlling the boards remotely.

• SD Card (32 GB minimum) and an SD card Adapter: For the
Raspberry Pi OS.

Setup

• Setup Raspberry Pi

Exercises

Modality Task Description Link

Vision Image
Classification

Learn to classify
images

Link

https://www.raspberrypi.com/products/
setup/setup.qmd
image_classification/image_classification.qmd
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Modality Task Description Link

Vision Object Detection Implement object
detection

Link

GenAI Small Language
Models

Deploy SLMs at the
Edge

Link

GenAI Visual-Language
Models

Deploy VLMs at
the Edge

Link

object_detection/object_detection.qmd
llm/llm.qmd
vlm/vlm.qmd




Setup

Figure 1.20: DALL·E prompt - An electronics laboratory environment inspired by the 1950s, with a cartoon
style. The lab should have vintage equipment, large oscilloscopes, old-fashioned tube radios, and large, boxy
computers. The Raspberry Pi 5 board is prominently displayed, accurately shown in its real size, similar to a
credit card, on a workbench. The Pi board is surrounded by classic lab tools like a soldering iron, resistors, and
wires. The overall scene should be vibrant, with exaggerated colors and playful details characteristic of a
cartoon. No logos or text should be included.
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This chapter will guide you through setting up Raspberry Pi Zero 2 W
(Raspi-Zero) and Raspberry Pi 5 (Raspi-5) models. We’ll cover hardware
setup, operating system installation, initial configuration, and tests.

The general instructions for the Raspi-5 also apply to the
older Raspberry Pi versions, such as the Raspi-3 and Raspi-
4.

Overview

The Raspberry Pi is a powerful and versatile single-board computer that
has become an essential tool for engineers across various disciplines.
Developed by the Raspberry Pi Foundation, these compact devices offer
a unique combination of affordability, computational power, and exten-
sive GPIO (General Purpose Input/Output) capabilities, making them
ideal for prototyping, embedded systems development, and advanced
engineering projects.

Key Features

1. Computational Power: Despite their small size, Raspberry Pis
offers significant processing capabilities, with the latest models
featuring multi-core ARM processors and up to 8 GB of RAM.

2. GPIO Interface: The 40-pin GPIO header allows direct interac-
tion with sensors, actuators, and other electronic components,
facilitating hardware-software integration projects.

3. Extensive Connectivity: Built-in Wi-Fi, Bluetooth, Ethernet, and
multiple USB ports enable diverse communication and network-
ing projects.

4. Low-Level Hardware Access: Raspberry Pis provides access to
interfaces like I2C, SPI, and UART, allowing for detailed control
and communication with external devices.

5. Real-Time Capabilities: With proper configuration, Raspberry
Pis can be used for soft real-time applications, making them suit-
able for control systems and signal processing tasks.

6. Power Efficiency: Low power consumption enables battery-
powered and energy-efficient designs, especially in models like
the Pi Zero.

https://www.raspberrypi.org/
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Raspberry Pi Models (covered in this book)

1. Raspberry Pi Zero 2 W (Raspi-Zero):
• Ideal for: Compact embedded systems
• Key specs: 1 GHz single-core CPU (ARM Cortex-A53), 512

MB RAM, minimal power consumption

2. Raspberry Pi 5 (Raspi-5):
• Ideal for: More demanding applications such as edge com-

puting, computer vision, and edgeAI applications, including
LLMs.

• Key specs: 2.4 GHz quad-core CPU (ARM Cortex A-76), up
to 8 GB RAM, PCIe interface for expansions

Engineering Applications

1. Embedded Systems Design: Develop and prototype embedded
systems for real-world applications.

2. IoT and Networked Devices: Create interconnected devices and
explore protocols like MQTT, CoAP, and HTTP/HTTPS.

3. Control Systems: Implement feedback control loops, PID con-
trollers, and interface with actuators.

4. Computer Vision and AI: Utilize libraries like OpenCV and Ten-
sorFlow Lite for image processing and machine learning at the
edge.

5. Data Acquisition and Analysis: Collect sensor data, perform
real-time analysis, and create data logging systems.

6. Robotics: Build robot controllers, implement motion planning
algorithms, and interface with motor drivers.

7. Signal Processing: Perform real-time signal analysis, filtering,
and DSP applications.

8. Network Security: Set up VPNs, firewalls, and explore network
penetration testing.

This tutorial will guide you through setting up the most common Rasp-
berry Pi models, enabling you to start on your machine learning project
quickly. We’ll cover hardware setup, operating system installation,
and initial configuration, focusing on preparing your Pi for Machine
Learning applications.
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Hardware Overview

Raspberry Pi Zero 2W

• Processor: 1 GHz quad-core 64-bit Arm Cortex-A53 CPU
• RAM: 512 MB SDRAM
• Wireless: 2.4 GHz 802.11 b/g/n wireless LAN, Bluetooth 4.2, BLE
• Ports: Mini HDMI, micro USB OTG, CSI-2 camera connector
• Power: 5 V via micro USB port

Raspberry Pi 5
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• Processor:
– Pi 5: Quad-core 64-bit Arm Cortex-A76 CPU @ 2.4 GHz
– Pi 4: Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5 GHz

• RAM: 2 GB, 4 GB, or 8 GB options (8 GB recommended for AI
tasks)

• Wireless: Dual-band 802.11ac wireless, Bluetooth 5.0
• Ports: 2 × micro HDMI ports, 2 × USB 3.0 ports, 2 × USB 2.0

ports, CSI camera port, DSI display port
• Power: 5 V DC via USB-C connector (3A)

In the labs, we will use different names to address the Rasp-
berry: Raspi, Raspi-5, Raspi-Zero, etc. Usually, Raspi is
used when the instructions or comments apply to every
model.

Installing the Operating System

The Operating System (OS)

An operating system (OS) is fundamental software that manages com-
puter hardware and software resources, providing standard services
for computer programs. It is the core software that runs on a computer,
acting as an intermediary between hardware and application software.
The OS manages the computer’s memory, processes, device drivers,
files, and security protocols.

1. Key functions:
• Process management: Allocating CPU time to different pro-

grams
• Memory management: Allocating and freeing up memory

as needed
• File system management: Organizing and keeping track of

files and directories
• Device management: Communicating with connected hard-

ware devices
• User interface: Providing a way for users to interact with the

computer

2. Components:
• Kernel: The core of the OS that manages hardware resources
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• Shell: The user interface for interacting with the OS
• File system: Organizes and manages data storage
• Device drivers: Software that allows the OS to communicate

with hardware

The Raspberry Pi runs a specialized version of Linux designed for
embedded systems. This operating system, typically a variant of Debian
called Raspberry Pi OS (formerly Raspbian), is optimized for the Pi’s
ARM-based architecture and limited resources.

The latest version of Raspberry Pi OS is based on Debian
Bookworm.

Key features:

1. Lightweight: Tailored to run efficiently on the Pi’s hardware.
2. Versatile: Supports a wide range of applications and program-

ming languages.
3. Open-Source: Allows for customization and community-driven

improvements.
4. GPIO support: Enables interaction with sensors and other hard-

ware through the Pi’s pins.
5. Regular updates: Continuously improved for performance and

security.

Embedded Linux on the Raspberry Pi provides a full-featured operating
system in a compact package, making it ideal for projects ranging from
simple IoT devices to more complex edge machine-learning applications.
Its compatibility with standard Linux tools and libraries makes it a
powerful platform for development and experimentation.

Installation

To use the Raspberry Pi, we will need an operating system. By default,
Raspberry Pi checks for an operating system on any SD card inserted
in the slot, so we should install an operating system using Raspberry Pi
Imager.

Raspberry Pi Imager is a tool for downloading and writing images on
macOS, Windows, and Linux. It includes many popular operating system
images for Raspberry Pi. We will also use the Imager to preconfigure
credentials and remote access settings.

Follow the steps to install the OS in your Raspi.

https://www.raspberrypi.com/news/bookworm-the-new-version-of-raspberry-pi-os/
https://www.raspberrypi.com/news/bookworm-the-new-version-of-raspberry-pi-os/
https://www.raspberrypi.com/software/
https://www.raspberrypi.com/software/
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1. Download and install the Raspberry Pi Imager on your computer.
2. Insert a microSD card into your computer (a 32GB SD card is

recommended) .
3. Open Raspberry Pi Imager and select your Raspberry Pi model.
4. Choose the appropriate operating system:

• For Raspi-Zero: For example, you can select: Raspberry Pi
OS Lite (64-bit).

Due to its reduced SDRAM (512 MB), the recommended
OS for the Raspi-Zero is the 32-bit version. However, to
run some machine learning models, such as the YOLOv8
from Ultralytics, we should use the 64-bit version. Although
Raspi-Zero can run a desktop, we will choose the LITE ver-
sion (no Desktop) to reduce the RAM needed for regular
operation.

• For Raspi-5: We can select the full 64-bit version, which includes
a desktop: Raspberry Pi OS (64-bit)

https://www.raspberrypi.com/software/
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5. Select your microSD card as the storage device.
6. Click on Next and then the gear icon to access advanced options.
7. Set the hostname, the Raspi username and password, configure WiFi

and enable SSH (Very important!)

8. Write the image to the microSD card.

In the examples here, we will use different hostnames de-
pending on the device used: raspi, raspi-5, raspi-Zero, etc.
It would help if you replaced it with the one you are using.

Initial Configuration

1. Insert the microSD card into your Raspberry Pi.
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2. Connect power to boot up the Raspberry Pi.
3. Please wait for the initial boot process to complete (it may take a

few minutes).

You can find the most common Linux commands to be used
with the Raspi here or here.

Remote Access

SSH Access

The easiest way to interact with the Raspi-Zero is via SSH (“Head-
less”). You can use a Terminal (MAC/Linux), PuTTy (Windows), or any
other.

1. Find your Raspberry Pi’s IP address (for example, check your
router).

2. On your computer, open a terminal and connect via SSH:
ssh username@[raspberry_pi_ip_address]
Alternatively, if you do not have the IP address, you can try the fol-
lowing: bash ssh username@hostname.local for example, ssh
mjrovai@rpi-5.local , ssh mjrovai@raspi.local , etc.

Figure 1.21: img

When you see the prompt:
mjrovai@rpi-5:~ $
It means that you are interacting remotely with your Raspi. It is a
good practice to update/upgrade the system regularly. For that,
you should run:

https://www.jwdittrich.people.ysu.edu/raspberrypi/UsefulRaspberryPiCommands.pdf
https://www.codecademy.com/learn/learn-raspberry-pi/modules/raspberry-pi-command-line-module/cheatsheet
https://www.putty.org/
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sudo apt-get update
sudo apt upgrade
You should confirm the Raspi IP address. On the terminal, you
can use:
hostname -I

To shut down the Raspi via terminal:

When you want to turn off your Raspberry Pi, there are better ideas
than just pulling the power cord. This is because the Raspi may still be
writing data to the SD card, in which case merely powering down may
result in data loss or, even worse, a corrupted SD card.

For safety shut down, use the command line:

sudo shutdown -h now

To avoid possible data loss and SD card corruption, before
removing the power, you should wait a few seconds after
shutdown for the Raspberry Pi’s LED to stop blinking and
go dark. Once the LED goes out, it’s safe to power down.

Transfer Files between the Raspi and a computer

Transferring files between the Raspi and our main computer can be
done using a pen drive, directly on the terminal (with scp), or an FTP
program over the network.
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Using Secure Copy Protocol (scp):

Copy files to your Raspberry Pi. Let’s create a text file on our computer,
for example, test.txt.

You can use any text editor. In the same terminal, an option
is the nano.

To copy the file named test.txt from your personal computer to a
user’s home folder on your Raspberry Pi, run the following command
from the directory containing test.txt, replacing the <username>
placeholder with the username you use to log in to your Raspberry
Pi and the <pi_ip_address> placeholder with your Raspberry Pi’s IP
address:

$ scp test.txt <username>@<pi_ip_address>:~/

Note that ~/ means that we will move the file to the ROOT
of our Raspi. You can choose any folder in your Raspi. But
you should create the folder before you run scp, since scp
won’t create folders automatically.

For example, let’s transfer the file test.txt to the ROOT of my Raspi-
zero, which has an IP of 192.168.4.210:

scp test.txt mjrovai@192.168.4.210:~/
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I use a different profile to differentiate the terminals. The above action
happens on your computer. Now, let’s go to our Raspi (using the SSH)
and check if the file is there:

Copy files from your Raspberry Pi. To copy a file named test.txt
from a user’s home directory on a Raspberry Pi to the current direc-
tory on another computer, run the following command on your Host
Computer:

$ scp <username>@<pi_ip_address>:myfile.txt .

For example:

On the Raspi, let’s create a copy of the file with another name:

cp test.txt test_2.txt

And on the Host Computer (in my case, a Mac)

scp mjrovai@192.168.4.210:test_2.txt .
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Transferring files using FTP

Transferring files using FTP, such as FileZilla FTP Client, is also possible.
Follow the instructions, install the program for your Desktop OS, and
use the Raspi IP address as the Host. For example:

sftp://192.168.4.210

and enter your Raspi username and password. Pressing Quickconnect
will open two windows, one for your host computer desktop (right)
and another for the Raspi (left).

Increasing SWAP Memory

Using htop, a cross-platform interactive process viewer, you can easily
monitor the resources running on your Raspi, such as the list of pro-
cesses, the running CPUs, and the memory used in real-time. To lunch
hop, enter with the command on the terminal:

htop

https://filezilla-project.org/download.php?type=client
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Regarding memory, among the devices in the Raspberry Pi family, the
Raspi-Zero has the smallest amount of SRAM (500 MB), compared to a
selection of 2 GB to 8 GB on the Raspis 4 or 5. For any Raspi, it is possible
to increase the memory available to the system with “Swap.” Swap
memory, also known as swap space, is a technique used in computer
operating systems to temporarily store data from RAM (Random Access
Memory) on the SD card when the physical RAM is fully utilized. This
allows the operating system (OS) to continue running even when RAM
is full, which can prevent system crashes or slowdowns.

Swap memory benefits devices with limited RAM, such as the Raspi-
Zero. Increasing swap can help run more demanding applications or
processes, but it’s essential to balance this with the potential perfor-
mance impact of frequent disk access.

By default, the Rapi-Zero’s SWAP (Swp) memory is only 100 MB, which
is very small for running some more complex and demanding Machine
Learning applications (for example, YOLO). Let’s increase it to 2 MB:

First, turn off swap-file:

sudo dphys-swapfile swapoff

Next, you should open and change the file /etc/dphys-swapfile. For
that, we will use the nano:

sudo nano /etc/dphys-swapfile

Search for the CONF_SWAPSIZE variable (default is 200) and update
it to 2000:

CONF_SWAPSIZE=2000
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And save the file.

Next, turn on the swapfile again and reboot the Raspi-zero:

sudo dphys-swapfile setup
sudo dphys-swapfile swapon
sudo reboot

When your device is rebooted (you should enter with the SSH again),
you will realize that the maximum swap memory value shown on top
is now something near 2 GB (in my case, 1.95 GB).

To keep the htop running, you should open another terminal
window to interact continuously with your Raspi.

Installing a Camera

The Raspi is an excellent device for computer vision applications; a
camera is needed for it. We can install a standard USB webcam on the
micro-USB port using a USB OTG adapter (Raspi-Zero and Raspi-5) or
a camera module connected to the Raspi CSI (Camera Serial Interface)
port.

USB Webcams generally have inferior quality to the cam-
era modules that connect to the CSI port. They can also
not be controlled using the raspistill and raspivid com-
mands in the terminal or the picamera recording package
in Python. Nevertheless, there may be reasons why you
want to connect a USB camera to your Raspberry Pi, such
as because of the benefit that it is much easier to set up
multiple cameras with a single Raspberry Pi, long cables, or
simply because you have such a camera on hand.

Installing a USB WebCam

1. Power off the Raspi:

sudo shutdown -h no

2. Connect the USB Webcam (USB Camera Module 30 fps, 1280×720) to your Raspi (In this example, I am using the Raspi-Zero,
but the instructions work for all Raspis).
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3. Power on again and run the SSH
4. To check if your USB camera is recognized, run:

lsusb

You should see your camera listed in the output.

5. To take a test picture with your USB camera, use:

fswebcam test_image.jpg

This will save an image named “test_image.jpg” in your current direc-
tory.
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6. Since we are using SSH to connect to our Rapsi, we must transfer
the image to our main computer so we can view it. We can use
FileZilla or SCP for this:

Open a terminal on your host computer and run:

scp mjrovai@raspi-zero.local:~/test_image.jpg .

Replace “mjrovai” with your username and “raspi-zero”
with Pi’s hostname.

7. If the image quality isn’t satisfactory, you can adjust various set-
tings; for example, define a resolution that is suitable for YOLO(640𝑥640):

fswebcam -r 640x640 --no-banner test_image_yolo.jpg

This captures a higher-resolution image without the default banner.
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An ordinary USB Webcam can also be used:

And verified using lsusb
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Video Streaming

For stream video (which is more resource-intensive), we can install and
use mjpg-streamer:

First, install Git:

sudo apt install git

Now, we should install the necessary dependencies for mjpg-streamer,
clone the repository, and proceed with the installation:

sudo apt install cmake libjpeg62-turbo-dev
git clone https://github.com/jacksonliam/mjpg-streamer.git
cd mjpg-streamer/mjpg-streamer-experimental
make
sudo make install

Then start the stream with:

mjpg_streamer -i "input_uvc.so" -o "output_http.so -w ./www"

We can then access the stream by opening a web browser and navigating
to:

http://<your_pi_ip_address>:8080. In my case: http://192.168.4.210:8080

We should see a webpage with options to view the stream. Click on the
link that says “Stream” or try accessing:

http://<raspberry_pi_ip_address>:8080/?action=stream
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Installing a Camera Module on the CSI port

There are now several Raspberry Pi camera modules. The original
5-megapixel model was released in 2013, followed by an 8-megapixel
Camera Module 2 that was later released in 2016. The latest camera
model is the 12-megapixel Camera Module 3, released in 2023.

The original 5 MP camera (Arducam OV5647) is no longer available
from Raspberry Pi but can be found from several alternative suppliers.
Below is an example of such a camera on a Raspi-Zero.

https://www.raspberrypi.com/news/camera-board-available-for-sale/
https://www.raspberrypi.com/products/camera-module-v2/
https://www.raspberrypi.com/products/camera-module-v2/
https://www.raspberrypi.com/documentation/accessories/camera.html
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Here is another example of a v2 Camera Module, which has a Sony
IMX219 8-megapixel sensor:

Any camera module will work on the Raspberry Pis, but for that, the
configuration.txt file must be updated:

sudo nano /boot/firmware/config.txt

At the bottom of the file, for example, to use the 5 MP Arducam OV5647
camera, add the line:

dtoverlay=ov5647,cam0

Or for the v2 module, which has the 8MP Sony IMX219 camera:

dtoverlay=imx219,cam0
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Save the file (CTRL+O [ENTER] CRTL+X) and reboot the Raspi:

Sudo reboot

After the boot, you can see if the camera is listed:

libcamera-hello --list-cameras

libcamera is an open-source software library that supports
camera systems directly from the Linux operating system
on Arm processors. It minimizes proprietary code running
on the Broadcom GPU.

Let’s capture a jpeg image with a resolution of 640×480 for testing and
save it to a file named test_cli_camera.jpg

rpicam-jpeg --output test_cli_camera.jpg --width 640 --height 480

if we want to see the file saved, we should use ls -f, which lists all
current directory content in long format. As before, we can use scp to
view the image:

https://www.raspberrypi.com/documentation/computers/camera_software.html#libcamera
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Running the Raspi Desktop remotely
While we’ve primarily interacted with the Raspberry Pi using termi-
nal commands via SSH, we can access the whole graphical desktop
environment remotely if we have installed the complete Raspberry Pi
OS (for example, Raspberry Pi OS (64-bit). This can be particularly
useful for tasks that benefit from a visual interface. To enable this func-
tionality, we must set up a VNC (Virtual Network Computing) server
on the Raspberry Pi. Here’s how to do it:

1. Enable the VNC Server:
• Connect to your Raspberry Pi via SSH.
• Run the Raspberry Pi configuration tool by entering:

sudo raspi-config
• Navigate to Interface Options using the arrow keys.
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• Select VNC and Yes to enable the VNC server.

• Exit the configuration tool, saving changes when prompted.

2. Install a VNC Viewer on Your Computer:
• Download and install a VNC viewer application on your

main computer. Popular options include RealVNC Viewer,
TightVNC, or VNC Viewer by RealVNC. We will install VNC
Viewer by RealVNC.

3. Once installed, you should confirm the Raspi IP address. For
example, on the terminal, you can use:
hostname -I

https://www.realvnc.com/en/connect/download/viewer
https://www.realvnc.com/en/connect/download/viewer
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4. Connect to Your Raspberry Pi:
• Open your VNC viewer application.

• Enter your Raspberry Pi’s IP address and hostname.
• When prompted, enter your Raspberry Pi’s username and pass-

word.
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5. The Raspberry Pi 5 Desktop should appear on your computer
monitor.

6. Adjust Display Settings (if needed):
• Once connected, adjust the display resolution for optimal

viewing. This can be done through the Raspberry Pi’s desk-
top settings or by modifying the config.txt file.

• Let’s do it using the desktop settings. Reach the menu (the
Raspberry Icon at the left upper corner) and select the best
screen definition for your monitor:
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Updating and Installing Software

1. Update your system:
sudo apt update && sudo apt upgrade -y

2. Install essential software:
sudo apt install python3-pip -y

3. Enable pip for Python projects:
sudo rm /usr/lib/python3.11/EXTERNALLY-MANAGED

Model-Specific Considerations

Raspberry Pi Zero (Raspi-Zero)

• Limited processing power, best for lightweight projects
• It is better to use a headless setup (SSH) to conserve resources.
• Consider increasing swap space for memory-intensive tasks.
• It can be used for Image Classification and Object Detection Labs

but not for the LLM (SLM).

Raspberry Pi 4 or 5 (Raspi-4 or Raspi-5)

• Suitable for more demanding projects, including AI and machine
learning.

• It can run the whole desktop environment smoothly.
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• Raspi-4 can be used for Image Classification and Object Detection
Labs but will not work well with LLMs (SLM).

• For Raspi-5, consider using an active cooler for temperature man-
agement during intensive tasks, as in the LLMs (SLMs) lab.

Remember to adjust your project requirements based on the specific
Raspberry Pi model you’re using. The Raspi-Zero is great for low-power,
space-constrained projects, while the Raspi-4 or 5 models are better
suited for more computationally intensive tasks.
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Figure 1.22: DALL·E prompt - A cover image for an ‘Image Classification’ chapter in a Raspberry Pi tutorial,
designed in the same vintage 1950s electronics lab style as previous covers. The scene should feature a
Raspberry Pi connected to a camera module, with the camera capturing a photo of the small blue robot provided
by the user. The robot should be placed on a workbench, surrounded by classic lab tools like soldering irons,
resistors, and wires. The lab background should include vintage equipment like oscilloscopes and tube radios,
maintaining the detailed and nostalgic feel of the era. No text or logos should be included.

439
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Overview

Image classification is a fundamental task in computer vision that in-
volves categorizing an image into one of several predefined classes.
It’s a cornerstone of artificial intelligence, enabling machines to inter-
pret and understand visual information in a way that mimics human
perception.

Image classification refers to assigning a label or category to an entire
image based on its visual content. This task is crucial in computer vision
and has numerous applications across various industries. Image classi-
fication’s importance lies in its ability to automate visual understanding
tasks that would otherwise require human intervention.

Applications in Real-World Scenarios

Image classification has found its way into numerous real-world appli-
cations, revolutionizing various sectors:

• Healthcare: Assisting in medical image analysis, such as identify-
ing abnormalities in X-rays or MRIs.

• Agriculture: Monitoring crop health and detecting plant diseases
through aerial imagery.

• Automotive: Enabling advanced driver assistance systems and
autonomous vehicles to recognize road signs, pedestrians, and
other vehicles.

• Retail: Powering visual search capabilities and automated inven-
tory management systems.

• Security and Surveillance: Enhancing threat detection and facial
recognition systems.

• Environmental Monitoring: Analyzing satellite imagery for de-
forestation, urban planning, and climate change studies.

Advantages of Running Classification on Edge Devices
like Raspberry Pi

Implementing image classification on edge devices such as the Rasp-
berry Pi offers several compelling advantages:

1. Low Latency: Processing images locally eliminates the need to
send data to cloud servers, significantly reducing response times.
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2. Offline Functionality: Classification can be performed without an
internet connection, making it suitable for remote or connectivity-
challenged environments.

3. Privacy and Security: Sensitive image data remains on the local
device, addressing data privacy concerns and compliance require-
ments.

4. Cost-Effectiveness: Eliminates the need for expensive cloud com-
puting resources, especially for continuous or high-volume classi-
fication tasks.

5. Scalability: Enables distributed computing architectures where
multiple devices can work independently or in a network.

6. Energy Efficiency: Optimized models on dedicated hardware can
be more energy-efficient than cloud-based solutions, which is
crucial for battery-powered or remote applications.

7. Customization: Deploying specialized or frequently updated
models tailored to specific use cases is more manageable.

We can create more responsive, secure, and efficient computer vision
solutions by leveraging the power of edge devices like Raspberry Pi
for image classification. This approach opens up new possibilities for
integrating intelligent visual processing into various applications and
environments.

In the following sections, we’ll explore how to implement and optimize
image classification on the Raspberry Pi, harnessing these advantages
to create powerful and efficient computer vision systems.

Setting Up the Environment

Updating the Raspberry Pi

First, ensure your Raspberry Pi is up to date:

sudo apt update
sudo apt upgrade -y

Installing Required Libraries

Install the necessary libraries for image processing and machine learn-
ing:
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sudo apt install python3-pip
sudo rm /usr/lib/python3.11/EXTERNALLY-MANAGED
pip3 install --upgrade pip

Setting up a Virtual Environment (Optional but
Recommended)

Create a virtual environment to manage dependencies:

python3 -m venv ~/tflite
source ~/tflite/bin/activate

Installing TensorFlow Lite

We are interested in performing inference, which refers to executing
a TensorFlow Lite model on a device to make predictions based on
input data. To perform an inference with a TensorFlow Lite model, we
must run it through an interpreter. The TensorFlow Lite interpreter is
designed to be lean and fast. The interpreter uses a static graph ordering
and a custom (less-dynamic) memory allocator to ensure minimal load,
initialization, and execution latency.

We’ll use the TensorFlow Lite runtime for Raspberry Pi, a simplified
library for running machine learning models on mobile and embedded
devices, without including all TensorFlow packages.

pip install tflite_runtime --no-deps

The wheel installed: tflite_runtime-2.14.0-cp311-cp311-
manylinux_2_34_aarch64.whl

Installing Additional Python Libraries

Install required Python libraries for use with Image Classification:

If you have another version of Numpy installed, first uninstall it.

pip3 uninstall numpy

Install version 1.23.2, which is compatible with the tflite_runtime.

pip3 install numpy==1.23.2

pip3 install Pillow matplotlib

https://pypi.org/project/tflite-runtime/
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Creating a working directory:

If you are working on the Raspi-Zero with the minimum OS (No Desk-
top), you may not have a user-pre-defined directory tree (you can check
it with ls. So, let’s create one:

mkdir Documents
cd Documents/
mkdir TFLITE
cd TFLITE/
mkdir IMG_CLASS
cd IMG_CLASS
mkdir models
cd models

On the Raspi-5, the /Documents should be there.

Get a pre-trained Image Classification model:

An appropriate pre-trained model is crucial for successful image clas-
sification on resource-constrained devices like the Raspberry Pi. Mo-
bileNet is designed for mobile and embedded vision applications with
a good balance between accuracy and speed. Versions: MobileNetV1,
MobileNetV2, MobileNetV3. Let’s download the V2:

# One long line, split with backslash \
wget https://storage.googleapis.com/download.tensorflow.org/\
models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz

tar xzf mobilenet_v2_1.0_224_quant.tgz

Get its labels:

wget https://raw.githubusercontent.com/Mjrovai/EdgeML-with-Raspberry-Pi/refs/heads/\
main/IMG_CLASS/models/labels.txt

In the end, you should have the models in its directory:

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/models/labels.txt
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We will only need the mobilenet_v2_1.0_224_quant.tflite
model and the labels.txt. You can delete the other files.

Setting up Jupyter Notebook (Optional)

If you prefer using Jupyter Notebook for development:

pip3 install jupyter
jupyter notebook --generate-config

To run Jupyter Notebook, run the command (change the IP address for
yours):

jupyter notebook --ip=192.168.4.210 --no-browser

On the terminal, you can see the local URL address to open the note-
book:
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You can access it from another device by entering the Raspberry Pi’s
IP address and the provided token in a web browser (you can copy the
token from the terminal).

Define your working directory in the Raspi and create a new Python 3
notebook.

Verifying the Setup

Test your setup by running a simple Python script:

import tflite_runtime.interpreter as tflite
import numpy as np
from PIL import Image

print("NumPy:", np.__version__)
print("Pillow:", Image.__version__)

# Try to create a TFLite Interpreter
model_path = "./models/mobilenet_v2_1.0_224_quant.tflite"
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()
print("TFLite Interpreter created successfully!")

You can create the Python script using nano on the terminal, saving it
with CTRL+0 + ENTER + CTRL+X
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And run it with the command:

Or you can run it directly on the Notebook:

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/setup_test.ipynb
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Making inferences with Mobilenet V2

In the last section, we set up the environment, including downloading
a popular pre-trained model, Mobilenet V2, trained on ImageNet’s224×224 images (1.2 million) for 1,001 classes (1,000 object categories
plus 1 background). The model was converted to a compact 3.5 MB
TensorFlow Lite format, making it suitable for the limited storage and
memory of a Raspberry Pi.

Let’s start a new notebook to follow all the steps to classify one image:

Import the needed libraries:

import time
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import tflite_runtime.interpreter as tflite

Load the TFLite model and allocate tensors:

model_path = "./models/mobilenet_v2_1.0_224_quant.tflite"
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

Get input and output tensors.

input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

Input details will give us information about how the model should
be fed with an image. The shape of (1, 224, 224, 3) informs us that an
image with dimensions (224 × 224 × 3) should be input one by one
(Batch Dimension: 1).

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/10_Image_Classification.ipynb
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The output details show that the inference will result in an array of
1,001 integer values. Those values result from the image classification,
where each value is the probability of that specific label being related
to the image.

Let’s also inspect the dtype of input details of the model

input_dtype = input_details[0]["dtype"]
input_dtype

dtype('uint8')

This shows that the input image should be raw pixels (0 - 255).

Let’s get a test image. You can transfer it from your computer or down-
load one for testing. Let’s first create a folder under our working direc-
tory:

mkdir images
cd images
wget https://upload.wikimedia.org/wikipedia/commons/3/3a/Cat03.jpg

Let’s load and display the image:
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# Load he image
img_path = "./images/Cat03.jpg"
img = Image.open(img_path)

# Display the image
plt.figure(figsize=(8, 8))
plt.imshow(img)
plt.title("Original Image")
plt.show()

We can see the image size running the command:

width, height = img.size

That shows us that the image is an RGB image with a width of 1600
and a height of 1600 pixels. So, to use our model, we should reshape
it to (224, 224, 3) and add a batch dimension of 1, as defined in input
details: (1, 224, 224, 3). The inference result, as shown in output details,
will be an array with a 1001 size, as shown below:
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So, let’s reshape the image, add the batch dimension, and see the re-
sult:

img = img.resize(
(input_details[0]["shape"][1], input_details[0]["shape"][2])

)
input_data = np.expand_dims(img, axis=0)
input_data.shape

The input_data shape is as expected: (1, 224, 224, 3)

Let’s confirm the dtype of the input data:

input_data.dtype

dtype('uint8')

The input data dtype is ‘uint8’, which is compatible with the dtype
expected for the model.

Using the input_data, let’s run the interpreter and get the predictions
(output):

interpreter.set_tensor(input_details[0]["index"], input_data)
interpreter.invoke()
predictions = interpreter.get_tensor(output_details[0]["index"])[0]

The prediction is an array with 1001 elements. Let’s get the Top-5 indices
where their elements have high values:

top_k_results = 5
top_k_indices = np.argsort(predictions)[::-1][:top_k_results]
top_k_indices
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The top_k_indices is an array with 5 elements: array([283, 286,
282])

So, 283, 286, 282, 288, and 479 are the image’s most probable classes.
Having the index, we must find to what class it appoints (such as car, cat,
or dog). The text file downloaded with the model has a label associated
with each index from 0 to 1,000. Let’s use a function to load the .txt file
as a list:

def load_labels(filename):
with open(filename, "r") as f:

return [line.strip() for line in f.readlines()]

And get the list, printing the labels associated with the indexes:

labels_path = "./models/labels.txt"
labels = load_labels(labels_path)

print(labels[286])
print(labels[283])
print(labels[282])
print(labels[288])
print(labels[479])

As a result, we have:

Egyptian cat
tiger cat
tabby
lynx
carton

At least the four top indices are related to felines. The prediction content
is the probability associated with each one of the labels. As we saw on
output details, those values are quantized and should be dequantized
and apply softmax.

scale, zero_point = output_details[0]["quantization"]
dequantized_output = (

predictions.astype(np.float32) - zero_point
) * scale
exp_output = np.exp(dequantized_output - np.max(dequantized_output))
probabilities = exp_output / np.sum(exp_output)

Let’s print the top-5 probabilities:
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print(probabilities[286])
print(probabilities[283])
print(probabilities[282])
print(probabilities[288])
print(probabilities[479])

0.27741462
0.3732285
0.16919471
0.10319158
0.023410844

For clarity, let’s create a function to relate the labels with the probabili-
ties:

for i in range(top_k_results):
print(

"\t{:20}: {}%".format(
labels[top_k_indices[i]],
(int(probabilities[top_k_indices[i]] * 100)),

)
)

tiger cat : 37%
Egyptian cat : 27%
tabby : 16%
lynx : 10%
carton : 2%

Define a general Image Classification function

Let’s create a general function to give an image as input, and we get the
Top-5 possible classes:

def image_classification(
img_path, model_path, labels, top_k_results=5

):
# load the image
img = Image.open(img_path)
plt.figure(figsize=(4, 4))
plt.imshow(img)
plt.axis("off")

# Load the TFLite model
interpreter = tflite.Interpreter(model_path=model_path)
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interpreter.allocate_tensors()

# Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# Preprocess
img = img.resize(

(input_details[0]["shape"][1], input_details[0]["shape"][2])
)
input_data = np.expand_dims(img, axis=0)

# Inference on Raspi-Zero
interpreter.set_tensor(input_details[0]["index"], input_data)
interpreter.invoke()

# Obtain results and map them to the classes
predictions = interpreter.get_tensor(output_details[0]["index"])[

0
]

# Get indices of the top k results
top_k_indices = np.argsort(predictions)[::-1][:top_k_results]

# Get quantization parameters
scale, zero_point = output_details[0]["quantization"]

# Dequantize the output and apply softmax
dequantized_output = (

predictions.astype(np.float32) - zero_point
) * scale
exp_output = np.exp(

dequantized_output - np.max(dequantized_output)
)
probabilities = exp_output / np.sum(exp_output)

print("\n\t[PREDICTION] [Prob]\n")
for i in range(top_k_results):

print(
"\t{:20}: {}%".format(

labels[top_k_indices[i]],
(int(probabilities[top_k_indices[i]] * 100)),

)
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)

And loading some images for testing, we have:

Testing with a model trained from scratch

Let’s get a TFLite model trained from scratch. For that, you can follow
the Notebook:

CNN to classify Cifar-10 dataset

In the notebook, we trained a model using the CIFAR10 dataset, which
contains 60,000 images from 10 classes of CIFAR (airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck). CIFAR has 32 × 32 color
images (3 color channels) where the objects are not centered and can
have the object with a background, such as airplanes that might have a
cloudy sky behind them! In short, small but real images.

The CNN trained model (cifar10_model.keras) had a size of 2.0MB. Using
the TFLite Converter, the model cifar10.tflite became with 674MB (around
1/3 of the original size).

On the notebook Cifar 10 - Image Classification on a Raspi with TFLite
(which can be run over the Raspi), we can follow the same steps we did
with the mobilenet_v2_1.0_224_quant.tflite. Below are examples

https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/2_Applications_Deploy/Class_16/cifar_10/CNN_Cifar_10_TFLite.ipynb#scrollTo=iiVBUpuHXEtw
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/20_Cifar_10_Image_Classification.ipynb
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of images using the General Function for Image Classification on a Raspi-
Zero, as shown in the last section.

Installing Picamera2

Picamera2, a Python library for interacting with Raspberry Pi’s camera,
is based on the libcamera camera stack, and the Raspberry Pi foundation
maintains it. The Picamera2 library is supported on all Raspberry Pi
models, from the Pi Zero to the RPi 5. It is already installed system-
wide on the Raspi, but we should make it accessible within the virtual
environment.

1. First, activate the virtual environment if it’s not already activated:
source ~/tflite/bin/activate

2. Now, let’s create a .pth file in your virtual environment to add the
system site-packages path:
echo "/usr/lib/python3/dist-packages" > \
$VIRTUAL_ENV/lib/python3.11/
site-packages/system_site_packages.pth

Note: If your Python version differs, replace python3.11
with the appropriate version.

3. After creating this file, try importing picamera2 in Python:
python3
>>> import picamera2
>>> print(picamera2.__file__)

The above code will show the file location of the picamera2 module
itself, proving that the library can be accessed from the environment.

/home/mjrovai/tflite/lib/python3.11/site-packages/\
picamera2/__init__.py

You can also list the available cameras in the system:

https://github.com/raspberrypi/picamera2
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>>> print(Picamera2.global_camera_info())

In my case, with a USB installed, I got:

Now that we’ve confirmed picamera2 is working in the environment
with an index 0, let’s try a simple Python script to capture an image
from your USB camera:

from picamera2 import Picamera2
import time

# Initialize the camera
picam2 = Picamera2() # default is index 0

# Configure the camera
config = picam2.create_still_configuration(main={"size": (640, 480)})
picam2.configure(config)

# Start the camera
picam2.start()

# Wait for the camera to warm up
time.sleep(2)

# Capture an image
picam2.capture_file("usb_camera_image.jpg")
print("Image captured and saved as 'usb_camera_image.jpg'")

# Stop the camera
picam2.stop()

Use the Nano text editor, the Jupyter Notebook, or any other editor.
Save this as a Python script (e.g., capture_image.py) and run it. This
should capture an image from your camera and save it as “usb_camera_-
image.jpg” in the same directory as your script.
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If the Jupyter is open, you can see the captured image on your computer.
Otherwise, transfer the file from the Raspi to your computer.

If you are working with a Raspi-5 with a whole desktop,
you can open the file directly on the device.

Image Classification Project

Now, we will develop a complete Image Classification project using the
Edge Impulse Studio. As we did with the Movilinet V2, the trained and
converted TFLite model will be used for inference.

The Goal

The first step in any ML project is to define its goal. In this case, it is to
detect and classify two specific objects present in one image. For this
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project, we will use two small toys: a robot and a small Brazilian parrot
(named Periquito). We will also collect images of a background where
those two objects are absent.

Data Collection

Once we have defined our Machine Learning project goal, the next and
most crucial step is collecting the dataset. We can use a phone for the
image capture, but we will use the Raspi here. Let’s set up a simple web
server on our Raspberry Pi to view the QVGA (320 x 240) captured
images in a browser.

1. First, let’s install Flask, a lightweight web framework for Python:
pip3 install flask

2. Let’s create a new Python script combining image capture with a
web server. We’ll call it get_img_data.py:

from flask import Flask, Response, render_template_string,
request, redirect, url_for

from picamera2 import Picamera2
import io
import threading
import time
import os
import signal

app = Flask(__name__)

# Global variables
base_dir = "dataset"
picam2 = None
frame = None
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frame_lock = threading.Lock()
capture_counts = {}
current_label = None
shutdown_event = threading.Event()

def initialize_camera():
global picam2
picam2 = Picamera2()
config = picam2.create_preview_configuration(

main={"size": (320, 240)}
)
picam2.configure(config)
picam2.start()
time.sleep(2) # Wait for camera to warm up

def get_frame():
global frame
while not shutdown_event.is_set():

stream = io.BytesIO()
picam2.capture_file(stream, format='jpeg')
with frame_lock:

frame = stream.getvalue()
time.sleep(0.1) # Adjust as needed for smooth preview

def generate_frames():
while not shutdown_event.is_set():

with frame_lock:
if frame is not None:

yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' +

frame + b'\r\n')
time.sleep(0.1) # Adjust as needed for smooth streaming

def shutdown_server():
shutdown_event.set()
if picam2:

picam2.stop()
# Give some time for other threads to finish
time.sleep(2)
# Send SIGINT to the main process
os.kill(os.getpid(), signal.SIGINT)

@app.route('/', methods=['GET', 'POST'])
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def index():
global current_label
if request.method == 'POST':

current_label = request.form['label']
if current_label not in capture_counts:

capture_counts[current_label] = 0
os.makedirs(os.path.join(base_dir, current_label),

exist_ok=True)
return redirect(url_for('capture_page'))

return render_template_string('''
<!DOCTYPE html>
<html>
<head>

<title>Dataset Capture - Label Entry</title>
</head>
<body>

<h1>Enter Label for Dataset</h1>
<form method="post">

<input type="text" name="label" required>
<input type="submit" value="Start Capture">

</form>
</body>
</html>

''')

@app.route('/capture')
def capture_page():

return render_template_string('''
<!DOCTYPE html>
<html>
<head>

<title>Dataset Capture</title>
<script>

var shutdownInitiated = false;
function checkShutdown() {

if (!shutdownInitiated) {
fetch('/check_shutdown')

.then(response => response.json())

.then(data => {
if (data.shutdown) {

shutdownInitiated = true;
document.getElementById(

'video-feed').src = '';
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document.getElementById(
'shutdown-message')

.style.display = 'block';
}

});
}

}
setInterval(checkShutdown, 1000); // Check

every second
</script>

</head>
<body>

<h1>Dataset Capture</h1>
<p>Current Label: {{ label }}</p>
<p>Images captured for this label: {{ capture_count

}}</p>
<img id="video-feed" src="{{ url_for('video_feed')

}}" width="640"
height="480" />
<div id="shutdown-message" style="display: none;

color: red;">
Capture process has been stopped.
You can close this window.

</div>
<form action="/capture_image" method="post">

<input type="submit" value="Capture Image">
</form>
<form action="/stop" method="post">

<input type="submit" value="Stop Capture"
style="background-color: #ff6666;">

</form>
<form action="/" method="get">

<input type="submit" value="Change Label"
style="background-color: #ffff66;">

</form>
</body>
</html>

''', label=current_label, capture_count=capture_counts.get(
current_label, 0))

@app.route('/video_feed')
def video_feed():

return Response(generate_frames(),
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mimetype='multipart/x-mixed-replace;
boundary=frame')

@app.route('/capture_image', methods=['POST'])
def capture_image():

global capture_counts
if current_label and not shutdown_event.is_set():

capture_counts[current_label] += 1
timestamp = time.strftime("%Y%m%d-%H%M%S")
filename = f"image_{timestamp}.jpg"
full_path = os.path.join(base_dir, current_label,

filename)

picam2.capture_file(full_path)

return redirect(url_for('capture_page'))

@app.route('/stop', methods=['POST'])
def stop():

summary = render_template_string('''
<!DOCTYPE html>
<html>
<head>

<title>Dataset Capture - Stopped</title>
</head>
<body>

<h1>Dataset Capture Stopped</h1>
<p>The capture process has been stopped.

You can close this window.</p>
<p>Summary of captures:</p>
<ul>
{% for label, count in capture_counts.items() %}

<li>{{ label }}: {{ count }} images</li>
{% endfor %}
</ul>

</body>
</html>

''', capture_counts=capture_counts)

# Start a new thread to shutdown the server
threading.Thread(target=shutdown_server).start()

return summary
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@app.route('/check_shutdown')
def check_shutdown():

return {'shutdown': shutdown_event.is_set()}

if __name__ == '__main__':
initialize_camera()
threading.Thread(target=get_frame, daemon=True).start()
app.run(host='0.0.0.0', port=5000, threaded=True)

3. Run this script:

python3 get_img_data.py

4. Access the web interface:
• On the Raspberry Pi itself (if you have a GUI): Open a web

browser and go to http://localhost:5000
• From another device on the same network: Open a web

browser and go to http://<raspberry_pi_ip>:5000 (Re-
place <raspberry_pi_ip> with your Raspberry Pi’s IP ad-
dress). For example: http://192.168.4.210:5000/

This Python script creates a web-based interface for capturing and
organizing image datasets using a Raspberry Pi and its camera. It’s
handy for machine learning projects that require labeled image data.

Key Features:

1. Web Interface: Accessible from any device on the same network
as the Raspberry Pi.

2. Live Camera Preview: This shows a real-time feed from the cam-
era.

3. Labeling System: Allows users to input labels for different cate-
gories of images.

4. Organized Storage: Automatically saves images in label-specific
subdirectories.

5. Per-Label Counters: Keeps track of how many images are cap-
tured for each label.

6. Summary Statistics: Provides a summary of captured images
when stopping the capture process.
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Main Components:

1. Flask Web Application: Handles routing and serves the web
interface.

2. Picamera2 Integration: Controls the Raspberry Pi camera.
3. Threaded Frame Capture: Ensures smooth live preview.
4. File Management: Organizes captured images into labeled direc-

tories.

Key Functions:

• initialize_camera(): Sets up the Picamera2 instance.
• get_frame(): Continuously captures frames for the live preview.
• generate_frames(): Yields frames for the live video feed.
• shutdown_server(): Sets the shutdown event, stops the camera,

and shuts down the Flask server
• index(): Handles the label input page.
• capture_page(): Displays the main capture interface.
• video_feed(): Shows a live preview to position the camera
• capture_image(): Saves an image with the current label.
• stop(): Stops the capture process and displays a summary.

Usage Flow:

1. Start the script on your Raspberry Pi.
2. Access the web interface from a browser.
3. Enter a label for the images you want to capture and press Start

Capture.

4. Use the live preview to position the camera.
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5. Click Capture Image to save images under the current label.

6. Change labels as needed for different categories, selecting Change
Label.

7. Click Stop Capture when finished to see a summary.

Technical Notes:

• The script uses threading to handle concurrent frame capture and
web serving.

• Images are saved with timestamps in their filenames for unique-
ness.

• The web interface is responsive and can be accessed from mobile
devices.
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Customization Possibilities:

• Adjust image resolution in the initialize_camera() function.
Here we used QVGA (320×240).

• Modify the HTML templates for a different look and feel.
• Add additional image processing or analysis steps in the capture_-

image() function.

Number of samples on Dataset:

Get around 60 images from each category (periquito, robot and
background). Try to capture different angles, backgrounds, and light
conditions. On the Raspi, we will end with a folder named dataset,
witch contains 3 sub-folders periquito, robot, and background. one for
each class of images.

You can use Filezilla to transfer the created dataset to your main
computer.

Training the model with Edge Impulse Studio

We will use the Edge Impulse Studio to train our model. Go to the
Edge Impulse Page, enter your account credentials, and create a new
project:

Here, you can clone a similar project: Raspi - Img Class.

https://edgeimpulse.com/
https://studio.edgeimpulse.com/public/510251/live
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Dataset

We will walk through four main steps using the EI Studio (or Studio).
These steps are crucial in preparing our model for use on the Raspi:
Dataset, Impulse, Tests, and Deploy (on the Edge Device, in this case,
the Raspi).

Regarding the Dataset, it is essential to point out that our
Original Dataset, captured with the Raspi, will be split into
Training, Validation, and Test. The Test Set will be separated
from the beginning and reserved for use only in the Test
phase after training. The Validation Set will be used during
training.

On Studio, follow the steps to upload the captured data:

1. Go to the Data acquisition tab, and in the UPLOAD DATA section,
upload the files from your computer in the chosen categories.

2. Leave to the Studio the splitting of the original dataset into train
and test and choose the label about

3. Repeat the procedure for all three classes. At the end, you should
see your “raw data” in the Studio:

The Studio allows you to explore your data, showing a complete view
of all the data in your project. You can clear, inspect, or change labels by
clicking on individual data items. In our case, a straightforward project,
the data seems OK.
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The Impulse Design

In this phase, we should define how to:

• Pre-process our data, which consists of resizing the individual
images and determining the color depth to use (be it RGB or
Grayscale) and

• Specify a Model. In this case, it will be the Transfer Learning
(Images) to fine-tune a pre-trained MobileNet V2 image classifi-
cation model on our data. This method performs well even with
relatively small image datasets (around 180 images in our case).

Transfer Learning with MobileNet offers a streamlined approach to
model training, which is especially beneficial for resource-constrained
environments and projects with limited labeled data. MobileNet,
known for its lightweight architecture, is a pre-trained model that has
already learned valuable features from a large dataset (ImageNet).
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By leveraging these learned features, we can train a new model for your
specific task with fewer data and computational resources and achieve
competitive accuracy.

This approach significantly reduces training time and computational
cost, making it ideal for quick prototyping and deployment on embed-
ded devices where efficiency is paramount.

Go to the Impulse Design Tab and create the impulse, defining an image
size of 160×160 and squashing them (squared form, without cropping).
Select Image and Transfer Learning blocks. Save the Impulse.

Image Pre-Processing

All the input QVGA/RGB565 images will be converted to 76,800 features(160×160×3).
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Press Save parameters and select Generate features in the next
tab.

Model Design

MobileNet is a family of efficient convolutional neural networks de-
signed for mobile and embedded vision applications. The key features
of MobileNet are:

1. Lightweight: Optimized for mobile devices and embedded sys-
tems with limited computational resources.

2. Speed: Fast inference times, suitable for real-time applications.
3. Accuracy: Maintains good accuracy despite its compact size.

MobileNetV2, introduced in 2018, improves the original MobileNet
architecture. Key features include:

https://arxiv.org/abs/1801.04381
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1. Inverted Residuals: Inverted residual structures are used where
shortcut connections are made between thin bottleneck layers.

2. Linear Bottlenecks: Removes non-linearities in the narrow layers
to prevent the destruction of information.

3. Depth-wise Separable Convolutions: Continues to use this effi-
cient operation from MobileNetV1.

In our project, we will do a Transfer Learning with the MobileNetV2
160x160 1.0, which means that the images used for training (and fu-
ture inference) should have an input Size of 160×160 pixels and a Width
Multiplier of 1.0 (full width, not reduced). This configuration balances
between model size, speed, and accuracy.

Model Training

Another valuable deep learning technique is Data Augmentation. Data
augmentation improves the accuracy of machine learning models by
creating additional artificial data. A data augmentation system makes
small, random changes to the training data during the training process
(such as flipping, cropping, or rotating the images).

Looking under the hood, here you can see how Edge Impulse imple-
ments a data Augmentation policy on your data:

# Implements the data augmentation policy
def augment_image(image, label):

# Flips the image randomly
image = tf.image.random_flip_left_right(image)

# Increase the image size, then randomly crop it down to
# the original dimensions
resize_factor = random.uniform(1, 1.2)
new_height = math.floor(resize_factor * INPUT_SHAPE[0])
new_width = math.floor(resize_factor * INPUT_SHAPE[1])
image = tf.image.resize_with_crop_or_pad(

image, new_height, new_width
)
image = tf.image.random_crop(image, size=INPUT_SHAPE)

# Vary the brightness of the image
image = tf.image.random_brightness(image, max_delta=0.2)

return image, label
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Exposure to these variations during training can help prevent your
model from taking shortcuts by “memorizing” superficial clues in your
training data, meaning it may better reflect the deep underlying patterns
in your dataset.

The final dense layer of our model will have 0 neurons with a 10%
dropout for overfitting prevention. Here is the Training result:

The result is excellent, with a reasonable 35 ms of latency (for a Raspi-
4), which should result in around 30 fps (frames per second) during
inference. A Raspi-Zero should be slower, and the Raspi-5, faster.

Trading off: Accuracy versus speed

If faster inference is needed, we should train the model using smaller
alphas (0.35, 0.5, and 0.75) or even reduce the image input size, trading
with accuracy. However, reducing the input image size and decreasing
the alpha (width multiplier) can speed up inference for MobileNet V2,
but they have different trade-offs. Let’s compare:

1. Reducing Image Input Size:

Pros:

• Significantly reduces the computational cost across all layers.
• Decreases memory usage.
• It often provides a substantial speed boost.

Cons:
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• It may reduce the model’s ability to detect small features or fine
details.

• It can significantly impact accuracy, especially for tasks requiring
fine-grained recognition.

2. Reducing Alpha (Width Multiplier):

Pros:

• Reduces the number of parameters and computations in the
model.

• Maintains the original input resolution, potentially preserving
more detail.

• It can provide a good balance between speed and accuracy.

Cons:

• It may not speed up inference as dramatically as reducing input
size.

• It can reduce the model’s capacity to learn complex features.

Comparison:

1. Speed Impact:
• Reducing input size often provides a more substantial speed

boost because it reduces computations quadratically (halving
both width and height reduces computations by about 75%).

• Reducing alpha provides a more linear reduction in compu-
tations.

2. Accuracy Impact:
• Reducing input size can severely impact accuracy, especially

when detecting small objects or fine details.
• Reducing alpha tends to have a more gradual impact on

accuracy.

3. Model Architecture:
• Changing input size doesn’t alter the model’s architecture.
• Changing alpha modifies the model’s structure by reducing

the number of channels in each layer.

Recommendation:



The Impulse Design 474

1. If our application doesn’t require detecting tiny details and can
tolerate some loss in accuracy, reducing the input size is often the
most effective way to speed up inference.

2. Reducing alpha might be preferable if maintaining the ability
to detect fine details is crucial or if you need a more balanced
trade-off between speed and accuracy.

3. For best results, you might want to experiment with both:
• Try MobileNet V2 with input sizes like 160×160 or 92×92
• Experiment with alpha values like 1.0, 0.75, 0.5 or 0.35.

4. Always benchmark the different configurations on your specific
hardware and with your particular dataset to find the optimal
balance for your use case.

Remember, the best choice depends on your specific require-
ments for accuracy, speed, and the nature of the images
you’re working with. It’s often worth experimenting with
combinations to find the optimal configuration for your
particular use case.

Model Testing

Now, you should take the data set aside at the start of the project and
run the trained model using it as input. Again, the result is excellent
(92.22%).

Deploying the model

As we did in the previous section, we can deploy the trained model as
.tflite and use Raspi to run it using Python.

On the Dashboard tab, go to Transfer learning model (int8 quantized)
and click on the download icon:
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Let’s also download the float32 version for comparison

Transfer the model from your computer to the Raspi (./models), for
example, using FileZilla. Also, capture some images for inference (./im-
ages).

Import the needed libraries:

import time
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import tflite_runtime.interpreter as tflite

Define the paths and labels:

img_path = "./images/robot.jpg"
model_path = "./models/ei-raspi-img-class-int8-quantized-\

model.tflite"
labels = ["background", "periquito", "robot"]

Note that the models trained on the Edge Impulse Studio
will output values with index 0, 1, 2, etc., where the actual
labels will follow an alphabetic order.

Load the model, allocate the tensors, and get the input and output
tensor details:

# Load the TFLite model
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()
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# Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

One important difference to note is that the dtype of the input details
of the model is now int8, which means that the input values go from
–128 to +127, while each pixel of our image goes from 0 to 255. This
means that we should pre-process the image to match it. We can check
here:

input_dtype = input_details[0]["dtype"]
input_dtype

numpy.int8

So, let’s open the image and show it:

img = Image.open(img_path)
plt.figure(figsize=(4, 4))
plt.imshow(img)
plt.axis("off")
plt.show()

And perform the pre-processing:

scale, zero_point = input_details[0]["quantization"]
img = img.resize(

(input_details[0]["shape"][1], input_details[0]["shape"][2])
)
img_array = np.array(img, dtype=np.float32) / 255.0
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img_array = (
(img_array / scale + zero_point).clip(-128, 127).astype(np.int8)

)
input_data = np.expand_dims(img_array, axis=0)

Checking the input data, we can verify that the input tensor is compati-
ble with what is expected by the model:

input_data.shape, input_data.dtype

((1, 160, 160, 3), dtype('int8'))

Now, it is time to perform the inference. Let’s also calculate the latency
of the model:

# Inference on Raspi-Zero
start_time = time.time()
interpreter.set_tensor(input_details[0]["index"], input_data)
interpreter.invoke()
end_time = time.time()
inference_time = (end_time - start_time) * 1000 # Convert
# to milliseconds
print("Inference time: {:.1f}ms".format(inference_time))

The model will take around 125ms to perform the inference in the
Raspi-Zero, which is 3 to 4 times longer than a Raspi-5.

Now, we can get the output labels and probabilities. It is also important
to note that the model trained on the Edge Impulse Studio has a softmax
in its output (different from the original Movilenet V2), and we should
use the model’s raw output as the “probabilities.”

# Obtain results and map them to the classes
predictions = interpreter.get_tensor(output_details[0]["index"])[0]

# Get indices of the top k results
top_k_results = 3
top_k_indices = np.argsort(predictions)[::-1][:top_k_results]

# Get quantization parameters
scale, zero_point = output_details[0]["quantization"]

# Dequantize the output
dequantized_output = (

predictions.astype(np.float32) - zero_point
) * scale
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probabilities = dequantized_output

print("\n\t[PREDICTION] [Prob]\n")
for i in range(top_k_results):

print(
"\t{:20}: {:.2f}%".format(

labels[top_k_indices[i]],
probabilities[top_k_indices[i]] * 100,

)
)

Let’s modify the function created before so that we can handle different
type of models:

def image_classification(
img_path, model_path, labels, top_k_results=3, apply_softmax=False

):
# Load the image
img = Image.open(img_path)
plt.figure(figsize=(4, 4))
plt.imshow(img)
plt.axis("off")

# Load the TFLite model
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

# Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# Preprocess
img = img.resize(

(input_details[0]["shape"][1], input_details[0]["shape"][2])
)
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input_dtype = input_details[0]["dtype"]

if input_dtype == np.uint8:
input_data = np.expand_dims(np.array(img), axis=0)

elif input_dtype == np.int8:
scale, zero_point = input_details[0]["quantization"]
img_array = np.array(img, dtype=np.float32) / 255.0
img_array = (

(img_array / scale + zero_point)
.clip(-128, 127)
.astype(np.int8)

)
input_data = np.expand_dims(img_array, axis=0)

else: # float32
input_data = (

np.expand_dims(np.array(img, dtype=np.float32), axis=0)
/ 255.0

)

# Inference on Raspi-Zero
start_time = time.time()
interpreter.set_tensor(input_details[0]["index"], input_data)
interpreter.invoke()
end_time = time.time()
inference_time = (

end_time - start_time
) * 1000 # Convert to milliseconds

# Obtain results
predictions = interpreter.get_tensor(output_details[0]["index"])[

0
]

# Get indices of the top k results
top_k_indices = np.argsort(predictions)[::-1][:top_k_results]

# Handle output based on type
output_dtype = output_details[0]["dtype"]
if output_dtype in [np.int8, np.uint8]:

# Dequantize the output
scale, zero_point = output_details[0]["quantization"]
predictions = (

predictions.astype(np.float32) - zero_point
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) * scale

if apply_softmax:
# Apply softmax
exp_preds = np.exp(predictions - np.max(predictions))
probabilities = exp_preds / np.sum(exp_preds)

else:
probabilities = predictions

print("\n\t[PREDICTION] [Prob]\n")
for i in range(top_k_results):

print(
"\t{:20}: {:.1f}%".format(

labels[top_k_indices[i]],
probabilities[top_k_indices[i]] * 100,

)
)

print("\n\tInference time: {:.1f}ms".format(inference_time))

And test it with different images and the int8 quantized model (160x160
alpha =1.0).

Let’s download a smaller model, such as the one trained for the Nicla
Vision Lab (int8 quantized model, 96x96, alpha = 0.1), as a test. We can
use the same function:

https://studio.edgeimpulse.com/public/353482/live
https://studio.edgeimpulse.com/public/353482/live
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The model lost some accuracy, but it is still OK once our model does
not look for many details. Regarding latency, we are around ten times
faster on the Raspi-Zero.

Live Image Classification

Let’s develop an app to capture images with the USB camera in real
time, showing its classification.

Using the nano on the terminal, save the code below, such as img_-
class_live_infer.py.

from flask import Flask, Response, render_template_string,
request, jsonify

from picamera2 import Picamera2
import io
import threading
import time
import numpy as np
from PIL import Image
import tflite_runtime.interpreter as tflite
from queue import Queue

app = Flask(__name__)

# Global variables
picam2 = None
frame = None
frame_lock = threading.Lock()
is_classifying = False
confidence_threshold = 0.8
model_path = "./models/ei-raspi-img-class-int8-quantized-\

model.tflite"
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labels = ['background', 'periquito', 'robot']
interpreter = None
classification_queue = Queue(maxsize=1)

def initialize_camera():
global picam2
picam2 = Picamera2()
config = picam2.create_preview_configuration(

main={"size": (320, 240)}
)
picam2.configure(config)
picam2.start()
time.sleep(2) # Wait for camera to warm up

def get_frame():
global frame
while True:

stream = io.BytesIO()
picam2.capture_file(stream, format='jpeg')
with frame_lock:

frame = stream.getvalue()
time.sleep(0.1) # Capture frames more frequently

def generate_frames():
while True:

with frame_lock:
if frame is not None:

yield (
b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n'
+ frame + b'\r\n'

)
time.sleep(0.1)

def load_model():
global interpreter
if interpreter is None:

interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

return interpreter

def classify_image(img, interpreter):
input_details = interpreter.get_input_details()
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output_details = interpreter.get_output_details()

img = img.resize((input_details[0]['shape'][1],
input_details[0]['shape'][2]))

input_data = np.expand_dims(np.array(img), axis=0)\
.astype(input_details[0]['dtype'])

interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()

predictions = interpreter.get_tensor(output_details[0]
['index'])[0]

# Handle output based on type
output_dtype = output_details[0]['dtype']
if output_dtype in [np.int8, np.uint8]:

# Dequantize the output
scale, zero_point = output_details[0]['quantization']
predictions = (predictions.astype(np.float32) -

zero_point) * scale
return predictions

def classification_worker():
interpreter = load_model()
while True:

if is_classifying:
with frame_lock:

if frame is not None:
img = Image.open(io.BytesIO(frame))

predictions = classify_image(img, interpreter)
max_prob = np.max(predictions)
if max_prob >= confidence_threshold:

label = labels[np.argmax(predictions)]
else:

label = 'Uncertain'
classification_queue.put({

'label': label,
'probability': float(max_prob)

})
time.sleep(0.1) # Adjust based on your needs

@app.route('/')
def index():

return render_template_string('''
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<!DOCTYPE html>
<html>
<head>

<title>Image Classification</title>
<script
src="https://code.jquery.com/jquery-3.6.0.min.js">

</script>
<script>

function startClassification() {
$.post('/start');
$('#startBtn').prop('disabled', true);
$('#stopBtn').prop('disabled', false);

}
function stopClassification() {

$.post('/stop');
$('#startBtn').prop('disabled', false);
$('#stopBtn').prop('disabled', true);

}
function updateConfidence() {

var confidence = $('#confidence').val();
$.post('/update_confidence',

{confidence: confidence}
);

}
function updateClassification() {

$.get('/get_classification', function(data) {
$('#classification').text(data.label + ': '
+ data.probability.toFixed(2));

});
}
$(document).ready(function() {

setInterval(updateClassification, 100);
// Update every 100ms

});
</script>

</head>
<body>

<h1>Image Classification</h1>
<img src="{{ url_for('video_feed') }}"

width="640"
height="480" />

<br>
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<button id="startBtn"
onclick="startClassification()">

Start Classification
</button>

<button id="stopBtn"
onclick="stopClassification()"
disabled>

Stop Classification
</button>

<br>
<label for="confidence">Confidence Threshold:</label>
<input type="number"

id="confidence"
name="confidence"
min="0" max="1"
step="0.1"
value="0.8"
onchange="updateConfidence()" />

<br>
<div id="classification">

Waiting for classification...
</div>

</body>
</html>

''')

@app.route('/video_feed')
def video_feed():

return Response(
generate_frames(),
mimetype='multipart/x-mixed-replace; boundary=frame'

)

@app.route('/start', methods=['POST'])
def start_classification():

global is_classifying
is_classifying = True
return '', 204
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@app.route('/stop', methods=['POST'])
def stop_classification():

global is_classifying
is_classifying = False
return '', 204

@app.route('/update_confidence', methods=['POST'])
def update_confidence():

global confidence_threshold
confidence_threshold = float(request.form['confidence'])
return '', 204

@app.route('/get_classification')
def get_classification():

if not is_classifying:
return jsonify({'label': 'Not classifying',

'probability': 0})
try:

result = classification_queue.get_nowait()
except Queue.Empty:

result = {'label': 'Processing', 'probability': 0}
return jsonify(result)

if __name__ == '__main__':
initialize_camera()
threading.Thread(target=get_frame, daemon=True).start()
threading.Thread(target=classification_worker,

daemon=True).start()
app.run(host='0.0.0.0', port=5000, threaded=True)

On the terminal, run:

python3 img_class_live_infer.py

And access the web interface:

• On the Raspberry Pi itself (if you have a GUI): Open a web browser
and go to http://localhost:5000

• From another device on the same network: Open a web browser
and go to http://<raspberry_pi_ip>:5000 (Replace <raspberry_-
pi_ip> with your Raspberry Pi’s IP address). For example:
http://192.168.4.210:5000/

Here are some screenshots of the app running on an external desktop
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Here, you can see the app running on the YouTube:

https://www.youtube.com/watch?v=o1QsQrpCMw4

The code creates a web application for real-time image classification
using a Raspberry Pi, its camera module, and a TensorFlow Lite model.
The application uses Flask to serve a web interface where is possible to
view the camera feed and see live classification results.

Key Components:

1. Flask Web Application: Serves the user interface and handles
requests.

2. PiCamera2: Captures images from the Raspberry Pi camera mod-
ule.

3. TensorFlow Lite: Runs the image classification model.
4. Threading: Manages concurrent operations for smooth perfor-

mance.

Main Features:

• Live camera feed display
• Real-time image classification
• Adjustable confidence threshold
• Start/Stop classification on demand

Code Structure:

1. Imports and Setup:
• Flask for web application
• PiCamera2 for camera control

https://www.youtube.com/watch?v=o1QsQrpCMw4
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• TensorFlow Lite for inference
• Threading and Queue for concurrent operations

2. Global Variables:
• Camera and frame management
• Classification control
• Model and label information

3. Camera Functions:
• initialize_camera(): Sets up the PiCamera2
• get_frame(): Continuously captures frames
• generate_frames(): Yields frames for the web feed

4. Model Functions:
• load_model(): Loads the TFLite model
• classify_image(): Performs inference on a single image

5. Classification Worker:
• Runs in a separate thread
• Continuously classifies frames when active
• Updates a queue with the latest results

6. Flask Routes:
• /: Serves the main HTML page
• /video_feed: Streams the camera feed
• /start and /stop: Controls classification
• /update_confidence: Adjusts the confidence threshold
• /get_classification: Returns the latest classification re-

sult

7. HTML Template:
• Displays camera feed and classification results
• Provides controls for starting/stopping and adjusting set-

tings

8. Main Execution:
• Initializes camera and starts necessary threads
• Runs the Flask application

Key Concepts:

1. Concurrent Operations: Using threads to handle camera capture
and classification separately from the web server.



Image Classification 489

2. Real-time Updates: Frequent updates to the classification results
without page reloads.

3. Model Reuse: Loading the TFLite model once and reusing it for
efficiency.

4. Flexible Configuration: Allowing users to adjust the confidence
threshold on the fly.

Usage:

1. Ensure all dependencies are installed.
2. Run the script on a Raspberry Pi with a camera module.
3. Access the web interface from a browser using the Raspberry Pi’s

IP address.
4. Start classification and adjust settings as needed.

Summary:

Image classification has emerged as a powerful and versatile application
of machine learning, with significant implications for various fields,
from healthcare to environmental monitoring. This chapter has demon-
strated how to implement a robust image classification system on edge
devices like the Raspi-Zero and Raspi-5, showcasing the potential for
real-time, on-device intelligence.

We’ve explored the entire pipeline of an image classification project,
from data collection and model training using Edge Impulse Studio to
deploying and running inferences on a Raspi. The process highlighted
several key points:

1. The importance of proper data collection and preprocessing for
training effective models.

2. The power of transfer learning, allowing us to leverage pre-trained
models like MobileNet V2 for efficient training with limited data.

3. The trade-offs between model accuracy and inference speed, es-
pecially crucial for edge devices.

4. The implementation of real-time classification using a web-based
interface, demonstrating practical applications.

The ability to run these models on edge devices like the Raspi opens up
numerous possibilities for IoT applications, autonomous systems, and
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real-time monitoring solutions. It allows for reduced latency, improved
privacy, and operation in environments with limited connectivity.

As we’ve seen, even with the computational constraints of edge devices,
it’s possible to achieve impressive results in terms of both accuracy
and speed. The flexibility to adjust model parameters, such as input
size and alpha values, allows for fine-tuning to meet specific project
requirements.

Looking forward, the field of edge AI and image classification con-
tinues to evolve rapidly. Advances in model compression techniques,
hardware acceleration, and more efficient neural network architectures
promise to further expand the capabilities of edge devices in computer
vision tasks.

This project serves as a foundation for more complex computer vision
applications and encourages further exploration into the exciting world
of edge AI and IoT. Whether it’s for industrial automation, smart home
applications, or environmental monitoring, the skills and concepts
covered here provide a solid starting point for a wide range of innovative
projects.

Resources

• Dataset Example
• Setup Test Notebook on a Raspi
• Image Classification Notebook on a Raspi
• CNN to classify Cifar-10 dataset at CoLab
• Cifar 10 - Image Classification on a Raspi
• Python Scripts
• Edge Impulse Project

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/tree/main/IMG_CLASS/dataset
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/setup_test.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/10_Image_Classification.ipynb
https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/2_Applications_Deploy/Class_16/cifar_10/CNN_Cifar_10_TFLite.ipynb#scrollTo=iiVBUpuHXEtw
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/20_Cifar_10_Image_Classification.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/tree/main/IMG_CLASS/python_scripts
https://studio.edgeimpulse.com/public/510251/live
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Figure 1.23: DALL·E prompt - A cover image for an ‘Object Detection’ chapter in a Raspberry Pi tutorial,
designed in the same vintage 1950s electronics lab style as previous covers. The scene should prominently
feature wheels and cubes, similar to those provided by the user, placed on a workbench in the foreground. A
Raspberry Pi with a connected camera module should be capturing an image of these objects. Surround the
scene with classic lab tools like soldering irons, resistors, and wires. The lab background should include vintage
equipment like oscilloscopes and tube radios, maintaining the detailed and nostalgic feel of the era. No text or
logos should be included.

Overview

Building upon our exploration of image classification, we now turn our
attention to a more advanced computer vision task: object detection.
While image classification assigns a single label to an entire image,
object detection goes further by identifying and locating multiple objects
within a single image. This capability opens up many new applications
and challenges, particularly in edge computing and IoT devices like the
Raspberry Pi.
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Object detection combines the tasks of classification and localization.
It not only determines what objects are present in an image but also
pinpoints their locations by, for example, drawing bounding boxes
around them. This added complexity makes object detection a more
powerful tool for understanding visual scenes, but it also requires more
sophisticated models and training techniques.

In edge AI, where we work with constrained computational resources,
implementing efficient object detection models becomes crucial. The
challenges we faced with image classification—balancing model size,
inference speed, and accuracy—are amplified in object detection. How-
ever, the rewards are also more significant, as object detection enables
more nuanced and detailed visual data analysis.

Some applications of object detection on edge devices include:

1. Surveillance and security systems
2. Autonomous vehicles and drones
3. Industrial quality control
4. Wildlife monitoring
5. Augmented reality applications

As we put our hands into object detection, we’ll build upon the concepts
and techniques we explored in image classification. We’ll examine
popular object detection architectures designed for efficiency, such
as:

• Single Stage Detectors, such as MobileNet and EfficientDet,
• FOMO (Faster Objects, More Objects), and
• YOLO (You Only Look Once).

To learn more about object detection models, follow the
tutorial A Gentle Introduction to Object Recognition With
Deep Learning.

We will explore those object detection models using

• TensorFlow Lite Runtime (now changed to LiteRT),
• Edge Impulse Linux Python SDK and
• Ultralytics

https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://ai.google.dev/edge/litert
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Throughout this lab, we’ll cover the fundamentals of object detection
and how it differs from image classification. We’ll also learn how to
train, fine-tune, test, optimize, and deploy popular object detection
architectures using a dataset created from scratch.

Object Detection Fundamentals

Object detection builds upon the foundations of image classification but
extends its capabilities significantly. To understand object detection, it’s
crucial first to recognize its key differences from image classification:

Image Classification vs. Object Detection

Image Classification:

• Assigns a single label to an entire image
• Answers the question: “What is this image’s primary object or

scene?”
• Outputs a single class prediction for the whole image

Object Detection:

• Identifies and locates multiple objects within an image
• Answers the questions: “What objects are in this image, and where

are they located?”
• Outputs multiple predictions, each consisting of a class label and

a bounding box

To visualize this difference, let’s consider an example:
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This diagram illustrates the critical difference: image classification pro-
vides a single label for the entire image, while object detection identifies
multiple objects, their classes, and their locations within the image.

Key Components of Object Detection

Object detection systems typically consist of two main components:

1. Object Localization: This component identifies where objects are
located in the image. It typically outputs bounding boxes, rectan-
gular regions encompassing each detected object.

2. Object Classification: This component determines the class or
category of each detected object, similar to image classification
but applied to each localized region.

Challenges in Object Detection

Object detection presents several challenges beyond those of image
classification:

• Multiple objects: An image may contain multiple objects of vari-
ous classes, sizes, and positions.

• Varying scales: Objects can appear at different sizes within the
image.

• Occlusion: Objects may be partially hidden or overlapping.
• Background clutter: Distinguishing objects from complex back-

grounds can be challenging.
• Real-time performance: Many applications require fast inference

times, especially on edge devices.
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Approaches to Object Detection

There are two main approaches to object detection:

1. Two-stage detectors: These first propose regions of interest and
then classify each region. Examples include R-CNN and its vari-
ants (Fast R-CNN, Faster R-CNN).

2. Single-stage detectors: These predict bounding boxes (or cen-
troids) and class probabilities in one forward pass of the network.
Examples include YOLO (You Only Look Once), EfficientDet, SSD
(Single Shot Detector), and FOMO (Faster Objects, More Objects).
These are often faster and more suitable for edge devices like
Raspberry Pi.

Evaluation Metrics

Object detection uses different metrics compared to image classifica-
tion:

• Intersection over Union (IoU): Measures the overlap between
predicted and ground truth bounding boxes.

• Mean Average Precision (mAP): Combines precision and recall
across all classes and IoU thresholds.

• Frames Per Second (FPS): Measures detection speed, crucial for
real-time applications on edge devices.

Pre-Trained Object Detection Models
Overview

As we saw in the introduction, given an image or a video stream, an
object detection model can identify which of a known set of objects
might be present and provide information about their positions within
the image.

You can test some common models online by visiting Object
Detection - MediaPipe Studio

On Kaggle, we can find the most common pre-trained tflite models to
use with the Raspi, ssd_mobilenet_v1, and EfficientDet. Those models
were trained on the COCO (Common Objects in Context) dataset, with
over 200,000 labeled images in 91 categories. Go, download the models,
and upload them to the ./models folder in the Raspi.

https://mediapipe-studio.webapps.google.com/studio/demo/object_detector
https://mediapipe-studio.webapps.google.com/studio/demo/object_detector
https://www.kaggle.com/models?id=298,130,299
https://www.kaggle.com/models/tensorflow/ssd-mobilenet-v1/tfLite
https://www.kaggle.com/models/tensorflow/efficientdet/tfLite


Object Detection 497

Alternatively, you can find the models and the COCO labels
on GitHub.

For the first part of this lab, we will focus on a pre-trained 300×300 SSD-
Mobilenet V1 model and compare it with the 320 × 320 EfficientDet-
lite0, also trained using the COCO 2017 dataset. Both models were
converted to a TensorFlow Lite format (4.2 MB for the SSD Mobilenet
and 4.6 MB for the EfficientDet).

SSD-Mobilenet V2 or V3 is recommended for transfer learn-
ing projects, but once the V1 TFLite model is publicly avail-
able, we will use it for this overview.

Setting Up the TFLite Environment

We should confirm the steps done on the last Hands-On Lab, Image
Classification, as follows:

• Updating the Raspberry Pi
• Installing Required Libraries
• Setting up a Virtual Environment (Optional but Recommended)

source ~/tflite/bin/activate

• Installing TensorFlow Lite Runtime
• Installing Additional Python Libraries (inside the environment)

Creating a Working Directory:

Considering that we have created the Documents/TFLITE folder in the
last Lab, let’s now create the specific folders for this object detection
lab:

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/tree/main/OBJ_DETEC/models
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/tree/main/OBJ_DETEC/models
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cd Documents/TFLITE/
mkdir OBJ_DETECT
cd OBJ_DETECT
mkdir images
mkdir models
cd models

Inference and Post-Processing

Let’s start a new notebook to follow all the steps to detect objects on an
image:

Import the needed libraries:

import time
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import tflite_runtime.interpreter as tflite

Load the TFLite model and allocate tensors:

model_path = "./models/ssd-mobilenet-v1-tflite-default-v1.tflite"
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

Get input and output tensors.

input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

Input details will inform us how the model should be fed with an
image. The shape of (1, 300, 300, 3) with a dtype of uint8 tells us
that a non-normalized (pixel value range from 0 to 255) image with di-
mensions (300×300×3) should be input one by one (Batch Dimension:
1).

The output details include not only the labels (“classes”) and probabili-
ties (“scores”) but also the relative window position of the bounding
boxes (“boxes”) about where the object is located on the image and
the number of detected objects (“num_detections”). The output details
also tell us that the model can detect a maximum of 10 objects in the
image.

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/SSD_MobileNetV1.ipynb
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So, for the above example, using the same cat image used with the Image
Classification Lab looking for the output, we have a 76% probability
of having found an object with a class ID of 16 on an area delimited
by a bounding box of [0.028011084, 0.020121813, 0.9886069, 0.802299].
Those four numbers are related to ymin, xmin, ymax and xmax, the box
coordinates.

Taking into consideration that y goes from the top (ymin) to the bottom
(ymax) and x goes from left (xmin) to the right (xmax), we have, in fact,
the coordinates of the top/left corner and the bottom/right one. With
both edges and knowing the shape of the picture, it is possible to draw
a rectangle around the object, as shown in the figure below:

Next, we should find what class ID equal to 16 means. Opening the
file coco_labels.txt, as a list, each element has an associated index,
and inspecting index 16, we get, as expected, cat. The probability is
the value returning from the score.
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Let’s now upload some images with multiple objects on it for testing.

img_path = "./images/cat_dog.jpeg"
orig_img = Image.open(img_path)

# Display the image
plt.figure(figsize=(8, 8))
plt.imshow(orig_img)
plt.title("Original Image")
plt.show()

Based on the input details, let’s pre-process the image, changing its
shape and expanding its dimension:

img = orig_img.resize(
(input_details[0]["shape"][1], input_details[0]["shape"][2])

)
input_data = np.expand_dims(img, axis=0)
input_data.shape, input_data.dtype

The new input_data shape is(1, 300, 300, 3) with a dtype of uint8,
which is compatible with what the model expects.

Using the input_data, let’s run the interpreter, measure the latency, and
get the output:

start_time = time.time()
interpreter.set_tensor(input_details[0]["index"], input_data)
interpreter.invoke()
end_time = time.time()
inference_time = (

end_time - start_time
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) * 1000 # Convert to milliseconds
print("Inference time: {:.1f}ms".format(inference_time))

With a latency of around 800 ms, we can get 4 distinct outputs:

boxes = interpreter.get_tensor(output_details[0]["index"])[0]
classes = interpreter.get_tensor(output_details[1]["index"])[0]
scores = interpreter.get_tensor(output_details[2]["index"])[0]
num_detections = int(

interpreter.get_tensor(output_details[3]["index"])[0]
)

On a quick inspection, we can see that the model detected 2 objects
with a score over 0.5:

for i in range(num_detections):
if scores[i] > 0.5: # Confidence threshold

print(f"Object {i}:")
print(f" Bounding Box: {boxes[i]}")
print(f" Confidence: {scores[i]}")
print(f" Class: {classes[i]}")

And we can also visualize the results:

plt.figure(figsize=(12, 8))
plt.imshow(orig_img)
for i in range(num_detections):

if scores[i] > 0.5: # Adjust threshold as needed
ymin, xmin, ymax, xmax = boxes[i]
(left, right, top, bottom) = (

xmin * orig_img.width,
xmax * orig_img.width,
ymin * orig_img.height,
ymax * orig_img.height,

)
rect = plt.Rectangle(

(left, top),
right - left,
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bottom - top,
fill=False,
color="red",
linewidth=2,

)
plt.gca().add_patch(rect)
class_id = int(classes[i])
class_name = labels[class_id]
plt.text(

left,
top - 10,
f"{class_name}: {scores[i]:.2f}",
color="red",
fontsize=12,
backgroundcolor="white",

)

EfficientDet

EfficientDet is not technically an SSD (Single Shot Detector) model, but
it shares some similarities and builds upon ideas from SSD and other
object detection architectures:

1. EfficientDet:
• Developed by Google researchers in 2019
• Uses EfficientNet as the backbone network
• Employs a novel bi-directional feature pyramid network

(BiFPN)
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• It uses compound scaling to scale the backbone network and
the object detection components efficiently.

2. Similarities to SSD:
• Both are single-stage detectors, meaning they perform object

localization and classification in a single forward pass.
• Both use multi-scale feature maps to detect objects at differ-

ent scales.

3. Key differences:
• Backbone: SSD typically uses VGG or MobileNet, while Effi-

cientDet uses EfficientNet.
• Feature fusion: SSD uses a simple feature pyramid, while

EfficientDet uses the more advanced BiFPN.
• Scaling method: EfficientDet introduces compound scaling

for all components of the network

4. Advantages of EfficientDet:
• Generally achieves better accuracy-efficiency trade-offs than

SSD and many other object detection models.
• More flexible scaling allows for a family of models with

different size-performance trade-offs.

While EfficientDet is not an SSD model, it can be seen as an evolution
of single-stage detection architectures, incorporating more advanced
techniques to improve efficiency and accuracy. When using EfficientDet,
we can expect similar output structures to SSD (e.g., bounding boxes
and class scores).

On GitHub, you can find another notebook exploring the
EfficientDet model that we did with SSD MobileNet.

Object Detection Project

Now, we will develop a complete Image Classification project from
data collection to training and deployment. As we did with the Image
Classification project, the trained and converted model will be used for
inference.

We will use the same dataset to train 3 models: SSD-MobileNet V2,
FOMO, and YOLO.

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/SSD_EfficientDet.ipynb
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The Goal

All Machine Learning projects need to start with a goal. Let’s assume
we are in an industrial facility and must sort and count wheels and
special boxes.

In other words, we should perform a multi-label classification, where
each image can have three classes:

• Background (no objects)
• Box
• Wheel

Raw Data Collection

Once we have defined our Machine Learning project goal, the next and
most crucial step is collecting the dataset. We can use a phone, the
Raspi, or a mix to create the raw dataset (with no labels). Let’s use the
simple web app on our Raspberry Pi to view the QVGA (320 x 240)
captured images in a browser.

From GitHub, get the Python script get_img_data.py and open it in the
terminal:

python3 get_img_data.py

Access the web interface:

• On the Raspberry Pi itself (if you have a GUI): Open a web browser
and go to http://localhost:5000

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/python_scripts/get_img_data.py
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• From another device on the same network: Open a web browser
and go to http://<raspberry_pi_ip>:5000 (Replace <raspberry_-
pi_ip> with your Raspberry Pi’s IP address). For example:
http://192.168.4.210:5000/

The Python script creates a web-based interface for capturing and orga-
nizing image datasets using a Raspberry Pi and its camera. It’s handy
for machine learning projects that require labeled image data or not, as
in our case here.

Access the web interface from a browser, enter a generic label for the
images you want to capture, and press Start Capture.

Note that the images to be captured will have multiple labels
that should be defined later.

Use the live preview to position the camera and click Capture Image
to save images under the current label (in this case, box-wheel.
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When we have enough images, we can press Stop Capture. The cap-
tured images are saved on the folder dataset/box-wheel:

Get around 60 images. Try to capture different angles, back-
grounds, and light conditions. Filezilla can transfer the
created raw dataset to your main computer.

Labeling Data

The next step in an Object Detect project is to create a labeled dataset. We
should label the raw dataset images, creating bounding boxes around
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each picture’s objects (box and wheel). We can use labeling tools like
LabelImg, CVAT, Roboflow, or even the Edge Impulse Studio. Once we
have explored the Edge Impulse tool in other labs, let’s use Roboflow
here.

We are using Roboflow (free version) here for two main
reasons. 1) We can have auto-labeler, and 2) The annotated
dataset is available in several formats and can be used both
on Edge Impulse Studio (we will use it for MobileNet V2
and FOMO train) and on CoLab (YOLOv8 train), for exam-
ple. Having the annotated dataset on Edge Impulse (Free
account), it is not possible to use it for training on other
platforms.

We should upload the raw dataset to Roboflow. Create a free account
there and start a new project, for example, (“box-versus-wheel”).

We will not enter in deep details about the Roboflow process
once many tutorials are available.

Annotate

Once the project is created and the dataset is uploaded, you should
make the annotations using the “Auto-Label” Tool. Note that you can
also upload images with only a background, which should be saved
w/o any annotations.

https://pypi.org/project/labelImg/
https://www.cvat.ai/
https://roboflow.com/annotate
https://edgeimpulse.com/
https://roboflow.com/
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Once all images are annotated, you should split them into training,
validation, and testing.

Data Pre-Processing

The last step with the dataset is preprocessing to generate a final version
for training. Let’s resize all images to 320×320 and generate augmented
versions of each image (augmentation) to create new training examples
from which our model can learn.
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For augmentation, we will rotate the images (+/-15o), crop, and vary
the brightness and exposure.

At the end of the process, we will have 153 images.

Now, you should export the annotated dataset in a format that Edge
Impulse, Ultralytics, and other frameworks/tools understand, for ex-
ample, YOLOv8. Let’s download a zipped version of the dataset to our
desktop.
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Here, it is possible to review how the dataset was structured

There are 3 separate folders, one for each split (train/test/valid). For
each of them, there are 2 subfolders, images, and labels. The pictures
are stored as image_id.jpg and images_id.txt, where “image_id” is
unique for every picture.
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The labels file format will be class_id bounding box coordinates,
where in our case, class_id will be 0 for box and 1 for wheel. The
numerical id (o, 1, 2…) will follow the alphabetical order of the class
name.

The data.yaml file has info about the dataset as the classes’ names
(names: ['box', 'wheel']) following the YOLO format.

And that’s it! We are ready to start training using the Edge Impulse
Studio (as we will do in the following step), Ultralytics (as we will when
discussing YOLO), or even training from scratch on CoLab (as we did
with the Cifar-10 dataset on the Image Classification lab).

The pre-processed dataset can be found at the Roboflow
site.

Training an SSD MobileNet Model on Edge
Impulse Studio

Go to Edge Impulse Studio, enter your credentials at Login (or create
an account), and start a new project.

Here, you can clone the project developed for this hands-on
lab: Raspi - Object Detection.

On the Project Dashboard tab, go down and on Project info, and for
Labeling method select Bounding boxes (object detection)

Uploading the annotated data

On Studio, go to the Data acquisition tab, and on the UPLOAD DATA
section, upload from your computer the raw dataset.

We can use the option Select a folder, choosing, for example, the
folder train in your computer, which contains two sub-folders, images,
and labels. Select the Image label format, “YOLO TXT”, upload
into the category Training, and press Upload data.

https://universe.roboflow.com/marcelo-rovai-riila/box-versus-wheel-auto-dataset
https://universe.roboflow.com/marcelo-rovai-riila/box-versus-wheel-auto-dataset
https://www.edgeimpulse.com/
https://studio.edgeimpulse.com/public/515477/live
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Repeat the process for the test data (upload both folders, test, and
validation). At the end of the upload process, you should end with the
annotated dataset of 153 images split in the train/test (84%/16%).

Note that labels will be stored at the labels files 0 and 1 ,
which are equivalent to box and wheel.

The Impulse Design

The first thing to define when we enter the Create impulse step is
to describe the target device for deployment. A pop-up window will
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appear. We will select Raspberry 4, an intermediary device between
the Raspi-Zero and the Raspi-5.

This choice will not interfere with the training; it will only
give us an idea about the latency of the model on that spe-
cific target.

In this phase, you should define how to:

• Pre-processing consists of resizing the individual images. In our
case, the images were pre-processed on Roboflow, to 320x320 , so
let’s keep it. The resize will not matter here because the images
are already squared. If you upload a rectangular image, squash it
(squared form, without cropping). Afterward, you could define
if the images are converted from RGB to Grayscale or not.

• Design a Model, in this case, “Object Detection.”
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Preprocessing all dataset

In the section Image, selectColor depth as RGB, and press Save parameters.

The Studio moves automatically to the next section, Generate features,
where all samples will be pre-processed, resulting in 480 objects: 207
boxes and 273 wheels.
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The feature explorer shows that all samples evidence a good separation
after the feature generation.

Model Design, Training, and Test

For training, we should select a pre-trained model. Let’s use the Mo-
bileNetV2 SSD FPN-Lite (320x320 only) . It is a pre-trained object
detection model designed to locate up to 10 objects within an image,
outputting a bounding box for each object detected. The model is
around 3.7 MB in size. It supports an RGB input at 320×320 px.

Regarding the training hyper-parameters, the model will be trained
with:

• Epochs: 25
• Batch size: 32
• Learning Rate: 0.15.

For validation during training, 20% of the dataset (validation_dataset)
will be spared.
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As a result, the model ends with an overall precision score (based on
COCO mAP) of 88.8%, higher than the result when using the test data
(83.3%).

Deploying the model

We have two ways to deploy our model:

• TFLite model, which lets deploy the trained model as .tflite
for the Raspi to run it using Python.

• Linux (AARCH64), a binary for Linux (AARCH64), implements
the Edge Impulse Linux protocol, which lets us run our models
on any Linux-based development board, with SDKs for Python,
for example. See the documentation for more information and
setup instructions.

Let’s deploy the TFLite model. On the Dashboard tab, go to Transfer
learning model (int8 quantized) and click on the download icon:

https://docs.edgeimpulse.com/docs/edge-impulse-for-linux
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Transfer the model from your computer to the Raspi folder./models
and capture or get some images for inference and save them in the
folder ./images.

Inference and Post-Processing

The inference can be made as discussed in thePre-TrainedObject Detection
Models Overview. Let’s start a new notebook to follow all the steps to
detect cubes and wheels on an image.

Import the needed libraries:

import time
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from PIL import Image
import tflite_runtime.interpreter as tflite

Define the model path and labels:

model_path = "./models/ei-raspi-object-detection-SSD-\
MobileNetv2-320x0320-int8.lite"

labels = ["box", "wheel"]

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/EI-SSD-MobileNetV2.ipynb
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Remember that the model will output the class ID as values
(0 and 1), following an alphabetic order regarding the class
names.

Load the model, allocate the tensors, and get the input and output
tensor details:

# Load the TFLite model
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

# Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

One crucial difference to note is that the dtype of the input details of
the model is now int8, which means that the input values go from –128
to +127, while each pixel of our raw image goes from 0 to 256. This
means that we should pre-process the image to match it. We can check
here:

input_dtype = input_details[0]["dtype"]
input_dtype

numpy.int8

So, let’s open the image and show it:

# Load the image
img_path = "./images/box_2_wheel_2.jpg"
orig_img = Image.open(img_path)

# Display the image
plt.figure(figsize=(6, 6))
plt.imshow(orig_img)
plt.title("Original Image")
plt.show()
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And perform the pre-processing:

scale, zero_point = input_details[0]["quantization"]
img = orig_img.resize(

(input_details[0]["shape"][1], input_details[0]["shape"][2])
)
img_array = np.array(img, dtype=np.float32) / 255.0
img_array = (

(img_array / scale + zero_point).clip(-128, 127).astype(np.int8)
)
input_data = np.expand_dims(img_array, axis=0)

Checking the input data, we can verify that the input tensor is compati-
ble with what is expected by the model:

input_data.shape, input_data.dtype

((1, 320, 320, 3), dtype('int8'))

Now, it is time to perform the inference. Let’s also calculate the latency
of the model:

# Inference on Raspi-Zero
start_time = time.time()
interpreter.set_tensor(input_details[0]["index"], input_data)
interpreter.invoke()
end_time = time.time()
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inference_time = (
end_time - start_time

) * 1000 # Convert to milliseconds
print("Inference time: {:.1f}ms".format(inference_time))

The model will take around 600ms to perform the inference in the
Raspi-Zero, which is around 5 times longer than a Raspi-5.

Now, we can get the output classes of objects detected, its bounding
boxes coordinates, and probabilities.

boxes = interpreter.get_tensor(output_details[1]["index"])[0]
classes = interpreter.get_tensor(output_details[3]["index"])[0]
scores = interpreter.get_tensor(output_details[0]["index"])[0]
num_detections = int(

interpreter.get_tensor(output_details[2]["index"])[0]
)

for i in range(num_detections):
if scores[i] > 0.5: # Confidence threshold

print(f"Object {i}:")
print(f" Bounding Box: {boxes[i]}")
print(f" Confidence: {scores[i]}")
print(f" Class: {classes[i]}")

From the results, we can see that 4 objects were detected: two with class
ID 0 (box)and two with class ID 1 (wheel), what is correct!

Let’s visualize the result for a threshold of 0.5
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threshold = 0.5
plt.figure(figsize=(6, 6))
plt.imshow(orig_img)
for i in range(num_detections):

if scores[i] > threshold:
ymin, xmin, ymax, xmax = boxes[i]
(left, right, top, bottom) = (

xmin * orig_img.width,
xmax * orig_img.width,
ymin * orig_img.height,
ymax * orig_img.height,

)
rect = plt.Rectangle(

(left, top),
right - left,
bottom - top,
fill=False,
color="red",
linewidth=2,

)
plt.gca().add_patch(rect)
class_id = int(classes[i])
class_name = labels[class_id]
plt.text(

left,
top - 10,
f"{class_name}: {scores[i]:.2f}",
color="red",
fontsize=12,
backgroundcolor="white",

)
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But what happens if we reduce the threshold to 0.3, for example?
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We start to see false positives and multiple detections, where the model
detects the same object multiple times with different confidence levels
and slightly different bounding boxes.

Commonly, sometimes, we need to adjust the threshold to smaller
values to capture all objects, avoiding false negatives, which would lead
to multiple detections.

To improve the detection results, we should implement Non-Maximum
Suppression (NMS), which helps eliminate overlapping bounding
boxes and keeps only the most confident detection.

For that, let’s create a general function named non_max_suppression(),
with the role of refining object detection results by eliminating redun-
dant and overlapping bounding boxes. It achieves this by iteratively
selecting the detection with the highest confidence score and removing
other significantly overlapping detections based on an Intersection over
Union (IoU) threshold.

def non_max_suppression(boxes, scores, threshold):
# Convert to corner coordinates
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
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areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]

keep = []
while order.size > 0:

i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])

w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)

inds = np.where(ovr <= threshold)[0]
order = order[inds + 1]

return keep

How it works:

1. Sorting: It starts by sorting all detections by their confidence
scores, highest to lowest.

2. Selection: It selects the highest-scoring box and adds it to the final
list of detections.

3. Comparison: This selected box is compared with all remaining
lower-scoring boxes.

4. Elimination: Any box that overlaps significantly (above the IoU
threshold) with the selected box is eliminated.

5. Iteration: This process repeats with the next highest-scoring box
until all boxes are processed.

Now, we can define a more precise visualization function that will take
into consideration an IoU threshold, detecting only the objects that
were selected by the non_max_suppression function:

def visualize_detections(
image, boxes, classes, scores, labels, threshold, iou_threshold

):
if isinstance(image, Image.Image):
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image_np = np.array(image)
else:

image_np = image
height, width = image_np.shape[:2]
# Convert normalized coordinates to pixel coordinates
boxes_pixel = boxes * np.array([height, width, height, width])
# Apply NMS
keep = non_max_suppression(boxes_pixel, scores, iou_threshold)
# Set the figure size to 12x8 inches
fig, ax = plt.subplots(1, figsize=(12, 8))
ax.imshow(image_np)
for i in keep:

if scores[i] > threshold:
ymin, xmin, ymax, xmax = boxes[i]
rect = patches.Rectangle(

(xmin * width, ymin * height),
(xmax - xmin) * width,
(ymax - ymin) * height,
linewidth=2,
edgecolor="r",
facecolor="none",

)

ax.add_patch(rect)
class_name = labels[int(classes[i])]
ax.text(

xmin * width,
ymin * height - 10,
f"{class_name}: {scores[i]:.2f}",
color="red",
fontsize=12,
backgroundcolor="white",

)
plt.show()

Now we can create a function that will call the others, performing
inference on any image:

def detect_objects(img_path, conf=0.5, iou=0.5):
orig_img = Image.open(img_path)
scale, zero_point = input_details[0]["quantization"]
img = orig_img.resize(

(input_details[0]["shape"][1], input_details[0]["shape"][2])
)
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img_array = np.array(img, dtype=np.float32) / 255.0
img_array = (

(img_array / scale + zero_point)
.clip(-128, 127)
.astype(np.int8)

)
input_data = np.expand_dims(img_array, axis=0)

# Inference on Raspi-Zero
start_time = time.time()
interpreter.set_tensor(input_details[0]["index"], input_data)
interpreter.invoke()
end_time = time.time()
inference_time = (

end_time - start_time
) * 1000 # Convert to milliseconds

print("Inference time: {:.1f}ms".format(inference_time))

# Extract the outputs
boxes = interpreter.get_tensor(output_details[1]["index"])[0]
classes = interpreter.get_tensor(output_details[3]["index"])[0]
scores = interpreter.get_tensor(output_details[0]["index"])[0]
num_detections = int(

interpreter.get_tensor(output_details[2]["index"])[0]
)

visualize_detections(
orig_img,
boxes,
classes,
scores,
labels,
threshold=conf,
iou_threshold=iou,

)

Now, running the code, having the same image again with a confidence
threshold of 0.3, but with a small IoU:

img_path = "./images/box_2_wheel_2.jpg"
detect_objects(img_path, conf=0.3, iou=0.05)
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Training a FOMO Model at Edge Impulse
Studio

The inference with the SSD MobileNet model worked well, but the
latency was significantly high. The inference varied from 0.5 to 1.3
seconds on a Raspi-Zero, which means around or less than 1 FPS (1
frame per second). One alternative to speed up the process is to use
FOMO (Faster Objects, More Objects).

This novel machine learning algorithm lets us count multiple objects
and find their location in an image in real-time using up to 30× less
processing power and memory than MobileNet SSD or YOLO. The main
reason this is possible is that while other models calculate the object’s
size by drawing a square around it (bounding box), FOMO ignores
the size of the image, providing only the information about where the
object is located in the image through its centroid coordinates.

How FOMO works?

In a typical object detection pipeline, the first stage is extracting features
from the input image. FOMO leverages MobileNetV2 to perform this
task. MobileNetV2 processes the input image to produce a feature map



Training a FOMO Model at Edge Impulse Studio 528

that captures essential characteristics, such as textures, shapes, and
object edges, in a computationally efficient way.

Once these features are extracted, FOMO’s simpler architecture, focused
on center-point detection, interprets the feature map to determine where
objects are located in the image. The output is a grid of cells, where
each cell represents whether or not an object center is detected. The
model outputs one or more confidence scores for each cell, indicating
the likelihood of an object being present.

Let’s see how it works on an image.

FOMO divides the image into blocks of pixels using a factor of 8. For the
input of 96×96, the grid would be 12×12 (96/8 = 12). For a 160×160,
the grid will be 20 × 20, and so on. Next, FOMO will run a classifier
through each pixel block to calculate the probability that there is a box
or a wheel in each of them and, subsequently, determine the regions
that have the highest probability of containing the object (If a pixel block
has no objects, it will be classified as background). From the overlap of
the final region, the FOMO provides the coordinates (related to the
image dimensions) of the centroid of this region.
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Trade-off Between Speed and Precision:

• Grid Resolution: FOMO uses a grid of fixed resolution, meaning
each cell can detect if an object is present in that part of the image.
While it doesn’t provide high localization accuracy, it makes a
trade-off by being fast and computationally light, which is crucial
for edge devices.

• Multi-Object Detection: Since each cell is independent, FOMO
can detect multiple objects simultaneously in an image by identi-
fying multiple centers.

Impulse Design, new Training and Testing

Return to Edge Impulse Studio, and in the Experiments tab, create
another impulse. Now, the input images should be 160 × 160 (this is
the expected input size for MobilenetV2).
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On the Image tab, generate the features and go to the Object detection
tab.

We should select a pre-trained model for training. Let’s use the FOMO
(Faster Objects, More Objects) MobileNetV2 0.35.

Regarding the training hyper-parameters, the model will be trained
with:

• Epochs: 30
• Batch size: 32
• Learning Rate: 0.001.
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For validation during training, 20% of the dataset (validation_dataset)
will be spared. We will not apply Data Augmentation for the remaining
80% (train_dataset) because our dataset was already augmented during
the labeling phase at Roboflow.

As a result, the model ends with an overall F1 score of 93.3% with an
impressive latency of 8 ms (Raspi-4), around 60× less than we got with
the SSD MovileNetV2.

Note that FOMO automatically added a third label back-
ground to the two previously defined boxes (0) and wheels
(1).

On the Model testing tab, we can see that the accuracy was 94%. Here
is one of the test sample results:
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In object detection tasks, accuracy is generally not the pri-
mary evaluation metric. Object detection involves classi-
fying objects and providing bounding boxes around them,
making it a more complex problem than simple classifica-
tion. The issue is that we do not have the bounding box, only
the centroids. In short, using accuracy as a metric could be
misleading and may not provide a complete understanding
of how well the model is performing.

Deploying the model

As we did in the previous section, we can deploy the trained model as
TFLite or Linux (AARCH64). Let’s do it now as Linux (AARCH64), a
binary that implements the Edge Impulse Linux protocol.

Edge Impulse for Linux models is delivered in .eim format. This ex-
ecutable contains our “full impulse” created in Edge Impulse Studio.
The impulse consists of the signal processing block(s) and any learning
and anomaly block(s) we added and trained. It is compiled with opti-
mizations for our processor or GPU (e.g., NEON instructions on ARM
cores), plus a straightforward IPC layer (over a Unix socket).

At the Deploy tab, select the option Linux (AARCH64), the int8model
and press Build.

https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/
https://docs.edgeimpulse.com/docs/tools/edge-impulse-for-linux
https://docs.edgeimpulse.com/docs/run-inference/linux-eim-executable
https://docs.edgeimpulse.com/docs/run-inference/linux-eim-executable
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The model will be automatically downloaded to your computer.

On our Raspi, let’s create a new working area:

cd ~
cd Documents
mkdir EI_Linux
cd EI_Linux
mkdir models
mkdir images

Rename the model for easy identification:

For example, raspi-object-detection-linux-aarch64-FOMO-int8.eim
and transfer it to the new Raspi folder./models and capture or get some
images for inference and save them in the folder ./images.
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Inference and Post-Processing

The inference will be made using the Linux Python SDK. This library
lets us run machine learning models and collect sensor data on Linux
machines using Python. The SDK is open source and hosted on GitHub:
edgeimpulse/linux-sdk-python.

Let’s set up a Virtual Environment for working with the Linux Python
SDK

python3 -m venv ~/eilinux
source ~/eilinux/bin/activate

And Install the all the libraries needed:

sudo apt-get update
sudo apt-get install libatlas-base-dev\

libportaudio0 libportaudio2
sudo apt-get installlibportaudiocpp0 portaudio19-dev

pip3 install edge_impulse_linux -i https://pypi.python.org/simple
pip3 install Pillow matplotlib pyaudio opencv-contrib-python

sudo apt-get install portaudio19-dev
pip3 install pyaudio
pip3 install opencv-contrib-python

Permit our model to be executable.

chmod +x raspi-object-detection-linux-aarch64-FOMO-int8.eim

Install the Jupiter Notebook on the new environment

pip3 install jupyter

Run a notebook locally (on the Raspi-4 or 5 with desktop)

jupyter notebook

or on the browser on your computer:

jupyter notebook --ip=192.168.4.210 --no-browser

Let’s start a new notebook by following all the steps to detect cubes
and wheels on an image using the FOMO model and the Edge Impulse
Linux Python SDK.

Import the needed libraries:

https://docs.edgeimpulse.com/docs/tools/edge-impulse-for-linux/linux-python-sdk
https://docs.edgeimpulse.com/docs/tools/edge-impulse-for-linux
https://github.com/edgeimpulse/linux-sdk-python
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/EI-Linux-FOMO.ipynb
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import sys, time
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from PIL import Image
import cv2
from edge_impulse_linux.image import ImageImpulseRunner

Define the model path and labels:

model_file = "raspi-object-detection-linux-aarch64-int8.eim"
model_path = "models/" + model_file # Trained ML model from
# Edge Impulse
labels = ["box", "wheel"]

Remember that the model will output the class ID as values
(0 and 1), following an alphabetic order regarding the class
names.

Load and initialize the model:

# Load the model file
runner = ImageImpulseRunner(model_path)

# Initialize model
model_info = runner.init()

The model_info will contain critical information about our model.
However, unlike the TFLite interpreter, the EI Linux Python SDK library
will now prepare the model for inference.

So, let’s open the image and show it (Now, for compatibility, we will
use OpenCV, the CV Library used internally by EI. OpenCV reads the
image as BGR, so we will need to convert it to RGB :

# Load the image
img_path = "./images/1_box_1_wheel.jpg"
orig_img = cv2.imread(img_path)
img_rgb = cv2.cvtColor(orig_img, cv2.COLOR_BGR2RGB)

# Display the image
plt.imshow(img_rgb)
plt.title("Original Image")
plt.show()
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Now we will get the features and the preprocessed image (cropped)
using the runner:

features, cropped = (
runner.get_features_from_image_auto_studio_settings(img_rgb)

)

And perform the inference. Let’s also calculate the latency of the
model:

res = runner.classify(features)

Let’s get the output classes of objects detected, their bounding boxes
centroids, and probabilities.

print(
"Found %d bounding boxes (%d ms.)"
% (

len(res["result"]["bounding_boxes"]),
res["timing"]["dsp"] + res["timing"]["classification"],

)
)
for bb in res["result"]["bounding_boxes"]:

print(
"\t%s (%.2f): x=%d y=%d w=%d h=%d"
% (

bb["label"],
bb["value"],
bb["x"],
bb["y"],
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bb["width"],
bb["height"],

)
)

Found 2 bounding boxes (29 ms.)
1 (0.91): x=112 y=40 w=16 h=16
0 (0.75): x=48 y=56 w=8 h=8

The results show that two objects were detected: one with class ID 0
(box) and one with class ID 1 (wheel), which is correct!

Let’s visualize the result (The threshold is 0.5, the default value set
during the model testing on the Edge Impulse Studio).

print(
"\tFound %d bounding boxes (latency: %d ms)"
% (

len(res["result"]["bounding_boxes"]),
res["timing"]["dsp"] + res["timing"]["classification"],

)
)
plt.figure(figsize=(5, 5))
plt.imshow(cropped)

# Go through each of the returned bounding boxes
bboxes = res["result"]["bounding_boxes"]
for bbox in bboxes:

# Get the corners of the bounding box
left = bbox["x"]
top = bbox["y"]
width = bbox["width"]
height = bbox["height"]

# Draw a circle centered on the detection
circ = plt.Circle(

(left + width // 2, top + height // 2),
5,
fill=False,
color="red",
linewidth=3,

)
plt.gca().add_patch(circ)
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class_id = int(bbox["label"])
class_name = labels[class_id]
plt.text(

left,
top - 10,
f'{class_name}: {bbox["value"]:.2f}',
color="red",
fontsize=12,
backgroundcolor="white",

)
plt.show()

Exploring a YOLO Model using Ultralytics

For this lab, we will explore YOLOv8. Ultralytics YOLOv8 is a version
of the acclaimed real-time object detection and image segmentation
model, YOLO. YOLOv8 is built on cutting-edge advancements in deep
learning and computer vision, offering unparalleled performance in
terms of speed and accuracy. Its streamlined design makes it suitable
for various applications and easily adaptable to different hardware
platforms, from edge devices to cloud APIs.

https://ultralytics.com/
https://github.com/ultralytics/ultralytics
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Talking about the YOLO Model

The YOLO (You Only Look Once) model is a highly efficient and widely
used object detection algorithm known for its real-time processing
capabilities. Unlike traditional object detection systems that repurpose
classifiers or localizers to perform detection, YOLO frames the detection
problem as a single regression task. This innovative approach enables
YOLO to simultaneously predict multiple bounding boxes and their
class probabilities from full images in one evaluation, significantly
boosting its speed.

Key Features:

1. Single Network Architecture:
• YOLO employs a single neural network to process the entire

image. This network divides the image into a grid and, for
each grid cell, directly predicts bounding boxes and associ-
ated class probabilities. This end-to-end training improves
speed and simplifies the model architecture.

2. Real-Time Processing:
• One of YOLO’s standout features is its ability to perform

object detection in real-time. Depending on the version and
hardware, YOLO can process images at high frames per sec-
ond (FPS). This makes it ideal for applications requiring
quick and accurate object detection, such as video surveil-
lance, autonomous driving, and live sports analysis.

3. Evolution of Versions:
• Over the years, YOLO has undergone significant improve-

ments, from YOLOv1 to the latest YOLOv10. Each iteration
has introduced enhancements in accuracy, speed, and effi-
ciency. YOLOv8, for instance, incorporates advancements
in network architecture, improved training methodologies,
and better support for various hardware, ensuring a more
robust performance.

• Although YOLOv10 is the family’s newest member with
an encouraging performance based on its paper, it was just
released (May 2024) and is not fully integrated with the Ultr-
alytics library. Conversely, the precision-recall curve analy-
sis suggests that YOLOv8 generally outperforms YOLOv9,
capturing a higher proportion of true positives while mini-
mizing false positives more effectively (for more details, see
this article). So, this lab is based on the YOLOv8n.

https://encord.com/blog/performanceyolov9-vs-yolov8-custom-dataset/
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4. Accuracy and Efficiency:
• While early versions of YOLO traded off some accuracy for

speed, recent versions have made substantial strides in bal-
ancing both. The newer models are faster and more accurate,
detecting small objects (such as bees) and performing well
on complex datasets.

5. Wide Range of Applications:
• YOLO’s versatility has led to its adoption in numerous fields.

It is used in traffic monitoring systems to detect and count
vehicles, security applications to identify potential threats
and agricultural technology to monitor crops and livestock.
Its application extends to any domain requiring efficient and
accurate object detection.

6. Community and Development:
• YOLO continues to evolve and is supported by a strong com-

munity of developers and researchers (being the YOLOv8
very strong). Open-source implementations and extensive
documentation have made it accessible for customization
and integration into various projects. Popular deep learning
frameworks like Darknet, TensorFlow, and PyTorch support
YOLO, further broadening its applicability.

• Ultralytics YOLOv8 can not only Detect (our case here) but
also Segment and Pose models pre-trained on the COCO
dataset and YOLOv8 Classify models pre-trained on the
ImageNet dataset. Track mode is available for all Detect,
Segment, and Pose models.

https://github.com/ultralytics/ultralytics?tab=readme-ov-file
https://docs.ultralytics.com/tasks/detect
https://docs.ultralytics.com/tasks/segment
https://docs.ultralytics.com/tasks/pose
https://docs.ultralytics.com/datasets/detect/coco
https://docs.ultralytics.com/tasks/classify
https://docs.ultralytics.com/datasets/classify/imagenet
https://docs.ultralytics.com/modes/track
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Figure 1.24: Ultralytics YOLO supported tasks

Installation

On our Raspi, let’s deactivate the current environment to create a new
working area:

deactivate
cd ~
cd Documents/
mkdir YOLO
cd YOLO
mkdir models
mkdir images

Let’s set up a Virtual Environment for working with the Ultralytics
YOLOv8

python3 -m venv ~/yolo
source ~/yolo/bin/activate

And install the Ultralytics packages for local inference on the Raspi

1. Update the packages list, install pip, and upgrade to the latest:

sudo apt update
sudo apt install python3-pip -y
pip install -U pip

2. Install the ultralytics pip package with optional dependencies:

pip install ultralytics[export]

3. Reboot the device:

sudo reboot
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Testing the YOLO

After the Raspi-Zero booting, let’s activate the yolo env, go to the work-
ing directory,

source ~/yolo/bin/activate
cd /Documents/YOLO

and run inference on an image that will be downloaded from the Ultra-
lytics website, using the YOLOV8n model (the smallest in the family) at
the Terminal (CLI):

yolo predict model='yolov8n' \
source='https://ultralytics.com/images/bus.jpg'

The YOLO model family is pre-trained with the COCO
dataset.

The inference result will appear in the terminal. In the image (bus.jpg),
4 persons, 1 bus, and 1 stop signal were detected:

Also, we got a message that Results saved to runs/detect/predict.
Inspecting that directory, we can see a new image saved (bus.jpg). Let’s
download it from the Raspi-Zero to our desktop for inspection:
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So, the Ultralytics YOLO is correctly installed on our Raspi. But, on the
Raspi-Zero, an issue is the high latency for this inference, around 18 sec-
onds, even with the most miniature model of the family (YOLOv8n).

Export Model to NCNN format

Deploying computer vision models on edge devices with limited com-
putational power, such as the Raspi-Zero, can cause latency issues. One
alternative is to use a format optimized for optimal performance. This
ensures that even devices with limited processing power can handle
advanced computer vision tasks well.

Of all the model export formats supported by Ultralytics, the NCNN is a
high-performance neural network inference computing framework opti-
mized for mobile platforms. From the beginning of the design, NCNN

https://docs.ultralytics.com/integrations/ncnn
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was deeply considerate about deployment and use on mobile phones
and did not have third-party dependencies. It is cross-platform and
runs faster than all known open-source frameworks (such as TFLite).

NCNN delivers the best inference performance when working with
Raspberry Pi devices. NCNN is highly optimized for mobile embedded
platforms (such as ARM architecture).

So, let’s convert our model and rerun the inference:

1. Export a YOLOv8n PyTorch model to NCNN format, creating:
‘/yolov8n_ncnn_model’

yolo export model=yolov8n.pt format=ncnn

2. Run inference with the exported model (now the source could be
the bus.jpg image that was downloaded from the website to the
current directory on the last inference):

yolo predict model='./yolov8n_ncnn_model' source='bus.jpg'

The first inference, when the model is loaded, usually has a
high latency (around 17s), but from the 2nd, it is possible to
note that the inference goes down to around 2s.

Exploring YOLO with Python

To start, let’s call the Python Interpreter so we can explore how the
YOLO model works, line by line:

python3

Now, we should call the YOLO library from Ultralytics and load the
model:

from ultralytics import YOLO

model = YOLO("yolov8n_ncnn_model")

Next, run inference over an image (let’s use again bus.jpg):

img = "bus.jpg"
result = model.predict(img, save=True, imgsz=640, conf=0.5, iou=0.3)
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We can verify that the result is almost identical to the one we get running
the inference at the terminal level (CLI), except that the bus stop was
not detected with the reduced NCNN model. Note that the latency was
reduced.

Let’s analyze the “result” content.

For example, we can see result[0].boxes.data, showing us the main
inference result, which is a tensor shape (4, 6). Each line is one of
the objects detected, being the 4 first columns, the bounding boxes
coordinates, the 5th, the confidence, and the 6th, the class (in this case,
0: person and 5: bus):

We can access several inference results separately, as the inference time,
and have it printed in a better format:

inference_time = int(result[0].speed["inference"])
print(f"Inference Time: {inference_time} ms")

Or we can have the total number of objects detected:

print(f"Number of objects: {len (result[0].boxes.cls)}")
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With Python, we can create a detailed output that meets our needs
(See Model Prediction with Ultralytics YOLO for more details). Let’s
run a Python script instead of manually entering it line by line in the
interpreter, as shown below. Let’s use nano as our text editor. First, we
should create an empty Python script named, for example, yolov8_-
tests.py:

nano yolov8_tests.py

Enter with the code lines:

from ultralytics import YOLO

# Load the YOLOv8 model
model = YOLO("yolov8n_ncnn_model")

# Run inference
img = "bus.jpg"
result = model.predict(img, save=False, imgsz=640, conf=0.5, iou=0.3)

# print the results
inference_time = int(result[0].speed["inference"])
print(f"Inference Time: {inference_time} ms")
print(f"Number of objects: {len (result[0].boxes.cls)}")

https://docs.ultralytics.com/modes/predict/
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And enter with the commands: [CTRL+O] + [ENTER] +[CTRL+X] to save
the Python script.

Run the script:

python yolov8_tests.py

The result is the same as running the inference at the terminal level
(CLI) and with the built-in Python interpreter.

Calling the YOLO library and loading the model for infer-
ence for the first time takes a long time, but the inferences
after that will be much faster. For example, the first sin-
gle inference can take several seconds, but after that, the
inference time should be reduced to less than 1 second.

Training YOLOv8 on a Customized Dataset

Return to our “Box versus Wheel” dataset, labeled on Roboflow. On
the Download Dataset, instead of Download a zip to computer op-
tion done for training on Edge Impulse Studio, we will opt for Show
download code. This option will open a pop-up window with a code
snippet that should be pasted into our training notebook.

https://universe.roboflow.com/marcelo-rovai-riila/box-versus-wheel-auto-dataset
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For training, let’s adapt one of the public examples available from
Ultralytics and run it on Google Colab. Below, you can find mine to be
adapted in your project:

• YOLOv8 Box versus Wheel Dataset Training [Open In Colab]

Critical points on the Notebook:

1. Run it with GPU (the NVidia T4 is free)
2. Install Ultralytics using PIP.

https://colab.research.google.com/github/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/yolov8_box_vs_wheel.ipynb
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3. Now, you can import the YOLO and upload your dataset to the Co-
Lab, pasting the Download code that we get from Roboflow. Note
that our dataset will be mounted under /content/datasets/:

4. It is essential to verify and change the file data.yaml with the
correct path for the images (copy the path on each images folder).

names:

- box
- wheel
nc: 2
roboflow:
license: CC BY 4.0
project: box-versus-wheel-auto-dataset
url: https://universe.roboflow.com/marcelo-rovai-riila/ \

box-versus-wheel-auto-dataset/dataset/5
version: 5
workspace: marcelo-rovai-riila

test: /content/datasets/Box-versus-Wheel-auto-dataset-5/ \
test/images

train: /content/datasets/Box-versus-Wheel-auto-dataset-5/ \
train/images

val: /content/datasets/Box-versus-Wheel-auto-dataset-5/ \
valid/images

5. Define the main hyperparameters that you want to change from
default, for example:
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MODEL = 'yolov8n.pt'
IMG_SIZE = 640
EPOCHS = 25 # For a final project, you should consider

# at least 100 epochs
6. Run the training (using CLI):

!yolo task=detect mode=train model={MODEL} \
data={dataset.location}/data.yaml \
epochs={EPOCHS}
imgsz={IMG_SIZE} plots=True

Figure 1.25:
image-20240910111319804

The model took a few minutes to be trained and has an excellent result
(mAP50 of 0.995). At the end of the training, all results are saved in the
folder listed, for example: /runs/detect/train/. There, you can find,
for example, the confusion matrix.
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7. Note that the trained model (best.pt) is saved in the folder
/runs/detect/train/weights/. Now, you should validate the
trained model with the valid/images.

!yolo task=detect mode=val model={HOME}/runs/detect/train/\
weights/best.pt data={dataset.location}/data.yaml

The results were similar to training.

8. Now, we should perform inference on the images left aside for
testing

!yolo task=detect mode=predict model={HOME}/runs/detect/train/\
weights/best.pt conf=0.25 source={dataset.location}/test/\
images save=True

The inference results are saved in the folder runs/detect/predict.
Let’s see some of them:
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9. It is advised to export the train, validation, and test results for a
Drive at Google. To do so, we should mount the drive.
from google.colab import drive
drive.mount('/content/gdrive')
and copy the content of /runs folder to a folder that you should
create in your Drive, for example:
!scp -r /content/runs '/content/gdrive/MyDrive/\

10_UNIFEI/Box_vs_Wheel_Project'

Inference with the trained model, using the Raspi

Download the trained model /runs/detect/train/weights/best.pt
to your computer. Using the FileZilla FTP, let’s transfer the best.pt to
the Raspi models folder (before the transfer, you may change the model
name, for example, box_wheel_320_yolo.pt).

Using the FileZilla FTP, let’s transfer a few images from the test dataset
to .\YOLO\images:

Let’s return to the YOLO folder and use the Python Interpreter:

cd ..
python

As before, we will import the YOLO library and define our converted
model to detect bees:

from ultralytics import YOLO

model = YOLO("./models/box_wheel_320_yolo.pt")

Now, let’s define an image and call the inference (we will save the image
result this time to external verification):



Object Detection 553

img = "./images/1_box_1_wheel.jpg"
result = model.predict(img, save=True, imgsz=320, conf=0.5, iou=0.3)

Let’s repeat for several images. The inference result is saved on the vari-
able result, and the processed image on runs/detect/predict8

Using FileZilla FTP, we can send the inference result to our Desktop for
verification:

We can see that the inference result is excellent! The model was trained
based on the smaller base model of the YOLOv8 family (YOLOv8n).
The issue is the latency, around 1 second (or 1 FPS on the Raspi-Zero).
Of course, we can reduce this latency and convert the model to TFLite
or NCNN.

Object Detection on a live stream

All the models explored in this lab can detect objects in real-time using
a camera. The captured image should be the input for the trained and
converted model. For the Raspi-4 or 5 with a desktop, OpenCV can
capture the frames and display the inference result.
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However, creating a live stream with a webcam to detect objects in real-
time is also possible. For example, let’s start with the script developed
for the Image Classification app and adapt it for a Real-Time Object
Detection Web Application Using TensorFlow Lite and Flask.

This app version will work for all TFLite models. Verify if the model is
in its correct folder, for example:

model_path = "./models/ssd-mobilenet-v1-tflite-default-v1.tflite"

Download the Python script object_detection_app.py from GitHub.

And on the terminal, run:

python3 object_detection_app.py

And access the web interface:

• On the Raspberry Pi itself (if you have a GUI): Open a web browser
and go to http://localhost:5000

• From another device on the same network: Open a web browser
and go to http://<raspberry_pi_ip>:5000 (Replace <raspberry_-
pi_ip> with your Raspberry Pi’s IP address). For example:
http://192.168.4.210: 5000/

Here are some screenshots of the app running on an external desktop

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/python_scripts/object_detection_app.py
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Let’s see a technical description of the key modules used in the object
detection application:

1. TensorFlow Lite (tflite_runtime):
• Purpose: Efficient inference of machine learning models on

edge devices.
• Why: TFLite offers reduced model size and optimized per-

formance compared to full TensorFlow, which is crucial for
resource-constrained devices like Raspberry Pi. It supports
hardware acceleration and quantization, further improving
efficiency.

• Key functions: Interpreter for loading and running the
model, get_input_details(), and get_output_details()
for interfacing with the model.
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2. Flask:
• Purpose: Lightweight web framework for creating the back-

end server.
• Why: Flask’s simplicity and flexibility make it ideal for

rapidly developing and deploying web applications. It’s less
resource-intensive than larger frameworks suitable for edge
devices.

• Key components: route decorators for defining API end-
points, Response objects for streaming video, render_-
template_string for serving dynamic HTML.

3. Picamera2:
• Purpose: Interface with the Raspberry Pi camera module.
• Why: Picamera2 is the latest library for controlling Raspberry

Pi cameras, offering improved performance and features over
the original Picamera library.

• Key functions: create_preview_configuration() for set-
ting up the camera, capture_file() for capturing frames.

4. PIL (Python Imaging Library):
• Purpose: Image processing and manipulation.
• Why: PIL provides a wide range of image processing capabil-

ities. It’s used here to resize images, draw bounding boxes,
and convert between image formats.

• Key classes: Image for loading and manipulating images,
ImageDraw for drawing shapes and text on images.

5. NumPy:
• Purpose: Efficient array operations and numerical comput-

ing.
• Why: NumPy’s array operations are much faster than pure

Python lists, which is crucial for efficiently processing image
data and model inputs/outputs.

• Key functions: array() for creating arrays, expand_dims()
for adding dimensions to arrays.

6. Threading:
• Purpose: Concurrent execution of tasks.
• Why: Threading allows simultaneous frame capture, object

detection, and web server operation, crucial for maintaining
real-time performance.
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• Key components: Thread class creates separate execution
threads, and Lock is used for thread synchronization.

7. io.BytesIO:
• Purpose: In-memory binary streams.
• Why: Allows efficient handling of image data in memory

without needing temporary files, improving speed and re-
ducing I/O operations.

8. time:
• Purpose: Time-related functions.
• Why: Used for adding delays (time.sleep()) to control

frame rate and for performance measurements.

9. jQuery (client-side):
• Purpose: Simplified DOM manipulation and AJAX requests.
• Why: It makes it easy to update the web interface dynami-

cally and communicate with the server without page reloads.
• Key functions: .get() and .post() for AJAX requests, DOM

manipulation methods for updating the UI.

Regarding the main app system architecture:

1. Main Thread: Runs the Flask server, handling HTTP requests
and serving the web interface.

2. Camera Thread: Continuously captures frames from the camera.
3. Detection Thread: Processes frames through the TFLite model

for object detection.
4. Frame Buffer: Shared memory space (protected by locks) storing

the latest frame and detection results.

And the app data flow, we can describe in short:

1. Camera captures frame → Frame Buffer
2. Detection thread reads from Frame Buffer → Processes through

TFLite model → Updates detection results in Frame Buffer
3. Flask routes access Frame Buffer to serve the latest frame and

detection results
4. Web client receives updates via AJAX and updates UI

This architecture allows for efficient, real-time object detection while
maintaining a responsive web interface running on a resource-constrained
edge device like a Raspberry Pi. Threading and efficient libraries like
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TFLite and PIL enable the system to process video frames in real-time,
while Flask and jQuery provide a user-friendly way to interact with
them.

You can test the app with another pre-processed model, such as the
EfficientDet, changing the app line:

model_path = "./models/lite-model_efficientdet_lite0_\
detection_metadata_1.tflite"

If we want to use the app for the SSD-MobileNetV2 model,
trained on Edge Impulse Studio with the “Box versus Wheel”
dataset, the code should also be adapted depending on the
input details, as we have explored on its notebook.

Summary

This lab has explored the implementation of object detection on edge
devices like the Raspberry Pi, demonstrating the power and potential
of running advanced computer vision tasks on resource-constrained
hardware. We’ve covered several vital aspects:

1. Model Comparison: We examined different object detection mod-
els, including SSD-MobileNet, EfficientDet, FOMO, and YOLO,
comparing their performance and trade-offs on edge devices.

2. Training and Deployment: Using a custom dataset of boxes and
wheels (labeled on Roboflow), we walked through the process of
training models using Edge Impulse Studio and Ultralytics and
deploying them on Raspberry Pi.

3. Optimization Techniques: To improve inference speed on edge
devices, we explored various optimization methods, such as
model quantization (TFLite int8) and format conversion (e.g., to
NCNN).

4. Real-time Applications: The lab exemplified a real-time object
detection web application, demonstrating how these models can
be integrated into practical, interactive systems.

5. Performance Considerations: Throughout the lab, we discussed
the balance between model accuracy and inference speed, a critical
consideration for edge AI applications.

The ability to perform object detection on edge devices opens up numer-
ous possibilities across various domains, from precision agriculture,
industrial automation, and quality control to smart home applications

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/EI-SSD-MobileNetV2.ipynb
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and environmental monitoring. By processing data locally, these sys-
tems can offer reduced latency, improved privacy, and operation in
environments with limited connectivity.

Looking ahead, potential areas for further exploration include:

• Implementing multi-model pipelines for more complex tasks
• Exploring hardware acceleration options for Raspberry Pi
• Integrating object detection with other sensors for more compre-

hensive edge AI systems
• Developing edge-to-cloud solutions that leverage both local pro-

cessing and cloud resources

Object detection on edge devices can create intelligent, responsive sys-
tems that bring the power of AI directly into the physical world, opening
up new frontiers in how we interact with and understand our environ-
ment.

Resources

• Dataset (“Box versus Wheel”)
• SSD-MobileNet Notebook on a Raspi
• EfficientDet Notebook on a Raspi
• FOMO - EI Linux Notebook on a Raspi
• YOLOv8 Box versus Wheel Dataset Training on CoLab
• Edge Impulse Project - SSD MobileNet and FOMO
• Python Scripts
• Models

https://universe.roboflow.com/marcelo-rovai-riila/box-versus-wheel-auto-dataset
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/SSD_MobileNetV1.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/SSD_EfficientDet.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/EI-Linux-FOMO.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/yolov8_box_vs_wheel.ipynb
https://studio.edgeimpulse.com/public/515477/live
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/tree/main/OBJ_DETEC/python_scripts
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/tree/main/OBJ_DETEC/models
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Figure 1.26: DALL·E prompt - A 1950s-style cartoon illustration showing a Raspberry Pi running a small
language model at the edge. The Raspberry Pi is stylized in a retro-futuristic way with rounded edges and
chrome accents, connected to playful cartoonish sensors and devices. Speech bubbles are floating around,
representing language processing, and the background has a whimsical landscape of interconnected devices with
wires and small gadgets, all drawn in a vintage cartoon style. The color palette uses soft pastel colors and bold
outlines typical of 1950s cartoons, giving a fun and nostalgic vibe to the scene.

561
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Overview

In the fast-growing area of artificial intelligence, edge computing
presents an opportunity to decentralize capabilities traditionally re-
served for powerful, centralized servers. This lab explores the practical
integration of small versions of traditional large language models
(LLMs) into a Raspberry Pi 5, transforming this edge device into an AI
hub capable of real-time, on-site data processing.

As large language models grow in size and complexity, Small Language
Models (SLMs) offer a compelling alternative for edge devices, striking a
balance between performance and resource efficiency. By running these
models directly on Raspberry Pi, we can create responsive, privacy-
preserving applications that operate even in environments with limited
or no internet connectivity.

This lab will guide you through setting up, optimizing, and leveraging
SLMs on Raspberry Pi. We will explore the installation and utilization
of Ollama. This open-source framework allows us to run LLMs locally
on our machines (our desktops or edge devices such as the Raspberry
Pis or NVidia Jetsons). Ollama is designed to be efficient, scalable, and
easy to use, making it a good option for deploying AI models such as
Microsoft Phi, Google Gemma, Meta Llama, and LLaVa (Multimodal).
We will integrate some of those models into projects using Python’s
ecosystem, exploring their potential in real-world scenarios (or at least
point in this direction).

Setup

We could use any Raspi model in the previous labs, but here, the choice
must be the Raspberry Pi 5 (Raspi-5). It is a robust platform that sub-
stantially upgrades the last version 4, equipped with the Broadcom
BCM2712, a 2.4 GHz quad-core 64-bit Arm Cortex-A76 CPU featuring
Cryptographic Extension and enhanced caching capabilities. It boasts
a VideoCore VII GPU, dual 4Kp60 HDMI® outputs with HDR, and
a 4Kp60 HEVC decoder. Memory options include 4 GB and 8 GB of

https://ollama.com/
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high-speed LPDDR4X SDRAM, with 8GB being our choice to run SLMs.
It also features expandable storage via a microSD card slot and a PCIe
2.0 interface for fast peripherals such as M.2 SSDs (Solid State Drives).

For real SSL applications, SSDs are a better option than SD
cards.

By the way, as Alasdair Allan discussed, inferencing directly on the
Raspberry Pi 5 CPU—with no GPU acceleration—is now on par with
the performance of the Coral TPU.

For more info, please see the complete article: Benchmarking Tensor-
Flow and TensorFlow Lite on Raspberry Pi 5.

Raspberry Pi Active Cooler

We suggest installing an Active Cooler, a dedicated clip-on cooling solu-
tion for Raspberry Pi 5 (Raspi-5), for this lab. It combines an aluminum
heat sink with a temperature-controlled blower fan to keep the Raspi-5
operating comfortably under heavy loads, such as running SLMs.

https://www.hackster.io/aallan
https://www.hackster.io/news/benchmarking-tensorflow-and-tensorflow-lite-on-raspberry-pi-5-b9156d58a6a2?mc_cid=0cab3d08f4&mc_eid=e96256ccba
https://www.hackster.io/news/benchmarking-tensorflow-and-tensorflow-lite-on-raspberry-pi-5-b9156d58a6a2?mc_cid=0cab3d08f4&mc_eid=e96256ccba
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The Active Cooler has pre-applied thermal pads for heat transfer and
is mounted directly to the Raspberry Pi 5 board using spring-loaded
push pins. The Raspberry Pi firmware actively manages it: at 60°C, the
blower’s fan will be turned on; at 67.5°C, the fan speed will be increased;
and finally, at 75°C, the fan increases to full speed. The blower’s fan
will spin down automatically when the temperature drops below these
limits.

To prevent overheating, all Raspberry Pi boards begin
to throttle the processor when the temperature reaches
80°Cand throttle even further when it reaches the maxi-
mum temperature of 85°C (more detail here).

https://www.raspberrypi.com/news/heating-and-cooling-raspberry-pi-5/
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Generative AI (GenAI)

Generative AI is an artificial intelligence system capable of creating new,
original content across various mediums such as text, images, audio,
and video. These systems learn patterns from existing data and use
that knowledge to generate novel outputs that didn’t previously exist.
Large Language Models (LLMs), Small Language Models (SLMs),
and multimodal models can all be considered types of GenAI when
used for generative tasks.

GenAI provides the conceptual framework for AI-driven content cre-
ation, with LLMs serving as powerful general-purpose text generators.
SLMs adapt this technology for edge computing, while multimodal
models extend GenAI capabilities across different data types. Together,
they represent a spectrum of generative AI technologies, each with its
strengths and applications, collectively driving AI-powered content
creation and understanding.

Large Language Models (LLMs)

Large Language Models (LLMs) are advanced artificial intelligence
systems that understand, process, and generate human-like text. These
models are characterized by their massive scale in terms of the amount
of data they are trained on and the number of parameters they contain.
Critical aspects of LLMs include:

1. Size: LLMs typically contain billions of parameters. For exam-
ple, GPT-3 has 175 billion parameters, while some newer models
exceed a trillion parameters.

2. Training Data: They are trained on vast amounts of text data, of-
ten including books, websites, and other diverse sources, amount-
ing to hundreds of gigabytes or even terabytes of text.

3. Architecture: Most LLMs use transformer-based architectures,
which allow them to process and generate text by paying attention
to different parts of the input simultaneously.

4. Capabilities: LLMs can perform a wide range of language tasks
without specific fine-tuning, including:

• Text generation
• Translation
• Summarization
• Question answering
• Code generation

https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)
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• Logical reasoning

5. Few-shot Learning: They can often understand and perform new
tasks with minimal examples or instructions.

6. Resource-Intensive: Due to their size, LLMs typically require sig-
nificant computational resources to run, often needing powerful
GPUs or TPUs.

7. Continual Development: The field of LLMs is rapidly evolving,
with new models and techniques constantly emerging.

8. Ethical Considerations: The use of LLMs raises important ques-
tions about bias, misinformation, and the environmental impact
of training such large models.

9. Applications: LLMs are used in various fields, including con-
tent creation, customer service, research assistance, and software
development.

10. Limitations: Despite their power, LLMs can produce incorrect
or biased information and lack true understanding or reasoning
capabilities.

We must note that we use large models beyond text, calling them multi-
modal models. These models integrate and process information from
multiple types of input simultaneously. They are designed to under-
stand and generate content across various forms of data, such as text,
images, audio, and video.

Closed vs Open Models:

Closed models, also called proprietary models, are AI models whose
internal workings, code, and training data are not publicly disclosed.
Examples: GPT-4 (by OpenAI), Claude (by Anthropic), Gemini (by
Google).

Openmodels, also known as open-source models, are AI models whose
underlying code, architecture, and often training data are publicly avail-
able and accessible. Examples: Gemma (by Google), LLaMA (by Meta)
and Phi (by Microsoft).

Open models are particularly relevant for running models on edge
devices like Raspberry Pi as they can be more easily adapted, optimized,
and deployed in resource-constrained environments. Still, it is crucial
to verify their Licenses. Open models come with various open-source
licenses that may affect their use in commercial applications, while
closed models have clear, albeit restrictive, terms of service.
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Figure 1.27: Adapted from arXiv

Small Language Models (SLMs)

In the context of edge computing on devices like Raspberry Pi, full-scale
LLMs are typically too large and resource-intensive to run directly. This
limitation has driven the development of smaller, more efficient models,
such as the Small Language Models (SLMs).

SLMs are compact versions of LLMs designed to run efficiently on
resource-constrained devices such as smartphones, IoT devices, and
single-board computers like the Raspberry Pi. These models are signifi-
cantly smaller in size and computational requirements than their larger
counterparts while still retaining impressive language understanding
and generation capabilities.

Key characteristics of SLMs include:

1. Reduced parameter count: Typically ranging from a few hundred
million to a few billion parameters, compared to two-digit billions
in larger models.

2. Lower memory footprint: Requiring, at most, a few gigabytes of
memory rather than tens or hundreds of gigabytes.

3. Faster inference time: Can generate responses in milliseconds to
seconds on edge devices.

4. Energy efficiency: Consuming less power, making them suitable
for battery-powered devices.

5. Privacy-preserving: Enabling on-device processing without send-
ing data to cloud servers.
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6. Offline functionality: Operating without an internet connection.

SLMs achieve their compact size through various techniques such as
knowledge distillation, model pruning, and quantization. While they
may not match the broad capabilities of larger models, SLMs excel in
specific tasks and domains, making them ideal for targeted applications
on edge devices.

We will generally consider SLMs, language models with
less than 5 billion parameters quantized to 4 bits.

Examples of SLMs include compressed versions of models like Meta
Llama, Microsoft PHI, and Google Gemma. These models enable a wide
range of natural language processing tasks directly on edge devices,
from text classification and sentiment analysis to question answering
and limited text generation.

For more information on SLMs, the paper, LLM Pruning and Distillation
in Practice: The Minitron Approach, provides an approach applying
pruning and distillation to obtain SLMs from LLMs. And, SMALL
LANGUAGE MODELS: SURVEY, MEASUREMENTS, AND INSIGHTS,
presents a comprehensive survey and analysis of Small Language Mod-
els (SLMs), which are language models with 100 million to 5 billion
parameters designed for resource-constrained devices.

https://arxiv.org/pdf/2408.11796
https://arxiv.org/pdf/2408.11796
https://arxiv.org/pdf/2409.15790
https://arxiv.org/pdf/2409.15790
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Ollama

Figure 1.28: ollama logo

Ollama is an open-source framework that allows us to run language
models (LMs), large or small, locally on our machines. Here are some
critical points about Ollama:

1. LocalModel Execution: Ollama enables running LMs on personal
computers or edge devices such as the Raspi-5, eliminating the
need for cloud-based API calls.

2. Ease of Use: It provides a simple command-line interface for
downloading, running, and managing different language models.

3. Model Variety: Ollama supports various LLMs, including Phi,
Gemma, Llama, Mistral, and other open-source models.

4. Customization: Users can create and share custom models tai-
lored to specific needs or domains.

5. Lightweight: Designed to be efficient and run on consumer-grade
hardware.

https://ollama.com/
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6. API Integration: Offers an API that allows integration with other
applications and services.

7. Privacy-Focused: By running models locally, it addresses privacy
concerns associated with sending data to external servers.

8. Cross-Platform: Available for macOS, Windows, and Linux sys-
tems (our case, here).

9. Active Development: Regularly updated with new features and
model support.

10. Community-Driven: Benefits from community contributions and
model sharing.

To learn more about what Ollama is and how it works under the hood,
you should see this short video from Matt Williams, one of the founders
of Ollama:

https://www.youtube.com/embed/90ozfdsQOKo

Matt has an entirely free course about Ollama that we rec-
ommend: https://youtu.be/9KEUFe4KQAI?si=D_-
q3CMbHiT-twuy

Installing Ollama

Let’s set up and activate a Virtual Environment for working with Ol-
lama:

python3 -m venv ~/ollama
source ~/ollama/bin/activate

And run the command to install Ollama:

curl -fsSL https://ollama.com/install.sh | sh

As a result, an API will run in the background on 127.0.0.1:11434.
From now on, we can run Ollama via the terminal. For starting, let’s
verify the Ollama version, which will also tell us that it is correctly
installed:

ollama -v

https://www.youtube.com/@technovangelist
https://www.youtube.com/embed/90ozfdsQOKo
https://youtu.be/9KEUFe4KQAI?si=D_-q3CMbHiT-twuy
https://youtu.be/9KEUFe4KQAI?si=D_-q3CMbHiT-twuy
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On the Ollama Library page, we can find the models Ollama supports.
For example, by filtering by Most popular, we can see Meta Llama,
Google Gemma, Microsoft Phi, LLaVa, etc.

Meta Llama 3.2 1B/3B

Let’s install and run our first small language model, Llama 3.2 1B (and
3B). The Meta Llama 3.2 series comprises a set of multilingual gener-
ative language models available in 1 billion and 3 billion parameter
sizes. These models are designed to process text input and generate
text output. The instruction-tuned variants within this collection are
specifically optimized for multilingual conversational applications, in-
cluding tasks involving information retrieval and summarization with
an agentic approach. When compared to many existing open-source
and proprietary chat models, the Llama 3.2 instruction-tuned models

https://ollama.com/library
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/


Ollama 572

demonstrate superior performance on widely-used industry bench-
marks.

The 1B and 3B models were pruned from the Llama 8B, and then logits
from the 8B and 70B models were used as token-level targets (token-level
distillation). Knowledge distillation was used to recover performance
(they were trained with 9 trillion tokens). The 1B model has 1,24B,
quantized to integer (Q8_0), and the 3B, 3.12B parameters, with a Q4_0
quantization, which ends with a size of 1.3 GB and 2 GB, respectively.
Its context window is 131,072 tokens.

Install and run the Model

ollama run llama3.2:1b

Running the model with the command before, we should have the
Ollama prompt available for us to input a question and start chatting
with the LLM model; for example,

>>> What is the capital of France?

Almost immediately, we get the correct answer:

The capital of France is Paris.

Using the option --verbose when calling the model will generate sev-
eral statistics about its performance (The model will be polling only the
first time we run the command).
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Each metric gives insights into how the model processes inputs and
generates outputs. Here’s a breakdown of what each metric means:

• Total Duration (2.620170326 s): This is the complete time taken
from the start of the command to the completion of the response.
It encompasses loading the model, processing the input prompt,
and generating the response.

• Load Duration (39.947908 ms): This duration indicates the time
to load the model or necessary components into memory. If this
value is minimal, it can suggest that the model was preloaded or
that only a minimal setup was required.

• Prompt Eval Count (32 tokens): The number of tokens in the
input prompt. In NLP, tokens are typically words or subwords,
so this count includes all the tokens that the model evaluated to
understand and respond to the query.

• Prompt Eval Duration (1.644773 s): This measures the model’s
time to evaluate or process the input prompt. It accounts for the
bulk of the total duration, implying that understanding the query
and preparing a response is the most time-consuming part of the
process.

• Prompt Eval Rate (19.46 tokens/s): This rate indicates how quickly
the model processes tokens from the input prompt. It reflects the
model’s speed in terms of natural language comprehension.
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• Eval Count (8 token(s)): This is the number of tokens in the
model’s response, which in this case was, “The capital of France
is Paris.”

• Eval Duration (889.941 ms): This is the time taken to generate
the output based on the evaluated input. It’s much shorter than
the prompt evaluation, suggesting that generating the response
is less complex or computationally intensive than understanding
the prompt.

• Eval Rate (8.99 tokens/s): Similar to the prompt eval rate, this
indicates the speed at which the model generates output tokens.
It’s a crucial metric for understanding the model’s efficiency in
output generation.

This detailed breakdown can help understand the computational de-
mands and performance characteristics of running SLMs like Llama
on edge devices like the Raspberry Pi 5. It shows that while prompt
evaluation is more time-consuming, the actual generation of responses
is relatively quicker. This analysis is crucial for optimizing performance
and diagnosing potential bottlenecks in real-time applications.

Loading and running the 3B model, we can see the difference in perfor-
mance for the same prompt;

The eval rate is lower, 5.3 tokens/s versus 9 tokens/s with the smaller
model.

When question about

>>> What is the distance between Paris and Santiago, Chile?

The 1B model answered 9,841 kilometers (6,093 miles), which is
inaccurate, and the 3B model answered 7,300 miles (11,700 km),
which is close to the correct (11,642 km).
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Let’s ask for the Paris’s coordinates:

>>> what is the latitude and longitude of Paris?

The latitude and longitude of Paris are 48.8567° N (48°55'
42" N) and 2.3510° E (2°22' 8" E), respectively.

Both 1B and 3B models gave correct answers.

Google Gemma 2 2B

Let’s install Gemma 2, a high-performing and efficient model available
in three sizes: 2B, 9B, and 27B. We will install Gemma 2 2B, a lightweight
model trained with 2 trillion tokens that produces outsized results by
learning from larger models through distillation. The model has 2.6
billion parameters and a Q4_0 quantization, which ends with a size of
1.6 GB. Its context window is 8,192 tokens.

Install and run the Model

ollama run gemma2:2b --verbose

Running the model with the command before, we should have the
Ollama prompt available for us to input a question and start chatting
with the LLM model; for example,

>>> What is the capital of France?

Almost immediately, we get the correct answer:

https://ollama.com/library/gemma2:2b
https://huggingface.co/collections/google/gemma-2-2b-release-66a20f3796a2ff2a7c76f98f
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The capital of France is **Paris**. ฀

And it’ statistics.

We can see that Gemma 2:2B has around the same performance as
Llama 3.2:3B, but having less parameters.

Other examples:

>>> What is the distance between Paris and Santiago, Chile?

The distance between Paris, France and Santiago, Chile is
approximately **7,000 miles (11,267 kilometers)**.

Keep in mind that this is a straight-line distance, and actual
travel distance can vary depending on the chosen routes and any
stops along the way. ฀ ̀

Also, a good response but less accurate than Llama3.2:3B.

>>> what is the latitude and longitude of Paris?

You got it! Here are the latitudes and longitudes of Paris,
France:

* **Latitude**: 48.8566° N (north)
* **Longitude**: 2.3522° E (east)

Let me know if you'd like to explore more about Paris or its
location! ฀฀฀

A good and accurate answer (a little more verbose than the Llama
answers).
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Microsoft Phi3.5 3.8B

Let’s pull a bigger (but still tiny) model, the PHI3.5, a 3.8B lightweight
state-of-the-art open model by Microsoft. The model belongs to the
Phi-3 model family and supports 128K token context length and the
languages: Arabic, Chinese, Czech, Danish, Dutch, English, Finnish,
French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Nor-
wegian, Polish, Portuguese, Russian, Spanish, Swedish, Thai, Turkish
and Ukrainian.

The model size, in terms of bytes, will depend on the specific quantiza-
tion format used. The size can go from 2-bit quantization (q2_k) of 1.4
GB (higher performance/lower quality) to 16-bit quantization (fp-16)
of 7.6 GB (lower performance/higher quality).

Let’s run the 4-bit quantization (Q4_0), which will need 2.2 GB of RAM,
with an intermediary trade-off regarding output quality and perfor-
mance.

ollama run phi3.5:3.8b --verbose

You can use run or pull to download the model. What
happens is that Ollama keeps note of the pulled models,
and once the PHI3 does not exist, before running it, Ollama
pulls it.

Let’s enter with the same prompt used before:

>>> What is the capital of France?

The capital of France is Paris. It' extradites significant
historical, cultural, and political importance to the country as
well as being a major European city known for its art, fashion,
gastronomy, and culture. Its influence extends beyond national
borders, with millions of tourists visiting each year from around
the globe. The Seine River flows through Paris before it reaches
the broader English Channel at Le Havre. Moreover, France is one
of Europe's leading economies with its capital playing a key role

...

The answer was very “verbose”, let’s specify a better prompt:

https://ollama.com/library/phi3.5
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In this case, the answer was still longer than we expected, with an eval
rate of 2.25 tokens/s, more than double that of Gemma and Llama.

Choosing the most appropriate prompt is one of the most
important skills to be used with LLMs, no matter its size.

When we asked the same questions about distance and Latitude/Longi-
tude, we did not get a good answer for a distance of 13,507 kilometers
(8,429 miles), but it was OK for coordinates. Again, it could have
been less verbose (more than 200 tokens for each answer).

We can use any model as an assistant since their speed is relatively de-
cent, but on September 24 (2023), the Llama2:3B is a better choice. You
should try other models, depending on your needs. ฀ Open LLM Leader-
board can give you an idea about the best models in size, benchmark,
license, etc.

The best model to use is the one fit for your specific necessity.
Also, take into consideration that this field evolves with new
models everyday.

Multimodal Models

Multimodal models are artificial intelligence (AI) systems that can pro-
cess and understand information from multiple sources, such as images,
text, audio, and video. In our context, multimodal LLMs can process

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
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various inputs, including text, images, and audio, as prompts and con-
vert those prompts into various outputs, not just the source type.

We will work here with LLaVA-Phi-3, a fine-tuned LLaVA model from
Phi 3 Mini 4k. It has strong performance benchmarks that are on
par with the original LLaVA (Large Language and Vision Assistant)
model.

The LLaVA-Phi-3 is an end-to-end trained large multimodal model
designed to understand and generate content based on visual inputs
(images) and textual instructions. It combines the capabilities of a visual
encoder and a language model to process and respond to multimodal
inputs.

Let’s install the model:

ollama run llava-phi3:3.8b --verbose

Let’s start with a text input:

>>> You are a helpful AI assistant.
What is the capital of France?

As an AI language model, I can tell you that the capital of
France is Paris. It's not only the largest city in the country
but also serves as its political and administrative center.
Paris is known for its iconic landmarks such as the Eiffel
Tower, Notre-Dame Cathedral, and the Louvre Museum. The city
has a rich history, beautiful architecture, and is widely
considered to be one of the most romantic cities in the world.

The response took around 30 s, with an eval rate of 3.93 tokens/s! Not
bad!

But let us know to enter with an image as input. For that, let’s create a
directory for working:

cd Documents/
mkdir OLLAMA
cd OLLAMA

Let’s download a 640 × 320 image from the internet, for example
(Wikipedia: Paris, France):

https://ollama.com/library/llava-phi3:3.8b
https://llava-vl.github.io/
https://upload.wikimedia.org/wikipedia/commons/thumb/4/4b/La_Tour_Eiffel_vue_de_la_Tour_Saint-Jacques%2C_Paris_ao%C3%BBt_2014_%282%29.jpg/640px-La_Tour_Eiffel_vue_de_la_Tour_Saint-Jacques%2C_Paris_ao%C3%BBt_2014_%282%29.jpg
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Using FileZilla, for example, let’s upload the image to the OLLAMA
folder at the Raspi-5 and name it image_test_1.jpg. We should have
the whole image path (we can use pwd to get it).

/home/mjrovai/Documents/OLLAMA/image_test_1.jpg

If you use a desktop, you can copy the image path by clicking the image
with the mouse’s right button.

Let’s enter with this prompt:
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>>> Describe the image /home/mjrovai/Documents/OLLAMA/\
image_test_1.jpg

The result was great, but the overall latency was significant; almost 4
minutes to perform the inference.

Inspecting local resources

Using htop, we can monitor the resources running on our device.

htop

During the time that the model is running, we can inspect the re-
sources:



Ollama Python Library 582

All four CPUs run at almost 100% of their capacity, and the memory
used with the model loaded is 3.24 GB. Exiting Ollama, the memory
goes down to around 377 MB (with no desktop).

It is also essential to monitor the temperature. When running the Rasp-
berry with a desktop, you can have the temperature shown on the
taskbar:

If you are “headless”, the temperature can be monitored with the com-
mand:

vcgencmd measure_temp

If you are doing nothing, the temperature is around 50°C for CPUs
running at 1%. During inference, with the CPUs at 100%, the tempera-
ture can rise to almost 70°C. This is OK and means the active cooler is
working, keeping the temperature below 80°C / 85°C (its limit).

Ollama Python Library

So far, we have explored SLMs’ chat capability using the command line
on a terminal. However, we want to integrate those models into our
projects, so Python seems to be the right path. The good news is that
Ollama has such a library.

The Ollama Python library simplifies interaction with advanced LLM
models, enabling more sophisticated responses and capabilities, be-
sides providing the easiest way to integrate Python 3.8+ projects with
Ollama.

For a better understanding of how to create apps using Ollama with
Python, we can follow Matt Williams’s videos, as the one below:

https://www.youtube.com/embed/_4K20tOsXK8

Installation:

In the terminal, run the command:

pip install ollama

https://github.com/ollama/ollama-python
https://github.com/ollama/ollama
https://www.youtube.com/@technovangelist
https://www.youtube.com/embed/_4K20tOsXK8
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We will need a text editor or an IDE to create a Python script. If
you run the Raspberry OS on a desktop, several options, such as
Thonny and Geany, have already been installed by default (accessed
by [Menu][Programming]). You can download other IDEs, such as
Visual Studio Code, from [Menu][Recommended Software]. When the
window pops up, go to [Programming], select the option of your choice,
and press [Apply].

If you prefer using Jupyter Notebook for development:

pip install jupyter
jupyter notebook --generate-config

To run Jupyter Notebook, run the command (change the IP address for
yours):

jupyter notebook --ip=192.168.4.209 --no-browser

On the terminal, you can see the local URL address to open the note-
book:
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We can access it from another computer by entering the Raspberry Pi’s
IP address and the provided token in a web browser (we should copy it
from the terminal).

In our working directory in the Raspi, we will create a new Python 3
notebook.

Let’s enter with a very simple script to verify the installed models:

import ollama

ollama.list()

All the models will be printed as a dictionary, for example:

{'name': 'gemma2:2b',
'model': 'gemma2:2b',
'modified_at': '2024-09-24T19:30:40.053898094+01:00',
'size': 1629518495,
'digest': (
'8ccf136fdd5298f3ffe2d69862750ea7fb56555fa4d5b18c0'
'4e3fa4d82ee09d7'
),

'details': {'parent_model': '',
'format': 'gguf',
'family': 'gemma2',
'families': ['gemma2'],
'parameter_size': '2.6B',
'quantization_level': 'Q4_0'}}]}
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Let’s repeat one of the questions that we did before, but now using
ollama.generate() from Ollama python library. This API will gen-
erate a response for the given prompt with the provided model. This
is a streaming endpoint, so there will be a series of responses. The
final response object will include statistics and additional data from the
request.

MODEL = "gemma2:2b"
PROMPT = "What is the capital of France?"

res = ollama.generate(model=MODEL, prompt=PROMPT)
print(res)

In case you are running the code as a Python script, you should save
it, for example, test_ollama.py. You can use the IDE to run it or do it
directly on the terminal. Also, remember that you should always call
the model and define it when running a stand-alone script.

python test_ollama.py

As a result, we will have the model response in a JSON format:

{
'model': 'gemma2:2b',
'created_at': '2024-09-25T14:43:31.869633807Z',
'response': 'The capital of France is **Paris**.\n',
'done': True,
'done_reason': 'stop',
'context': [

106, 1645, 108, 1841, 603, 573, 6037, 576, 6081, 235336,
107, 108, 106, 2516, 108, 651, 6037, 576, 6081, 603, 5231,
29437, 168428, 235248, 244304, 241035, 235248, 108

],
'total_duration': 24259469458,
'load_duration': 19830013859,
'prompt_eval_count': 16,
'prompt_eval_duration': 1908757000,
'eval_count': 14,
'eval_duration': 2475410000

}

As we can see, several pieces of information are generated, such as:

• response: the main output text generated by the model in re-
sponse to our prompt.

– The capital of France is **Paris**. ฀฀



Ollama Python Library 586

• context: the token IDs representing the input and context used
by the model. Tokens are numerical representations of text used
for processing by the language model.

– [106, 1645, 108, 1841, 603, 573, 6037, 576, 6081,
235336, 107, 108, 106, 2516, 108, 651, 6037, 576,
6081, 603, 5231, 29437, 168428, 235248, 244304, 241035,
235248, 108]

The Performance Metrics:

• total_duration: The total time taken for the operation in nanosec-
onds. In this case, approximately 24.26 seconds.

• load_duration: The time taken to load the model or components
in nanoseconds. About 19.83 seconds.

• prompt_eval_duration: The time taken to evaluate the prompt in
nanoseconds. Around 16 nanoseconds.

• eval_count: The number of tokens evaluated during the genera-
tion. Here, 14 tokens.

• eval_duration: The time taken for the model to generate the
response in nanoseconds. Approximately 2.5 seconds.

But, what we want is the plain ‘response’ and, perhaps for analysis, the
total duration of the inference, so let’s change the code to extract it from
the dictionary:

print(f"\n{res['response']}")
print(

f"\n [INFO] Total Duration: "
f"{res['total_duration']/1e9:.2f} seconds"

)

Now, we got:

The capital of France is **Paris**. ฀฀

[INFO] Total Duration: 24.26 seconds

Using Ollama.chat()

Another way to get our response is to use ollama.chat(), which gen-
erates the next message in a chat with a provided model. This is a
streaming endpoint, so a series of responses will occur. Streaming can
be disabled using "stream": false. The final response object will also
include statistics and additional data from the request.
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PROMPT_1 = "What is the capital of France?"

response = ollama.chat(
model=MODEL,
messages=[

{
"role": "user",
"content": PROMPT_1,

},
],

)
resp_1 = response["message"]["content"]
print(f"\n{resp_1}")
print(

f"\n [INFO] Total Duration: "
f"{(res['total_duration']/1e9):.2f} seconds"

)

The answer is the same as before.

An important consideration is that by using ollama.generate(), the
response is “clear” from the model’s “memory” after the end of infer-
ence (only used once), but If we want to keep a conversation, we must
use ollama.chat(). Let’s see it in action:

PROMPT_1 = "What is the capital of France?"
response = ollama.chat(

model=MODEL,
messages=[

{
"role": "user",
"content": PROMPT_1,

},
],

)
resp_1 = response["message"]["content"]
print(f"\n{resp_1}")
print(

f"\n [INFO] Total Duration: "
f"{(response['total_duration']/1e9):.2f} seconds"

)

PROMPT_2 = "and of Italy?"
response = ollama.chat(

model=MODEL,
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messages=[
{

"role": "user",
"content": PROMPT_1,

},
{

"role": "assistant",
"content": resp_1,

},
{

"role": "user",
"content": PROMPT_2,

},
],

)
resp_2 = response["message"]["content"]
print(f"\n{resp_2}")
print(

f"\n [INFO] Total Duration: "
f"{(response_2['total_duration']/1e9):.2f} seconds"

)

In the above code, we are running two queries, and the second prompt
considers the result of the first one.

Here is how the model responded:

The capital of France is **Paris**. ฀฀

[INFO] Total Duration: 2.82 seconds

The capital of Italy is **Rome**. ฀฀

[INFO] Total Duration: 4.46 seconds

Getting an image description:

In the same way that we have used the LlaVa-PHI-3 model with
the command line to analyze an image, the same can be done here
with Python. Let’s use the same image of Paris, but now with the
ollama.generate():

MODEL = "llava-phi3:3.8b"
PROMPT = "Describe this picture"

with open("image_test_1.jpg", "rb") as image_file:
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img = image_file.read()

response = ollama.generate(model=MODEL, prompt=PROMPT, images=[img])
print(f"\n{response['response']}")
print(

f"\n [INFO] Total Duration: "
f"{(res['total_duration']/1e9):.2f} seconds"

)

Here is the result:

This image captures the iconic cityscape of Paris, France. The
vantage point is high, providing a panoramic view of the Seine
River that meanders through the heart of the city. Several
bridges arch gracefully over the river, connecting different
parts of the city. The Eiffel Tower, an iron lattice structure
with a pointed top and two antennas on its summit, stands
tall in the background, piercing the sky. It is painted in a
light gray color, contrasting against the blue sky speckled
with white clouds.

The buildings that line the river are predominantly white or
beige, their uniform color palette broken occasionally by red
roofs peeking through. The Seine River itself appears calm
and wide, reflecting the city's architectural beauty in its
surface. On either side of the river, trees add a touch of
green to the urban landscape.

The image is taken from an elevated perspective, looking down
on the city. This viewpoint allows for a comprehensive view of
Paris's beautiful architecture and layout. The relative
positions of the buildings, bridges, and other structures
create a harmonious composition that showcases the city's charm.

In summary, this image presents a serene day in Paris, with its
architectural marvels - from the Eiffel Tower to the river-side
buildings - all bathed in soft colors under a clear sky.

[INFO] Total Duration: 256.45 seconds

The model took about 4 minutes (256.45 s) to return with a detailed
image description.

In the 10-Ollama_Python_Library notebook, it is possible
to find the experiments with the Ollama Python library.

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/10-Ollama_Python_Library.ipynb
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Function Calling

So far, we can observe that by using the model’s response into a variable,
we can effectively incorporate it into real-world projects. However, a ma-
jor issue arises when the model provides varying responses to the same
input. For instance, let’s assume that we only need the name of a coun-
try’s capital and its coordinates as the model’s response in the previous
examples, without any additional information, even when utilizing
verbose models like Microsoft Phi. To ensure consistent responses, we
can employ the ‘Ollama function call,’ which is fully compatible with
the OpenAI API.

But what exactly is “function calling”?

In modern artificial intelligence, function calling with Large Language
Models (LLMs) allows these models to perform actions beyond gen-
erating text. By integrating with external functions or APIs, LLMs
can access real-time data, automate tasks, and interact with various
systems.

For instance, instead of merely responding to a query about the weather,
an LLM can call a weather API to fetch the current conditions and pro-
vide accurate, up-to-date information. This capability enhances the
relevance and accuracy of the model’s responses and makes it a power-
ful tool for driving workflows and automating processes, transforming
it into an active participant in real-world applications.

For more details about Function Calling, please see this video made by
Marvin Prison:

https://www.youtube.com/embed/eHfMCtlsb1o

Let’s create a project.

We want to create an app where the user enters a country’s name and
gets, as an output, the distance in km from the capital city of such a
country and the app’s location (for simplicity, We will use Santiago,
Chile, as the app location).

https://www.youtube.com/@MervinPraison
https://www.youtube.com/embed/eHfMCtlsb1o
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Once the user enters a country name, the model will return the name of
its capital city (as a string) and the latitude and longitude of such city
(in float). Using those coordinates, we can use a simple Python library
(haversine) to calculate the distance between those 2 points.

The idea of this project is to demonstrate a combination of language
model interaction, structured data handling with Pydantic, and geospa-
tial calculations using the Haversine formula (traditional computing).

First, let us install some libraries. Besides Haversine, the main one
is the OpenAI Python library, which provides convenient access to
the OpenAI REST API from any Python 3.7+ application. The other
one is Pydantic (and instructor), a robust data validation and settings
management library engineered by Python to enhance the robustness
and reliability of our codebase. In short, Pydantic will help ensure that
our model’s response will always be consistent.

pip install haversine
pip install openai
pip install pydantic
pip install instructor

Now, we should create a Python script designed to interact with our
model (LLM) to determine the coordinates of a country’s capital city
and calculate the distance from Santiago de Chile to that capital.

Let’s go over the code:

1. Importing Libraries

import sys
from haversine import haversine
from openai import OpenAI
from pydantic import BaseModel, Field
import instructor

https://pypi.org/project/haversine/
https://github.com/openai/openai-python
https://docs.pydantic.dev/latest/
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• sys: Provides access to system-specific parameters and functions.
It’s used to get command-line arguments.

• haversine: A function from the haversine library that calculates
the distance between two geographic points using the Haversine
formula.

• openAI: A module for interacting with the OpenAI API (although
it’s used in conjunction with a local setup, Ollama). Everything is
off-line here.

• pydantic: Provides data validation and settings management
using Python-type annotations. It’s used to define the structure
of expected response data.

• instructor: A module is used to patch the OpenAI client to work
in a specific mode (likely related to structured data handling).

2. Defining Input and Model

country = sys.argv[1] # Get the country from
# command-line arguments
MODEL = "phi3.5:3.8b" # The name of the model to be used
mylat = -33.33 # Latitude of Santiago de Chile
mylon = -70.51 # Longitude of Santiago de Chile

• country: On a Python script, getting the country name from
command-line arguments is possible. On a Jupyter notebook, we
can enter its name, for example,

– country = "France"

• MODEL: Specifies the model being used, which is, in this exam-
ple, the phi3.5.

• mylat and mylon: Coordinates of Santiago de Chile, used as the
starting point for the distance calculation.

3. Defining the Response Data Structure

class CityCoord(BaseModel):
city: str = Field(..., description="Name of the city")
lat: float = Field(

..., description="Decimal Latitude of the city"
)
lon: float = Field(

..., description="Decimal Longitude of the city"
)



Small Language Models (SLM) 593

• CityCoord: A Pydantic model that defines the expected structure
of the response from the LLM. It expects three fields: city (name
of the city), lat (latitude), and lon (longitude).

4. Setting Up the OpenAI Client

client = instructor.patch(
OpenAI(

base_url="http://localhost:11434/v1", # Local API base
# URL (Ollama)
api_key="ollama", # API key
# (not used)

),
mode=instructor.Mode.JSON, # Mode for
# structured
# JSON output

)

• OpenAI: This setup initializes an OpenAI client with a local base
URL and an API key (ollama). It uses a local server.

• instructor.patch: Patches the OpenAI client to work in JSON
mode, enabling structured output that matches the Pydantic
model.

5. Generating the Response

resp = client.chat.completions.create(
model=MODEL,
messages=[

{
"role": "user",
"content": f"return the decimal latitude and \
decimal longitude of the capital of the {country}.",

}
],
response_model=CityCoord,
max_retries=10,

)

• client.chat.completions.create: Calls the LLM to generate a re-
sponse.

• model: Specifies the model to use (llava-phi3).
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• messages: Contains the prompt for the LLM, asking for the lati-
tude and longitude of the capital city of the specified country.

• response_model: Indicates that the response should conform to
the CityCoord model.

• max_retries: The maximum number of retry attempts if the re-
quest fails.

6. Calculating the Distance

distance = haversine((mylat, mylon), (resp.lat, resp.lon), unit="km")

print(
f"Santiago de Chile is about {int(round(distance, -1))} "
f"kilometers away from {resp.city}."

)

• haversine: Calculates the distance between Santiago de Chile
and the capital city returned by the LLM using their respective
coordinates.

• (mylat, mylon): Coordinates of Santiago de Chile.
• resp.city: Name of the country’s capital
• (resp.lat, resp.lon): Coordinates of the capital city are provided

by the LLM response.
• unit = ‘km’: Specifies that the distance should be calculated in

kilometers.
• print: Outputs the distance, rounded to the nearest 10 kilometers,

with thousands of separators for readability.

Running the code

If we enter different countries, for example, France, Colombia, and the
United States, We can note that we always receive the same structured
information:

Santiago de Chile is about 8,060 kilometers away from
Washington, D.C..

Santiago de Chile is about 4,250 kilometers away from Bogotá.
Santiago de Chile is about 11,630 kilometers away from Paris.

If you run the code as a script, the result will be printed on the termi-
nal:
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And the calculations are pretty good!

In the 20-Ollama_Function_Calling notebook, it is possible
to find experiments with all models installed.

Adding images

Now it is time to wrap up everything so far! Let’s modify the script so
that instead of entering the country name (as a text), the user enters
an image, and the application (based on SLM) returns the city in the
image and its geographic location. With those data, we can calculate
the distance as before.

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/20-Ollama_Function_Calling.ipynb
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For simplicity, we will implement this new code in two steps. First, the
LLM will analyze the image and create a description (text). This text
will be passed on to another instance, where the model will extract the
information needed to pass along.

We will start importing the libraries

import sys
import time
from haversine import haversine
import ollama
from openai import OpenAI
from pydantic import BaseModel, Field
import instructor

We can see the image if you run the code on the Jupyter Notebook. For
that we need also import:

import matplotlib.pyplot as plt
from PIL import Image

Those libraries are unnecessary if we run the code as a script.

Now, we define the model and the local coordinates:

MODEL = "llava-phi3:3.8b"
mylat = -33.33
mylon = -70.51

We can download a new image, for example, Machu Picchu from
Wikipedia. On the Notebook we can see it:

# Load the image
img_path = "image_test_3.jpg"
img = Image.open(img_path)

# Display the image
plt.figure(figsize=(8, 8))
plt.imshow(img)
plt.axis("off")
# plt.title("Image")
plt.show()
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Now, let’s define a function that will receive the image and will return
the decimal latitude and decimal longitude of the city in the
image, its name, and what country it is located

def image_description(img_path):
with open(img_path, "rb") as file:

response = ollama.chat(
model=MODEL,
messages=[

{
"role": "user",
"content": """return the decimal latitude and \

decimal longitude of the city in the image, \
its name, and what country it is located""",

"images": [file.read()],
},

],
options={

"temperature": 0,
},

)
# print(response['message']['content'])
return response["message"]["content"]
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We can print the entire response for debug purposes.

The image description generated for the function will be passed as a
prompt for the model again.

start_time = time.perf_counter() # Start timing

class CityCoord(BaseModel):
city: str = Field(

..., description="Name of the city in the image"
)
country: str = Field(

...,
description=(

"Name of the country where "
"the city in the image is located"

),
)
lat: float = Field(

...,
description=("Decimal latitude of the city in " "the image"),

)
lon: float = Field(

...,
description=("Decimal longitude of the city in " "the image"),

)

# enables `response_model` in create call
client = instructor.patch(

OpenAI(base_url="http://localhost:11434/v1", api_key="ollama"),
mode=instructor.Mode.JSON,

)

image_description = image_description(img_path)
# Send this description to the model
resp = client.chat.completions.create(

model=MODEL,
messages=[

{
"role": "user",
"content": image_description,

}
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],
response_model=CityCoord,
max_retries=10,
temperature=0,

)

If we print the image description , we will get:

The image shows the ancient city of Machu Picchu, located in
Peru. The city is perched on a steep hillside and consists of
various structures made of stone. It is surrounded by lush
greenery and towering mountains. The sky above is blue with
scattered clouds.

Machu Picchu's latitude is approximately 13.5086° S, and its
longitude is around 72.5494° W.

And the second response from the model (resp) will be:

CityCoord(city='Machu Picchu', country='Peru', lat=-13.5086,
lon=-72.5494)

Now, we can do a “Post-Processing”, calculating the distance and prepar-
ing the final answer:

distance = haversine((mylat, mylon), (resp.lat, resp.lon), unit="km")

print(
(

f"\nThe image shows {resp.city}, with lat: "
f"{round(resp.lat, 2)} and long: "
f"{round(resp.lon, 2)}, located in "
f"{resp.country} and about "
f"{int(round(distance, -1)):,} kilometers "
f"away from Santiago, Chile.\n"

)
)

end_time = time.perf_counter() # End timing
elapsed_time = end_time - start_time # Calculate elapsed time
print(

f"[INFO] ==> The code (running {MODEL}), "
f"took {elapsed_time:.1f} seconds to execute.\n"

)

And we will get:
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The image shows Machu Picchu, with lat:-13.16 and long:
-72.54, located in Peru and about 2,250 kilometers away
from Santiago, Chile.

print(
f"[INFO] ==> The code (running {MODEL}), "
f"took {elapsed_time:.1f} seconds "
f"to execute.\n"

)

In the 30-Function_Calling_with_images notebook, it is possible to find
the experiments with multiple images.

Let’s now download the script calc_distance_image.py from the
GitHub and run it on the terminal with the command:

python calc_distance_image.py \
/home/mjrovai/Documents/OLLAMA/image_test_3.jpg

Enter with the Machu Picchu image full patch as an argument. We will
get the same previous result.

How about Paris?

Of course, there are many ways to optimize the code used here. Still,
the idea is to explore the considerable potential of function calling with
SLMs at the edge, allowing those models to integrate with external

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/30-Function_Calling_with_images.ipynb
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functions or APIs. Going beyond text generation, SLMs can access
real-time data, automate tasks, and interact with various systems.

SLMs: Optimization Techniques

Large Language Models (LLMs) have revolutionized natural language
processing, but their deployment and optimization come with unique
challenges. One significant issue is the tendency for LLMs (and more,
the SLMs) to generate plausible-sounding but factually incorrect in-
formation, a phenomenon known as hallucination. This occurs when
models produce content that seems coherent but is not grounded in
truth or real-world facts.

Other challenges include the immense computational resources re-
quired for training and running these models, the difficulty in maintain-
ing up-to-date knowledge within the model, and the need for domain-
specific adaptations. Privacy concerns also arise when handling sensi-
tive data during training or inference. Additionally, ensuring consistent
performance across diverse tasks and maintaining ethical use of these
powerful tools present ongoing challenges. Addressing these issues is
crucial for the effective and responsible deployment of LLMs in real-
world applications.

The fundamental techniques for enhancing LLM (and SLM) perfor-
mance and efficiency are Fine-tuning, Prompt engineering, and Retrieval-
Augmented Generation (RAG).

• Fine-tuning, while more resource-intensive, offers a way to spe-
cialize LLMs for particular domains or tasks. This process involves
further training the model on carefully curated datasets, allow-
ing it to adapt its vast general knowledge to specific applications.
Fine-tuning can lead to substantial improvements in performance,
especially in specialized fields or for unique use cases.

• Prompt engineering is at the forefront of LLM optimization. By
carefully crafting input prompts, we can guide models to pro-
duce more accurate and relevant outputs. This technique involves
structuring queries that leverage the model’s pre-trained knowl-
edge and capabilities, often incorporating examples or specific
instructions to shape the desired response.

• Retrieval-Augmented Generation (RAG) represents another
powerful approach to improving LLM performance. This method
combines the vast knowledge embedded in pre-trained models
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with the ability to access and incorporate external, up-to-date in-
formation. By retrieving relevant data to supplement the model’s
decision-making process, RAG can significantly enhance accu-
racy and reduce the likelihood of generating outdated or false
information.

For edge applications, it is more beneficial to focus on techniques like
RAG that can enhance model performance without needing on-device
fine-tuning. Let’s explore it.

RAG Implementation

In a basic interaction between a user and a language model, the user
asks a question, which is sent as a prompt to the model. The model
generates a response based solely on its pre-trained knowledge. In a
RAG process, there’s an additional step between the user’s question and
the model’s response. The user’s question triggers a retrieval process
from a knowledge base.

A simple RAG project

Here are the steps to implement a basic Retrieval Augmented Genera-
tion (RAG):

• Determine the type of documents you’ll be using: The best types
are documents from which we can get clean and unobscured text.
PDFs can be problematic because they are designed for printing,
not for extracting sensible text. To work with PDFs, we should
get the source document or use tools to handle it.
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• Chunk the text: We can’t store the text as one long stream because
of context size limitations and the potential for confusion. Chunk-
ing involves splitting the text into smaller pieces. Chunk text has
many ways, such as character count, tokens, words, paragraphs,
or sections. It is also possible to overlap chunks.

• Create embeddings: Embeddings are numerical representations
of text that capture semantic meaning. We create embeddings
by passing each chunk of text through a particular embedding
model. The model outputs a vector, the length of which depends
on the embedding model used. We should pull one (or more)
embedding models from Ollama, to perform this task. Here are
some examples of embedding models available at Ollama.

Model Parameter Size Embedding Size

mxbai-embed-large 334M 1024
nomic-embed-text 137M 768
all-minilm 23M 384

Generally, larger embedding sizes capture more nu-
anced information about the input. Still, they also re-
quire more computational resources to process, and a
higher number of parameters should increase the la-
tency (but also the quality of the response).

• Store the chunks and embeddings in a vector database: We will
need a way to efficiently find the most relevant chunks of text for
a given prompt, which is where a vector database comes in. We
will use Chromadb, an AI-native open-source vector database,
which simplifies building RAGs by creating knowledge, facts, and
skills pluggable for LLMs. Both the embedding and the source
text for each chunk are stored.

• Build the prompt: When we have a question, we create an embed-
ding and query the vector database for the most similar chunks.
Then, we select the top few results and include their text in the
prompt.

The goal of RAG is to provide the model with the most relevant infor-
mation from our documents, allowing it to generate more accurate and
informative responses. So, let’s implement a simple example of an SLM
incorporating a particular set of facts about bees (“Bee Facts”).

Inside the ollama env, enter the command in the terminal for Chromadb
installation:

pip install ollama chromadb

https://ollama.com/blog/embedding-models
https://www.trychroma.com/
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Let’s pull an intermediary embedding model, nomic-embed-text

ollama pull nomic-embed-text

And create a working directory:

cd Documents/OLLAMA/
mkdir RAG-simple-bee
cd RAG-simple-bee/

Let’s create a new Jupyter notebook, 40-RAG-simple-bee for some ex-
ploration:

Import the needed libraries:

import ollama
import chromadb
import time

And define aor models:

EMB_MODEL = "nomic-embed-text"
MODEL = "llama3.2:3B"

Initially, a knowledge base about bee facts should be created. This in-
volves collecting relevant documents and converting them into vector
embeddings. These embeddings are then stored in a vector database, al-
lowing for efficient similarity searches later. Enter with the “document,”
a base of “bee facts” as a list:

documents = [
"Bee-keeping, also known as apiculture, involves the \
maintenance of bee colonies, typically in hives, by humans.",
"The most commonly kept species of bees is the European \
honey bee (Apis mellifera).",

...

"There are another 20,000 different bee species in \
the world.",
"Brazil alone has more than 300 different bee species, and \
the vast majority, unlike western honey bees, don’t sting.",
"Reports written in 1577 by Hans Staden, mention three \
native bees used by indigenous people in Brazil.", \
"The indigenous people in Brazil used bees for medicine \
and food purposes",
"From Hans Staden report: probable species: mandaçaia \
(Melipona quadrifasciata), mandaguari (Scaptotrigona \

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/40-RAG-simple-bee.ipynb
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postica) and jataí-amarela (Tetragonisca angustula)."
]

We do not need to “chunk” the document here because we
will use each element of the list and a chunk.

Now, we will create our vector embedding database bee_facts and
store the document in it:

client = chromadb.Client()
collection = client.create_collection(name="bee_facts")

# store each document in a vector embedding database
for i, d in enumerate(documents):

response = ollama.embeddings(model=EMB_MODEL, prompt=d)
embedding = response["embedding"]
collection.add(

ids=[str(i)], embeddings=[embedding], documents=[d]
)

Now that we have our “Knowledge Base” created, we can start making
queries, retrieving data from it:

User Query: The process begins when a user asks a question, such as
“How many bees are in a colony? Who lays eggs, and how much? How
about common pests and diseases?”

prompt = "How many bees are in a colony? Who lays eggs and \
how much? How about common pests and diseases?"

Query Embedding: The user’s question is converted into a vector em-
bedding using the same embedding model used for the knowledge
base.
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response = ollama.embeddings(prompt=prompt, model=EMB_MODEL)

Relevant Document Retrieval: The system searches the knowledge
base using the query embedding to find the most relevant documents
(in this case, the 5 more probable). This is done using a similarity search,
which compares the query embedding to the document embeddings in
the database.

results = collection.query(
query_embeddings=[response["embedding"]], n_results=5

)
data = results["documents"]

Prompt Augmentation: The retrieved relevant information is combined
with the original user query to create an augmented prompt. This
prompt now contains the user’s question and pertinent facts from the
knowledge base.

prompt = (
f"Using this data: {data}. " f"Respond to this prompt: {prompt}"

)

Answer Generation: The augmented prompt is then fed into a lan-
guage model, in this case, the llama3.2:3b model. The model uses this
enriched context to generate a comprehensive answer. Parameters like
temperature, top_k, and top_p are set to control the randomness and
quality of the generated response.

output = ollama.generate(
model=MODEL,
prompt = (

f"Using this data: {data}. "
f"Respond to this prompt: {prompt}"

)

options={
"temperature": 0.0,
"top_k":10,
"top_p":0.5 }

)

Response Delivery: Finally, the system returns the generated answer
to the user.

print(output["response"])
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Based on the provided data, here are the answers to your \
questions:

1. How many bees are in a colony?
A typical bee colony can contain between 20,000 and 80,000 bees.

2. Who lays eggs and how much?
The queen bee lays up to 2,000 eggs per day during peak seasons.

3. What about common pests and diseases?
Common pests and diseases that affect bees include varroa \
mites, hive beetles, and foulbrood.

Let’s create a function to help answer new questions:

def rag_bees(prompt, n_results=5, temp=0.0, top_k=10, top_p=0.5):
start_time = time.perf_counter() # Start timing

# generate an embedding for the prompt and retrieve the data
response = ollama.embeddings(
prompt=prompt,
model=EMB_MODEL

)

results = collection.query(
query_embeddings=[response["embedding"]],
n_results=n_results

)
data = results['documents']

# generate a response combining the prompt and data retrieved
output = ollama.generate(
model=MODEL,
prompt = (

f"Using this data: {data}. "
f"Respond to this prompt: {prompt}"

)

options={
"temperature": temp,
"top_k": top_k,
"top_p": top_p }

)
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print(output['response'])

end_time = time.perf_counter() # End timing
elapsed_time = round(

(end_time - start_time), 1
) # Calculate elapsed time

print(
f"\n[INFO] ==> The code for model: {MODEL}, "
f"took {elapsed_time}s to generate the answer.\n"

)

print(
f"\n[INFO] ==> The code for model: {MODEL}, "
f"took {elapsed_time}s to generate the answer.\n"

)

We can now create queries and call the function:

prompt = "Are bees in Brazil?"
rag_bees(prompt)

Yes, bees are found in Brazil. According to the data, Brazil \
has more than 300 different bee species, and indigenous people \
in Brazil used bees for medicine and food purposes. \
Additionally, reports from 1577 mention three native bees \
used by indigenous people in Brazil.

[INFO] ==> The code for model: llama3.2:3b, took 22.7s to \
generate the answer.

By the way, if the model used supports multiple languages, we can use it
(for example, Portuguese), even if the dataset was created in English:

prompt = "Existem abelhas no Brazil?"
rag_bees(prompt)

Sim, existem abelhas no Brasil! De acordo com o relato de Hans \
Staden, há três espécies de abelhas nativas do Brasil que \
foram mencionadas: mandaçaia (Melipona quadrifasciata), \
mandaguari (Scaptotrigona postica) e jataí-amarela \
(Tetragonisca angustula). Além disso, o Brasil é conhecido \
por ter mais de 300 espécies diferentes de abelhas, a \
maioria das quais não é agressiva e não põe veneno.
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[INFO] ==> The code for model: llama3.2:3b, took 54.6s to \
generate the answer.

Going Further

The small LLM models tested worked well at the edge, both in text and
with images, but of course, they had high latency regarding the last
one. A combination of specific and dedicated models can lead to better
results; for example, in real cases, an Object Detection model (such as
YOLO) can get a general description and count of objects on an image
that, once passed to an LLM, can help extract essential insights and
actions.

According to Avi Baum, CTO at Hailo,

In the vast landscape of artificial intelligence (AI), one of the
most intriguing journeys has been the evolution of AI on the
edge. This journey has taken us from classic machine vision
to the realms of discriminative AI, enhancive AI, and now,
the groundbreaking frontier of generative AI. Each step has
brought us closer to a future where intelligent systems seam-
lessly integrate with our daily lives, offering an immersive
experience of not just perception but also creation at the
palm of our hand.

Summary
This lab has demonstrated how a Raspberry Pi 5 can be transformed into
a potent AI hub capable of running large language models (LLMs) for
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real-time, on-site data analysis and insights using Ollama and Python.
The Raspberry Pi’s versatility and power, coupled with the capabilities
of lightweight LLMs like Llama 3.2 and LLaVa-Phi-3-mini, make it an
excellent platform for edge computing applications.

The potential of running LLMs on the edge extends far beyond simple
data processing, as in this lab’s examples. Here are some innovative
suggestions for using this project:

1. Smart Home Automation:

• Integrate SLMs to interpret voice commands or analyze sensor
data for intelligent home automation. This could include real-
time monitoring and control of home devices, security systems,
and energy management, all processed locally without relying on
cloud services.

2. Field Data Collection and Analysis:

• Deploy SLMs on Raspberry Pi in remote or mobile setups for
real-time data collection and analysis. This can be used in agricul-
ture to monitor crop health, in environmental studies for wildlife
tracking, or in disaster response for situational awareness and
resource management.

3. Educational Tools:

• Create interactive educational tools that leverage SLMs to provide
instant feedback, language translation, and tutoring. This can be
particularly useful in developing regions with limited access to
advanced technology and internet connectivity.

4. Healthcare Applications:

• Use SLMs for medical diagnostics and patient monitoring. They
can provide real-time analysis of symptoms and suggest potential
treatments. This can be integrated into telemedicine platforms or
portable health devices.

5. Local Business Intelligence:

• Implement SLMs in retail or small business environments to an-
alyze customer behavior, manage inventory, and optimize oper-
ations. The ability to process data locally ensures privacy and
reduces dependency on external services.
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6. Industrial IoT:

• Integrate SLMs into industrial IoT systems for predictive mainte-
nance, quality control, and process optimization. The Raspberry
Pi can serve as a localized data processing unit, reducing latency
and improving the reliability of automated systems.

7. Autonomous Vehicles:

• Use SLMs to process sensory data from autonomous vehicles,
enabling real-time decision-making and navigation. This can
be applied to drones, robots, and self-driving cars for enhanced
autonomy and safety.

8. Cultural Heritage and Tourism:

• Implement SLMs to provide interactive and informative cultural
heritage sites and museum guides. Visitors can use these sys-
tems to get real-time information and insights, enhancing their
experience without internet connectivity.

9. Artistic and Creative Projects:

• Use SLMs to analyze and generate creative content, such as mu-
sic, art, and literature. This can foster innovative projects in the
creative industries and allow for unique interactive experiences
in exhibitions and performances.

10. Customized Assistive Technologies:

• Develop assistive technologies for individuals with disabilities,
providing personalized and adaptive support through real-time
text-to-speech, language translation, and other accessible tools.

Resources

• 10-Ollama_Python_Library notebook
• 20-Ollama_Function_Calling notebook
• 30-Function_Calling_with_images notebook
• 40-RAG-simple-bee notebook
• calc_distance_image python script

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/10-Ollama_Python_Library.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/20-Ollama_Function_Calling.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/30-Function_Calling_with_images.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/40-RAG-simple-bee.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/calc_distance_image.py
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Figure 1.29: DALL·E prompt - A Raspberry Pi setup featuring vision tasks. The image shows a Raspberry Pi
connected to a camera, with various computer vision tasks displayed visually around it, including object
detection, image captioning, segmentation, and visual grounding. The Raspberry Pi is placed on a desk, with a
display showing bounding boxes and annotations related to these tasks. The background should be a home
workspace, with tools and devices typically used by developers and hobbyists.

Introduction

In this hands-on lab, we will continuously explore AI applications at the
Edge, from the basic setup of the Florence-2, Microsoft’s state-of-the-art
vision foundation model, to advanced implementations on devices like
the Raspberry Pi. We will learn to use Vision Language Models (VLMs)
for tasks such as captioning, object detection, grounding, segmentation,
and OCR on a Raspberry Pi.

613
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Why Florence-2 at the Edge?

Florence-2 is a vision-language model open-sourced by Microsoft under
the MIT license, which significantly advances vision-language mod-
els by combining a lightweight architecture with robust capabilities.
Thanks to its training on the massive FLD-5B dataset, which contains
126 million images and 5.4 billion visual annotations, it achieves perfor-
mance comparable to larger models. This makes Florence-2 ideal for
deployment at the edge, where power and computational resources are
limited.

In this tutorial, we will explore how to use Florence-2 for real-time
computer vision applications, such as:

• Image captioning
• Object detection
• Segmentation
• Visual grounding

Visual grounding involves linking textual descriptions to
specific regions within an image. This enables the model to
understand where particular objects or entities described in
a prompt are in the image. For example, if the prompt is “a
red car,” the model will identify and highlight the region
where the red car is found in the image. Visual grounding
is helpful for applications where precise alignment between
text and visual content is needed, such as human-computer
interaction, image annotation, and interactive AI systems.

In the tutorial, we will walk through:

• Setting up Florence-2 on the Raspberry Pi
• Running inference tasks such as object detection and captioning
• Optimizing the model to get the best performance from the edge

device
• Exploring practical, real-world applications with fine-tuning.

Florence-2 Model Architecture

Florence-2 utilizes a unified, prompt-based representation to handle
various vision-language tasks. The model architecture consists of two
main components: an image encoder and a multi-modal transformer
encoder-decoder.

https://arxiv.org/abs/2311.06242
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• Image Encoder: The image encoder is based on the DaViT (Dual
Attention Vision Transformers) architecture. It converts input im-
ages into a series of visual token embeddings. These embeddings
serve as the foundational representations of the visual content,

https://arxiv.org/abs/2204.03645
https://arxiv.org/abs/2204.03645
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capturing both spatial and contextual information about the im-
age.

• Multi-Modal Transformer Encoder-Decoder: Florence-2’s core
is the multi-modal transformer encoder-decoder, which combines
visual token embeddings from the image encoder with textual
embeddings generated by a BERT-like model. This combination
allows the model to simultaneously process visual and textual
inputs, enabling a unified approach to tasks such as image cap-
tioning, object detection, and segmentation.

The model’s training on the extensive FLD-5B dataset ensures it can
effectively handle diverse vision tasks without requiring task-specific
modifications. Florence-2 uses textual prompts to activate specific tasks,
making it highly flexible and capable of zero-shot generalization. For
tasks like object detection or visual grounding, the model incorporates
additional location tokens to represent regions within the image, ensur-
ing a precise understanding of spatial relationships.

Florence-2’s compact architecture and innovative training
approach allow it to perform computer vision tasks accu-
rately, even on resource-constrained devices like the Rasp-
berry Pi.

Technical Overview

Florence-2 introduces several innovative features that set it apart:

Architecture
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• Lightweight Design: Two variants available
– Florence-2-Base: 232 million parameters
– Florence-2-Large: 771 million parameters

• Unified Representation: Handles multiple vision tasks through
a single architecture

• DaViT Vision Encoder: Converts images into visual token em-
beddings

• Transformer-based Multi-modal Encoder-Decoder: Processes
combined visual and text embeddings

Training Dataset (FLD-5B)

• 126 million unique images
• 5.4 billion comprehensive annotations, including:

– 500M text annotations
– 1.3B region-text annotations
– 3.6B text-phrase-region annotations

• Automated annotation pipeline using specialist models
• Iterative refinement process for high-quality labels
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Key Capabilities

Florence-2 excels in multiple vision tasks:

Zero-shot Performance

• Image Captioning: Achieves 135.6 CIDEr score on COCO
• Visual Grounding: 84.4% recall@1 on Flickr30k
• Object Detection: 37.5 mAP on COCO val2017
• Referring Expression: 67.0% accuracy on RefCOCO

Fine-tuned Performance

• Competitive with specialist models despite the smaller size
• Outperforms larger models in specific benchmarks
• Efficient adaptation to new tasks

Practical Applications

Florence-2 can be applied across various domains:

1. Content Understanding
• Automated image captioning for accessibility
• Visual content moderation
• Media asset management

2. E-commerce
• Product image analysis
• Visual search
• Automated product tagging

3. Healthcare
• Medical image analysis
• Diagnostic assistance
• Research data processing

4. Security & Surveillance
• Object detection and tracking
• Anomaly detection
• Scene understanding



Vision-Language Models (VLM) 619

Comparing Florence-2 with other VLMs

Florence-2 stands out from other visual language models due to its im-
pressive zero-shot capabilities. Unlike models like Google PaliGemma,
which rely on extensive fine-tuning to adapt to various tasks, Florence-2
works right out of the box, as we will see in this lab. It can also compete
with larger models like GPT-4V and Flamingo, which often have many
more parameters but only sometimes match Florence-2’s performance.
For example, Florence-2 achieves better zero-shot results than Kosmos-2
despite having over twice the parameters.

In benchmark tests, Florence-2 has shown remarkable performance in
tasks like COCO captioning and referring expression comprehension.
It outperformed models like PolyFormer and UNINEXT in object de-
tection and segmentation tasks on the COCO dataset. It is a highly
competitive choice for real-world applications where both performance
and resource efficiency are crucial.

Setup and Installation

Our choice of edge device is the Raspberry Pi 5 (Raspi-5). Its robust
platform is equipped with the Broadcom BCM2712, a 2.4 GHz quad-
core 64-bit Arm Cortex-A76 CPU featuring Cryptographic Extension
and enhanced caching capabilities. It boasts a VideoCore VII GPU, dual
4Kp60 HDMI® outputs with HDR, and a 4Kp60 HEVC decoder. Mem-
ory options include 4 GB and 8 GB of high-speed LPDDR4X SDRAM,
with 8 GB being our choice to run Florence-2. It also features expand-
able storage via a microSD card slot and a PCIe 2.0 interface for fast
peripherals such as M.2 SSDs (Solid State Drives).

For real applications, SSDs are a better option than SD cards.

We suggest installing an Active Cooler, a dedicated clip-on cooling
solution for Raspberry Pi 5 (Raspi-5), for this lab. It combines an alu-
minum heat sink with a temperature-controlled blower fan to keep
the Raspi-5 operating comfortably under heavy loads, such as running
Florense-2.

https://huggingface.co/blog/paligemma
https://docs.ultralytics.com/datasets/detect/coco/
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Environment configuration

To run Microsoft Florense-2 on the Raspberry Pi 5, we’ll need a few
libraries:

1. Transformers:
• Florence-2 uses the transformers library from Hugging

Face for model loading and inference. This library pro-
vides the architecture for working with pre-trained vision-
language models, making it easy to perform tasks like im-
age captioning, object detection, and more. Essentially,
transformers helps in interacting with the model, process-
ing input prompts, and obtaining outputs.

2. PyTorch:
• PyTorch is a deep learning framework that provides the

infrastructure needed to run the Florence-2 model, which
includes tensor operations, GPU acceleration (if a GPU is
available), and model training/inference functionalities. The
Florence-2 model is trained in PyTorch, and we need it to
leverage its functions, layers, and computation capabilities
to perform inferences on the Raspberry Pi.

3. Timm (PyTorch Image Models):
• Florence-2 uses timm to access efficient implementations of

vision models and pre-trained weights. Specifically, the timm
library is utilized for the image encoder part of Florence-2,
particularly for managing the DaViT architecture. It provides
model definitions and optimized code for common vision

https://huggingface.co/microsoft/Florence-2-base
https://huggingface.co/docs/transformers/en/index
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tasks and allows the easy integration of different backbones
that are lightweight and suitable for edge devices.

4. Einops:
• Einops is a library for flexible and powerful tensor opera-

tions. It makes it easy to reshape and manipulate tensor di-
mensions, which is especially important for the multi-modal
processing done in Florence-2. Vision-language models like
Florence-2 often need to rearrange image data, text embed-
dings, and visual embeddings to align correctly for the trans-
former blocks, and einops simplifies these complex opera-
tions, making the code more readable and concise.

In short, these libraries enable different essential components of Florence-
2:

• Transformers and PyTorch are needed to load the model and run
the inference.

• Timm is used to access and efficiently implement the vision en-
coder.

• Einops helps reshape data, facilitating the integration of visual
and text features.

All these components work together to help Florence-2 run seamlessly
on our Raspberry Pi, allowing it to perform complex vision-language
tasks relatively quickly.

Considering that the Raspberry Pi already has its OS installed, let’s use
SSH to reach it from another computer:

ssh mjrovai@raspi-5.local

And check the IP allocated to it:

hostname -I

192.168.4.209
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Updating the Raspberry Pi

First, ensure your Raspberry Pi is up to date:

sudo apt update
sudo apt upgrade -y

Initial setup for using PIP:

sudo apt install python3-pip
sudo rm /usr/lib/python3.11/EXTERNALLY-MANAGED
pip3 install --upgrade pip

Install Dependencies

sudo apt-get install libjpeg-dev libopenblas-dev libopenmpi-dev \
libomp-dev

Let’s set up and activate a Virtual Environment for working with
Florence-2:

python3 -m venv ~/florence
source ~/florence/bin/activate

Install PyTorch

pip3 install setuptools numpy Cython
pip3 install requests
pip3 install torch torchvision \

--index-url https://download.pytorch.org/whl/cpu
pip3 install torchaudio \

--index-url https://download.pytorch.org/whl/cpu
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Let’s verify that PyTorch is correctly installed:

Install Transformers, Timm and Einops:

pip3 install transformers
pip3 install timm einops

Install the model:

pip3 install autodistill-florence-2

Jupyter Notebook and Python libraries

Installing a Jupyter Notebook to run and test our Python scripts is
possible.

pip3 install jupyter
pip3 install numpy Pillow matplotlib
jupyter notebook --generate-config

Testing the installation

Running the Jupyter Notebook on the remote computer

jupyter notebook --ip=192.168.4.209 --no-browser

Running the above command on the SSH terminal, we can see the local
URL address to open the notebook:
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The notebook with the code used on this initial test can be found on the
Lab GitHub:

• 10-florence2_test.ipynb

We can access it on the remote computer by entering the Raspberry Pi’s
IP address and the provided token in a web browser (copy the entire
URL from the terminal).

From the Home page, create a new notebook [Python 3 (ipykernel)
] and copy and paste the example code from Hugging Face Hub.

The code is designed to run Florence-2 on a given image to perform
object detection. It loads the model, processes an image and a prompt,
and then generates a response to identify and describe the objects in
the image.

• The processor helps prepare text and image inputs.
• The model takes the processed inputs to generate a meaningful

response.
• The post-processing step refines the generated output into a more

interpretable form, like bounding boxes for detected objects.

This workflow leverages the versatility of Florence-2 to han-
dle vision-language tasks and is implemented efficiently
using PyTorch, Transformers, and related image-processing
tools.

import requests
from PIL import Image
import torch

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/FLORENCE-2/notebooks/10-florence2_test.ipynb
https://huggingface.co/microsoft/Florence-2-base#how-to-get-started-with-the-model
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from transformers import AutoProcessor, AutoModelForCausalLM

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = (

torch.float16 if torch.cuda.is_available() else torch.float32
)

model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-base",
torch_dtype=torch_dtype,
trust_remote_code=True,

).to(device)
processor = AutoProcessor.from_pretrained(

"microsoft/Florence-2-base", trust_remote_code=True
)

prompt = "<OD>"

url = (
"https://huggingface.co/datasets/huggingface/"
"documentation-images/resolve/main/transformers/"
"tasks/car.jpg?download=true"

)
image = Image.open(requests.get(url, stream=True).raw)

inputs = processor(text=prompt, images=image, return_tensors="pt").to(
device, torch_dtype

)

generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
do_sample=False,
num_beams=3,

)
generated_text = processor.batch_decode(

generated_ids, skip_special_tokens=False
)[0]

parsed_answer = processor.post_process_generation(
generated_text,
task="<OD>",
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image_size=(image.width, image.height),
)

print(parsed_answer)

Let’s break down the provided code step by step:

Importing Required Libraries

import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForCausalLM

• requests: Used to make HTTP requests. In this case, it downloads
an image from a URL.

• PIL (Pillow): Provides tools for manipulating images. Here, it’s
used to open the downloaded image.

• torch: PyTorch is imported to handle tensor operations and deter-
mine the hardware availability (CPU or GPU).

• transformers: This module provides easy access to Florence-2
by using AutoProcessor and AutoModelForCausalLM to load pre-
trained models and process inputs.

Determining the Device and Data Type

device = "cuda:0" if torch.cuda.is_available() else "cpu"

torch_dtype = (
torch.float16 if torch.cuda.is_available() else torch.float32

)

• Device Setup: The code checks if a CUDA-enabled GPU is avail-
able (torch.cuda.is_available()). The device is set to “cuda:0”
if a GPU is available. Otherwise, it defaults to "cpu" (our case
here).

• Data Type Setup: If a GPU is available, torch.float16 is chosen,
which uses half-precision floats to speed up processing and reduce
memory usage. On the CPU, it defaults to torch.float32 to
maintain compatibility.
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Loading the Model and Processor

model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-base",
torch_dtype=torch_dtype,
trust_remote_code=True,

).to(device)

processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-base", trust_remote_code=True

)

• Model Initialization:
– AutoModelForCausalLM.from_pretrained() loads the pre-

trained Florence-2 model from Microsoft’s repository on
Hugging Face. The torch_dtype is set according to the avail-
able hardware (GPU/CPU), and trust_remote_code=True
allows the use of any custom code that might be provided
with the model.

– .to(device) moves the model to the appropriate device
(either CPU or GPU). In our case, it will be set to CPU.

• Processor Initialization:
– AutoProcessor.from_pretrained() loads the processor

for Florence-2. The processor is responsible for transforming
text and image inputs into a format the model can work with
(e.g., encoding text, normalizing images, etc.).

Defining the Prompt

prompt = "<OD>"

• Prompt Definition: The string "<OD>" is used as a prompt. This
refers to “Object Detection”, instructing the model to detect objects
on the image.

Downloading and Loading the Image

url = "https://huggingface.co/datasets/huggingface/"
"documentation-images/resolve/main/transformers/"
"tasks/car.jpg?download=true"

image = Image.open(requests.get(url, stream=True).raw)
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• Downloading the Image: The requests.get() function fetches
the image from the specified URL. The stream=True parameter
ensures the image is streamed rather than downloaded completely
at once.

• Opening the Image: Image.open() opens the image so the model
can process it.

Processing Inputs

inputs = processor(text=prompt, images=image, return_tensors="pt").to(
device, torch_dtype

)

• Processing Input Data: The processor() function processes the
text (prompt) and the image (image). The return_tensors="pt"
argument converts the processed data into PyTorch tensors, which
are necessary for inputting data into the model.

• Moving Inputs to Device: .to(device, torch_dtype) moves
the inputs to the correct device (CPU or GPU) and assigns the
appropriate data type.

Generating the Output

generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
do_sample=False,
num_beams=3,

)

• Model Generation: model.generate() is used to generate the
output based on the input data.

– input_ids: Represents the tokenized form of the prompt.
– pixel_values: Contains the processed image data.
– max_new_tokens=1024: Specifies the maximum number of

new tokens to be generated in the response. This limits the
response length.

– do_sample=False: Disables sampling; instead, the genera-
tion uses deterministic methods (beam search).
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– num_beams=3: Enables beam search with three beams, which
improves output quality by considering multiple possibilities
during generation.

Decoding the Generated Text

generated_text = processor.batch_decode(
generated_ids, skip_special_tokens=False

)[0]

• Batch Decode: processor.batch_decode() decodes the gen-
erated IDs (tokens) into readable text. The skip_special_-
tokens=False parameter means that the output will include
any special tokens that may be part of the response.

Post-processing the Generation

parsed_answer = processor.post_process_generation(
generated_text,
task="<OD>",
image_size=(image.width, image.height),

)

• Post-Processing: processor.post_process_generation() is
called to process the generated text further, interpreting it based
on the task ("<OD>" for object detection) and the size of the image.

• This function extracts specific information from the generated
text, such as bounding boxes for detected objects, making the
output more useful for visual tasks.

Printing the Output

print(parsed_answer)

• Finally, print(parsed_answer) displays the output, which could
include object detection results, such as bounding box coordinates
and labels for the detected objects in the image.
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Result

Running the code, we get as the Parsed Answer:

[{'<OD>': {
'bboxes': [
[34.23999786376953, 160.0800018310547, 597.4400024414062],
[371.7599792480469, 272.32000732421875, 241.67999267578125],
[303.67999267578125, 247.4399871826172, 454.0799865722656],
[276.7200012207031, 553.9199829101562, 370.79998779296875],
[96.31999969482422, 280.55999755859375, 198.0800018310547],
[371.2799987792969]
],
'labels': ['car', 'door handle', 'wheel', 'wheel']

}}]

First, let’s inspect the image:

import matplotlib.pyplot as plt

plt.figure(figsize=(8, 8))
plt.imshow(image)
plt.axis("off")
plt.show()

By the Object Detection result, we can see that:

'labels': ['car', 'door handle', 'wheel', 'wheel']
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It seems that at least a few objects were detected. We can also implement
a code to draw the bounding boxes in the find objects:

def plot_bbox(image, data):
# Create a figure and axes
fig, ax = plt.subplots()

# Display the image
ax.imshow(image)

# Plot each bounding box
for bbox, label in zip(data["bboxes"], data["labels"]):

# Unpack the bounding box coordinates
x1, y1, x2, y2 = bbox
# Create a Rectangle patch
rect = patches.Rectangle(

(x1, y1),
x2 - x1,
y2 - y1,
linewidth=1,
edgecolor="r",
facecolor="none",

)
# Add the rectangle to the Axes
ax.add_patch(rect)
# Annotate the label
plt.text(

x1,
y1,
label,
color="white",
fontsize=8,
bbox=dict(facecolor="red", alpha=0.5),

)

# Remove the axis ticks and labels
ax.axis("off")

# Show the plot
plt.show()

Box (x0, y0, x1, y1): Location tokens correspond to the top-
left and bottom-right corners of a box.

And running
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plot_bbox(image, parsed_answer['<OD>'])

We get:

Florence-2 Tasks

Florence-2 is designed to perform a variety of computer vision and
vision-language tasks through prompts. These tasks can be activated
by providing a specific textual prompt to the model, as we saw with
<OD> (Object Detection).

Florence-2’s versatility comes from combining these prompts, allow-
ing us to guide the model’s behavior to perform specific vision tasks.
Changing the prompt allows us to adapt Florence-2 to different tasks
without needing task-specific modifications in the architecture. This
capability directly results from Florence-2’s unified model architecture
and large-scale multi-task training on the FLD-5B dataset.

Here are some of the key tasks that Florence-2 can perform, along with
example prompts:
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Object Detection (OD)

• Prompt: "<OD>"
• Description: Identifies objects in an image and provides bound-

ing boxes for each detected object. This task is helpful for ap-
plications like visual inspection, surveillance, and general object
recognition.

Image Captioning

• Prompt: "<CAPTION>"
• Description: Generates a textual description for an input image.

This task helps the model describe what is happening in the image,
providing a human-readable caption for content understanding.

Detailed Captioning

• Prompt: "<DETAILED_CAPTION>"
• Description: Generates a more detailed caption with more nu-

anced information about the scene, such as the objects present
and their relationships.

Visual Grounding

• Prompt: "<CAPTION_TO_PHRASE_GROUNDING>"
• Description: Links a textual description to specific regions in an

image. For example, given a prompt like “a green car,” the model
highlights where the green car is in the image. This is useful
for human-computer interaction, where you must find specific
objects based on text.

Segmentation

• Prompt: "<REFERRING_EXPRESSION_SEGMENTATION>"
• Description: Performs segmentation based on a referring expres-

sion, such as “the blue cup.” The model identifies and segments
the specific region containing the object mentioned in the prompt
(all related pixels).
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Dense Region Captioning

• Prompt: "<DENSE_REGION_CAPTION>"
• Description: Provides captions for multiple regions within an

image, offering a detailed breakdown of all visible areas, including
different objects and their relationships.

OCR with Region

• Prompt: "<OCR_WITH_REGION>"
• Description: Performs Optical Character Recognition (OCR) on

an image and provides bounding boxes for the detected text. This
is useful for extracting and locating textual information in images,
such as reading signs, labels, or other forms of text in images.

Phrase Grounding for Specific Expressions

• Prompt: "<CAPTION_TO_PHRASE_GROUNDING>" along with a spe-
cific expression, such as "a wine glass".

• Description: Locates the area in the image that corresponds to a
specific textual phrase. This task allows for identifying particular
objects or elements when prompted with a word or keyword.

Open Vocabulary Object Detection

• Prompt: "<OPEN_VOCABULARY_OD>"
• Description: The model can detect objects without being re-

stricted to a predefined list of classes, making it helpful in recog-
nizing a broader range of items based on general visual under-
standing.

Exploring computer vision and vision-language
tasks

For exploration, all codes can be found on the GitHub:

• 20-florence_2.ipynb

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/FLORENCE-2/notebooks/20-florence_2.ipynb
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Let’s use a couple of images created by Dall-E and upload them to the
Rasp-5 (FileZilla can be used for that). The images will be saved on a
sub-folder named images :

dogs_cats = Image.open("./images/dogs-cats.jpg")
table = Image.open("./images/table.jpg")

Let’s create a function to facilitate our exploration and to keep track of
the latency of the model for different tasks:

def run_example(task_prompt, text_input=None, image=None):
start_time = time.perf_counter() # Start timing
if text_input is None:

prompt = task_prompt
else:

prompt = task_prompt + text_input
inputs = processor(

text=prompt, images=image, return_tensors="pt"
).to(device)
generated_ids = model.generate(

input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,

)
generated_text = processor.batch_decode(

generated_ids, skip_special_tokens=False
)[0]
parsed_answer = processor.post_process_generation(
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generated_text,
task=task_prompt,
image_size=(image.width, image.height),

)

end_time = time.perf_counter() # End timing
elapsed_time = end_time - start_time # Calculate elapsed time
print(

f" \n[INFO] ==> Florence-2-base ({task_prompt}), \
took {elapsed_time:.1f} seconds to execute.\n"

)

return parsed_answer

Caption

1. Dogs and Cats

run_example(task_prompt="<CAPTION>", image=dogs_cats)

[INFO] ==> Florence-2-base (<CAPTION>), \
took 16.1 seconds to execute.

{'<CAPTION>': 'A group of dogs and cats sitting in a garden.'}

2. Table

run_example(task_prompt="<CAPTION>", image=table)

[INFO] ==> Florence-2-base (<CAPTION>), \
took 16.5 seconds to execute.

{'<CAPTION>': 'A wooden table topped with a plate of fruit \
and a glass of wine.'}

Detailed Caption

1. Dogs and Cats

run_example(task_prompt="<DETAILED_CAPTION>", image=dogs_cats)

[INFO] ==> Florence-2-base (<DETAILED_CAPTION>), \
took 25.5 seconds to execute.

{'<DETAILED_CAPTION>': 'The image shows a group of cats and \
dogs sitting on top of a lush green field, surrounded by plants \
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with flowers, trees, and a house in the background. The sky is \
visible above them, creating a peaceful atmosphere.'}

2. Table

run_example(task_prompt="<DETAILED_CAPTION>", image=table)

[INFO] ==> Florence-2-base (<DETAILED_CAPTION>), \
took 26.8 seconds to execute.

{'<DETAILED_CAPTION>': 'The image shows a wooden table with \
a bottle of wine and a glass of wine on it, surrounded by \
a variety of fruits such as apples, oranges, and grapes. \
In the background, there are chairs, plants, trees, and \
a house, all slightly blurred.'}

More Detailed Caption

1. Dogs and Cats

run_example(task_prompt="<MORE_DETAILED_CAPTION>", image=dogs_cats)

[INFO] ==> Florence-2-base (<MORE_DETAILED_CAPTION>), \
took 49.8 seconds to execute.

{'<MORE_DETAILED_CAPTION>': 'The image shows a group of four \
cats and a dog in a garden. The garden is filled with colorful \
flowers and plants, and there is a pathway leading up to \
a house in the background. The main focus of the image is \
a large German Shepherd dog standing on the left side of \
the garden, with its tongue hanging out and its mouth open, \
as if it is panting. On the right side, there are \
two smaller cats, one orange and one gray, sitting on the \
grass. In the background, there is another golden retriever \
dog sitting and looking at the camera. The sky is blue and \
the sun is shining, creating a warm and inviting atmosphere.'}

2. Table

run_example(task_prompt="< MORE_DETAILED_CAPTION>", image=table)

INFO] ==> Florence-2-base (<MORE_DETAILED_CAPTION>), \
took 32.4 seconds to execute.

{'<MORE_DETAILED_CAPTION>': 'The image shows a wooden table \
with a wooden tray on it. On the tray, there are various \
fruits such as grapes, oranges, apples, and grapes. There \
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is also a bottle of red wine on the table. The background \
shows a garden with trees and a house. The overall mood \
of the image is peaceful and serene.'}

We can note that the more detailed the caption task, the
longer the latency and the possibility of mistakes (like “The
image shows a group of four cats and a dog in a garden”,
instead of two dogs and three cats).

Object Detection

We can run the same previous function for object detection using the
prompt <OD>.

task_prompt = "<OD>"
results = run_example(task_prompt, image=dogs_cats)
print(results)

Let’s see the result:

[INFO] ==> Florence-2-base (<OD>), took 20.9 seconds to execute.

{'<OD>': {'bboxes': [
[737.79, 571.90, 1022.46, 980.48],
[0.51, 593.40, 211.45, 991.74],
[445.95, 721.40, 680.44, 850.43],
[39.42, 91.64, 491.00, 933.37],
[570.88, 184.83, 974.33, 782.84]
],
'labels': ['cat', 'cat', 'cat', 'dog', 'dog']

}}

Only by the labels ['cat,' 'cat,' 'cat,' 'dog,' 'dog'] is it possi-
ble to see that the main objects in the image were captured. Let’s apply
the function used before to draw the bounding boxes:

plot_bbox(dogs_cats, results["<OD>"])
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Let’s also do it with the Table image:

task_prompt = "<OD>"
results = run_example(task_prompt, image=table)
plot_bbox(table, results["<OD>"])

[INFO] ==> Florence-2-base (<OD>), took 40.8 seconds to execute.
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Dense Region Caption

It is possible to mix the classic Object Detection with the Caption task
in specific sub-regions of the image:

task_prompt = "<DENSE_REGION_CAPTION>"

results = run_example(task_prompt, image=dogs_cats)
plot_bbox(dogs_cats, results["<DENSE_REGION_CAPTION>"])

results = run_example(task_prompt, image=table)
plot_bbox(table, results["<DENSE_REGION_CAPTION>"])
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Caption to Phrase Grounding

With this task, we can enter with a caption, such as “a wine glass”, “a
wine bottle,” or “a half orange,” and Florence-2 will localize the object
in the image:

task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"

results = run_example(
task_prompt, text_input="a wine bottle", image=table

)
plot_bbox(table, results["<CAPTION_TO_PHRASE_GROUNDING>"])

results = run_example(
task_prompt, text_input="a wine glass", image=table

)
plot_bbox(table, results["<CAPTION_TO_PHRASE_GROUNDING>"])

results = run_example(
task_prompt, text_input="a half orange", image=table

)
plot_bbox(table, results["<CAPTION_TO_PHRASE_GROUNDING>"])
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[INFO] ==> Florence-2-base (<CAPTION_TO_PHRASE_GROUNDING>), \
took 15.7 seconds to execute
each task.

Cascade Tasks

We can also enter the image caption as the input text to push Florence-2
to find more objects:

task_prompt = "<CAPTION>"
results = run_example(task_prompt, image=dogs_cats)
text_input = results[task_prompt]
task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
results = run_example(task_prompt, text_input, image=dogs_cats)
plot_bbox(dogs_cats, results["<CAPTION_TO_PHRASE_GROUNDING>"])

Changing the task_prompt among <CAPTION,> <DETAILED_CAPTION>
and <MORE_DETAILED_CAPTION>, we will get more objects in the im-
age.
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Open Vocabulary Detection

<OPEN_VOCABULARY_DETECTION> allows Florence-2 to detect recogniz-
able objects in an image without relying on a predefined list of cate-
gories, making it a versatile tool for identifying various items that may
not have been explicitly labeled during training. Unlike <CAPTION_-
TO_PHRASE_GROUNDING>, which requires a specific text phrase to locate
and highlight a particular object in an image, <OPEN_VOCABULARY_-
DETECTION> performs a broad scan to find and classify all objects
present.

This makes <OPEN_VOCABULARY_DETECTION> particularly useful for ap-
plications where you need a comprehensive overview of everything in
an image without prior knowledge of what to expect. Enter with a text
describing specific objects not previously detected, resulting in their
detection. For example:

task_prompt = "<OPEN_VOCABULARY_DETECTION>"

text = [
"a house",
"a tree",
"a standing cat at the left",
"a sleeping cat on the ground",
"a standing cat at the right",
"a yellow cat",

]

for txt in text:
results = run_example(

task_prompt, text_input=txt, image=dogs_cats
)

bbox_results = convert_to_od_format(
results["<OPEN_VOCABULARY_DETECTION>"]

)

plot_bbox(dogs_cats, bbox_results)
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[INFO] ==> Florence-2-base (<OPEN_VOCABULARY_DETECTION>), \
took 15.1 seconds to execute
each task.

Note: Trying to use Florence-2 to find objects that were not
found can leads to mistakes (see examples on the Notebook).

Referring expression segmentation

We can also segment a specific object in the image and give its descrip-
tion (caption), such as “a wine bottle” on the table image or “a German
Sheppard” on the dogs_cats.

Referring expression segmentation results format: {'<REFERRING_-
EXPRESSION_SEGMENTATION>': {'Polygons': [[[polygon]], ...],
'labels': ['', '', ...]}}, one object is represented by a list of poly-
gons. each polygon is [x1, y1, x2, y2, ..., xn, yn].

Polygon (x1, y1, …, xn, yn): Location tokens represent the
vertices of a polygon in clockwise order.

So, let’s first create a function to plot the segmentation:

from PIL import Image, ImageDraw, ImageFont
import copy
import random
import numpy as np

colormap = [
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"blue",
"orange",
"green",
"purple",
"brown",
"pink",
"gray",
"olive",
"cyan",
"red",
"lime",
"indigo",
"violet",
"aqua",
"magenta",
"coral",
"gold",
"tan",
"skyblue",

]

def draw_polygons(image, prediction, fill_mask=False):
"""

Draws segmentation masks with polygons on an image.

Parameters:
- image_path: Path to the image file.
- prediction: Dictionary containing 'polygons' and 'labels'

keys. 'polygons' is a list of lists, each
containing vertices of a polygon. 'labels' is
a list of labels corresponding to each polygon.

- fill_mask: Boolean indicating whether to fill the polygons
with color.

"""
# Load the image

draw = ImageDraw.Draw(image)

# Set up scale factor if needed (use 1 if not scaling)
scale = 1

# Iterate over polygons and labels
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for polygons, label in zip(
prediction["polygons"], prediction["labels"]

):
color = random.choice(colormap)
fill_color = random.choice(colormap) if fill_mask else None

for _polygon in polygons:
_polygon = np.array(_polygon).reshape(-1, 2)
if len(_polygon) < 3:

print("Invalid polygon:", _polygon)
continue

_polygon = (_polygon * scale).reshape(-1).tolist()

# Draw the polygon
if fill_mask:

draw.polygon(_polygon, outline=color, fill=fill_color)
else:

draw.polygon(_polygon, outline=color)

# Draw the label text
draw.text(

(_polygon[0] + 8, _polygon[1] + 2), label, fill=color
)

# Save or display the image
# image.show() # Display the image
display(image)

Now we can run the functions:

task_prompt = "<REFERRING_EXPRESSION_SEGMENTATION>"

results = run_example(
task_prompt, text_input="a wine bottle", image=table

)
output_image = copy.deepcopy(table)
draw_polygons(

output_image,
results["<REFERRING_EXPRESSION_SEGMENTATION>"],
fill_mask=True,

)

results = run_example(
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task_prompt, text_input="a german sheppard", image=dogs_cats
)
output_image = copy.deepcopy(dogs_cats)
draw_polygons(

output_image,
results["<REFERRING_EXPRESSION_SEGMENTATION>"],
fill_mask=True,

)

[INFO] ==> Florence-2-base
(<REFERRING_EXPRESSION_SEGMENTATION>), took 207.0 seconds
to execute each task.

Region to Segmentation

With this task, it is also possible to give the object coordinates in the
image to segment it. The input format is '<loc_x1><loc_y1><loc_-
x2><loc_y2>', [x1, y1, x2, y2] , which is the quantized coordi-
nates in [0, 999].

For example, when running the code:

task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
results = run_example(

task_prompt, text_input="a half orange", image=table
)
results

The results were:

{'<CAPTION_TO_PHRASE_GROUNDING>': {'bboxes': [[343.552001953125,
689.6640625,
530.9440307617188,
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873.9840698242188]],
'labels': ['a half']}}

Using the bboxes rounded coordinates:

task_prompt = "<REGION_TO_SEGMENTATION>"
results = run_example(

task_prompt,
text_input=("<loc_343><loc_690>" "<loc_531><loc_874>"),
image=table,

)
output_image = copy.deepcopy(table)
draw_polygons(

output_image, results["<REGION_TO_SEGMENTATION>"], fill_mask=True
)

We got the segmentation of the object on those coordinates (Latency:
83 seconds):

Region to Texts

We can also give the region (coordinates and ask for a caption):

task_prompt = "<REGION_TO_CATEGORY>"
results = run_example(

task_prompt,
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text_input=("<loc_343><loc_690>" "<loc_531><loc_874>"),
image=table,

)
results

[INFO] ==> Florence-2-base (<REGION_TO_CATEGORY>), \
took 14.3 seconds to execute.

{{
'<REGION_TO_CATEGORY>':
'orange<loc_343><loc_690>'
'<loc_531><loc_874>'

}

The model identified an orange in that region. Let’s ask for a descrip-
tion:

task_prompt = "<REGION_TO_DESCRIPTION>"
results = run_example(

task_prompt,
text_input=("<loc_343><loc_690>" "<loc_531><loc_874>"),
image=table,

)
results

[INFO] ==> Florence-2-base (<REGION_TO_CATEGORY>), \
took 14.6 seconds to execute.

{
'<REGION_TO_CATEGORY>':
'orange<loc_343><loc_690>'
'<loc_531><loc_874>'

}

In this case, the description did not provide more details, but it could.
Try another example.

OCR

With Florence-2, we can perform Optical Character Recognition (OCR)
on an image, getting what is written on it (task_prompt = '<OCR>'
and also get the bounding boxes (location) for the detected text (ask_-
prompt = '<OCR_WITH_REGION>'). Those tasks can help extract and
locate textual information in images, such as reading signs, labels, or
other forms of text in images.
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Let’s upload a flyer from a talk in Brazil to Raspi. Let’s test works in
another language, here Portuguese):

flayer = Image.open("./images/embarcados.jpg")
# Display the image
plt.figure(figsize=(8, 8))
plt.imshow(flayer)
plt.axis("off")
# plt.title("Image")
plt.show()

Let’s examine the image with '<MORE_DETAILED_CAPTION>' :

[INFO] ==> Florence-2-base (<MORE_DETAILED_CAPTION>), \
took 85.2 seconds to execute.

{'<MORE_DETAILED_CAPTION>': 'The image is a promotional poster \
for an event called "Machine Learning Embarcados" hosted by \
Marcelo Roval. The poster has a black background with white \
text. On the left side of the poster, there is a logo of a \
coffee cup with the text "Café Com Embarcados" above it. \
Below the logo, it says "25 de Setembro as 17th" which \
translates to "25th of September as 17" in English. \n\nOn \
the right side, there are two smaller text boxes with the names \
of the participants and their names. The first text box reads \
"Democratizando a Inteligência Artificial para Paises em \
Desenvolvimento" and the second text box says "Toda \
quarta-feira" which is Portuguese for "Transmissão via in \
Portuguese".\n\nIn the center of the image, there has a photo \
of Marcelo, a man with a beard and glasses, smiling at the \
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camera. He is wearing a white hard hat and a white shirt. \
The text boxes are in orange and yellow colors.'}

The description is very accurate. Let’s get to the more important words
with the task OCR:

task_prompt = "<OCR>"
run_example(task_prompt, image=flayer)

[INFO] ==> Florence-2-base (<OCR>), took 37.7 seconds to execute.

{'<OCR>':
'Machine Learning Café com Embarcado Embarcados '
'Democratizando a Inteligência Artificial para Paises em '
'25 de Setembro às 17h Desenvolvimento Toda quarta-feira '
'Marcelo Roval Professor na UNIFIEI e Transmissão via in '
'Co-Director do TinyML4D'}

Let’s locate the words in the flyer:

task_prompt = "<OCR_WITH_REGION>"
results = run_example(task_prompt, image=flayer)

Let’s also create a function to draw bounding boxes around the detected
words:

def draw_ocr_bboxes(image, prediction):
scale = 1
draw = ImageDraw.Draw(image)
bboxes = prediction["quad_boxes"]
labels = prediction["labels"]
for box, label in zip(bboxes, labels):

color = random.choice(colormap)
new_box = (np.array(box) * scale).tolist()
draw.polygon(new_box, width=3, outline=color)
draw.text(

(new_box[0] + 8, new_box[1] + 2),
"{}".format(label),
align="right",
fill=color,

)
display(image)

output_image = copy.deepcopy(flayer)
draw_ocr_bboxes(output_image, results["<OCR_WITH_REGION>"])
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We can inspect the detected words:

results["<OCR_WITH_REGION>"]["labels"]

'</s>Machine Learning',
'Café',
'com',
'Embarcado',
'Embarcados',
'Democratizando a Inteligência',
'Artificial para Paises em',
'25 de Setembro ás 17h',
'Desenvolvimento',
'Toda quarta-feira',
'Marcelo Roval',
'Professor na UNIFIEI e',
'Transmissão via',
'in',
'Co-Director do TinyML4D']

Latency Summary

The latency observed for different tasks using Florence-2 on the Rasp-
berry Pi (Raspi-5) varied depending on the complexity of the task:

• Image Captioning: It took approximately 16-17 seconds to gener-
ate a caption for an image.

• Detailed Captioning: Increased latency to around 25-27 seconds,
requiring generating more nuanced scene descriptions.
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• More Detailed Captioning: It took about 32-50 seconds, and the
latency increased as the description grew more complex.

• Object Detection: It took approximately 20-41 seconds, depend-
ing on the image’s complexity and the number of detected objects.

• Visual Grounding: Approximately 15-16 seconds to localize spe-
cific objects based on textual prompts.

• OCR (Optical Character Recognition): Extracting text from an
image took around 37-38 seconds.

• Segmentation and Region to Segmentation: Segmentation tasks
took considerably longer, with a latency of around 83-207 seconds,
depending on the complexity and the number of regions to be
segmented.

These latency times highlight the resource constraints of edge devices
like the Raspberry Pi and emphasize the need to optimize the model
and the environment to achieve real-time performance.

Running complex tasks can use all 8 GB of the Raspi-5’s
memory. For example, the above screenshot during the
Florence OD task shows 4 CPUs at full speed and over 5 GB
of memory in use. Consider increasing the SWAP memory
to 2 GB.

Checking the CPU temperature with vcgencmd measure_temp , showed
that temperature can go up to +80oC.
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Fine-Tuning
As explored in this lab, Florence supports many tasks out of the box,
including captioning, object detection, OCR, and more. However, like
other pre-trained foundational models, Florence-2 may need domain-
specific knowledge. For example, it may need to improve with medical
or satellite imagery. In such cases, fine-tuning with a custom dataset
is necessary. The Roboflow tutorial, How to Fine-tune Florence-2 for
Object Detection Tasks, shows how to fine-tune Florence-2 on object
detection datasets to improve model performance for our specific use
case.

Based on the above tutorial, it is possible to fine-tune the Florence-2
model to detect boxes and wheels used in previous labs:

It is important to note that after fine-tuning, the model can still detect
classes that don’t belong to our custom dataset, like cats, dogs, grapes,
etc, as seen before).

The complete fine-tuning project using a previously annotated dataset
in Roboflow and executed on CoLab can be found in the notebook:

• 30-Finetune_florence_2_on_detection_dataset_box_vs_wheel.ipynb

In another example, in the post, Fine-tuning Florence-2 - Microsoft’s
Cutting-edge Vision Language Models, the authors show an example
of fine-tuning Florence on DocVQA. The authors report that Florence 2
can perform visual question answering (VQA), but the released models
don’t include VQA capability.

Summary
Florence-2 offers a versatile and powerful approach to vision-language
tasks at the edge, providing performance that rivals larger, task-specific

https://blog.roboflow.com/fine-tune-florence-2-object-detection/
https://blog.roboflow.com/fine-tune-florence-2-object-detection/
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/FLORENCE-2/notebooks/30-Finetune_florence_2_on_detection_dataset_box_vs_wheel.ipynb
https://huggingface.co/blog/finetune-florence2
https://huggingface.co/blog/finetune-florence2
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models, such as YOLO for object detection, BERT/RoBERTa for text
analysis, and specialized OCR models.

Thanks to its multi-modal transformer architecture, Florence-2 is more
flexible than YOLO in terms of the tasks it can handle. These include
object detection, image captioning, and visual grounding.

Unlike BERT, which focuses purely on language, Florence-2 integrates
vision and language, allowing it to excel in applications that require
both modalities, such as image captioning and visual grounding.

Moreover, while traditional OCR models such as Tesseract and Easy-
OCR are designed solely for recognizing and extracting text from im-
ages, Florence-2’s OCR capabilities are part of a broader framework
that includes contextual understanding and visual-text alignment. This
makes it particularly useful for scenarios that require both reading text
and interpreting its context within images.

Overall, Florence-2 stands out for its ability to seamlessly integrate var-
ious vision-language tasks into a unified model that is efficient enough
to run on edge devices like the Raspberry Pi. This makes it a compelling
choice for developers and researchers exploring AI applications at the
edge.

Key Advantages of Florence-2

1. Unified Architecture
• Single model handles multiple vision tasks vs. specialized

models (YOLO, BERT, Tesseract)
• Eliminates the need for multiple model deployments and

integrations
• Consistent API and interface across tasks

2. Performance Comparison
• Object Detection: Comparable to YOLOv8 (~37.5 mAP on

COCO vs. YOLOv8’s ~39.7 mAP) despite being general-
purpose

• Text Recognition: Handles multiple languages effectively
like specialized OCR models (Tesseract, EasyOCR)

• Language Understanding: Integrates BERT-like capabilities
for text processing while adding visual context

3. Resource Efficiency
• The Base model (232M parameters) achieves strong results

despite smaller size
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• Runs effectively on edge devices (Raspberry Pi)
• Single model deployment vs. multiple specialized models

Trade-offs

1. Performance vs. Specialized Models
• YOLO series may offer faster inference for pure object detec-

tion
• Specialized OCR models might handle complex document

layouts better
• BERT/RoBERTa provide deeper language understanding for

text-only tasks

2. Resource Requirements
• Higher latency on edge devices (15-200s depending on task)
• Requires careful memory management on Raspberry Pi
• It may need optimization for real-time applications

3. Deployment Considerations
• Initial setup is more complex than single-purpose models
• Requires understanding of multiple task types and prompts
• The learning curve for optimal prompt engineering

Best Use Cases

1. Resource-Constrained Environments
• Edge devices requiring multiple vision capabilities
• Systems with limited storage/deployment capacity
• Applications needing flexible vision processing

2. Multi-modal Applications
• Content moderation systems
• Accessibility tools
• Document analysis workflows

3. Rapid Prototyping
• Quick deployment of vision capabilities
• Testing multiple vision tasks without separate models
• Proof-of-concept development
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Future Implications

Florence-2 represents a shift toward unified vision models that could
eventually replace task-specific architectures in many applications.
While specialized models maintain advantages in specific scenarios,
the convenience and efficiency of unified models like Florence-2 make
them increasingly attractive for real-world deployments.

The lab demonstrates Florence-2’s viability on edge devices, suggesting
future IoT, mobile computing, and embedded systems applications
where deploying multiple specialized models would be impractical.

Resources

• 10-florence2_test.ipynb
• 20-florence_2.ipynb
• 30-Finetune_florence_2_on_detection_dataset_box_vs_wheel.ipynb

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/FLORENCE-2/notebooks/10-florence2_test.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/FLORENCE-2/notebooks/20-florence_2.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/FLORENCE-2/notebooks/30-Finetune_florence_2_on_detection_dataset_box_vs_wheel.ipynb
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Overview

The labs in this section cover topics and techniques that are applicable
across different hardware platforms. These labs are designed to be in-
dependent of specific boards, allowing you to focus on the fundamental
concepts and algorithms used in (tiny) ML applications.

By exploring these shared labs, you’ll gain a deeper understanding of
the common challenges and solutions in embedded machine learning.
The knowledge and skills acquired here will be valuable regardless of
the specific hardware you work with in the future.

Exercise Nicla Vision XIAO ESP32S3

KWS
Feature
Engineer-
ing

฀ Link ฀ Link

DSP
Spectral
Features
Block

฀ Link ฀ Link

663

./kws_feature_eng/kws_feature_eng.qmd
./kws_feature_eng/kws_feature_eng.qmd
./dsp_spectral_features_block/dsp_spectral_features_block.qmd
./dsp_spectral_features_block/dsp_spectral_features_block.qmd
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Figure 1.30: DALL·E 3 Prompt: 1950s style cartoon scene set in an audio research room. Two scientists, one
holding a magnifying glass and the other taking notes, examine large charts pinned to the wall. These charts
depict FFT graphs and time curves related to audio data analysis. The room has a retro ambiance, with wooden
tables, vintage lamps, and classic audio analysis tools.

665



Overview 666

Overview

In this hands-on tutorial, the emphasis is on the critical role that feature
engineering plays in optimizing the performance of machine learning
models applied to audio classification tasks, such as speech recognition.
It is essential to be aware that the performance of any machine learning
model relies heavily on the quality of features used, and we will deal
with “under-the-hood” mechanics of feature extraction, mainly focusing
on Mel-frequency Cepstral Coefficients (MFCCs), a cornerstone in the
field of audio signal processing.

Machine learning models, especially traditional algorithms, don’t un-
derstand audio waves. They understand numbers arranged in some
meaningful way, i.e., features. These features encapsulate the charac-
teristics of the audio signal, making it easier for models to distinguish
between different sounds.

This tutorial will deal with generating features specifically
for audio classification. This can be particularly interesting
for applying machine learning to a variety of audio data,
whether for speech recognition, music categorization, insect
classification based on wingbeat sounds, or other sound
analysis tasks

The KWS

The most common TinyML application is Keyword Spotting (KWS),
a subset of the broader field of speech recognition. While general
speech recognition transcribes all spoken words into text, Keyword
Spotting focuses on detecting specific “keywords” or “wake words” in
a continuous audio stream. The system is trained to recognize these
keywords as predefined phrases or words, such as yes or no. In short,
KWS is a specialized form of speech recognition with its own set of
challenges and requirements.

Here a typical KWS Process using MFCC Feature Converter:
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Applications of KWS

• Voice Assistants: In devices like Amazon’s Alexa or Google
Home, KWS is used to detect the wake word (“Alexa” or “Hey
Google”) to activate the device.

• Voice-Activated Controls: In automotive or industrial settings,
KWS can be used to initiate specific commands like “Start engine”
or “Turn off lights.”

• Security Systems: Voice-activated security systems may use KWS
to authenticate users based on a spoken passphrase.

• Telecommunication Services: Customer service lines may use
KWS to route calls based on spoken keywords.

Differences from General Speech Recognition

• Computational Efficiency: KWS is usually designed to be less
computationally intensive than full speech recognition, as it only
needs to recognize a small set of phrases.

• Real-time Processing: KWS often operates in real-time and is
optimized for low-latency detection of keywords.

• Resource Constraints: KWS models are often designed to be light-
weight, so they can run on devices with limited computational
resources, like microcontrollers or mobile phones.

• Focused Task: While general speech recognition models are
trained to handle a broad range of vocabulary and accents, KWS
models are fine-tuned to recognize specific keywords, often in
noisy environments accurately.
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Overview to Audio Signals

Understanding the basic properties of audio signals is crucial for ef-
fective feature extraction and, ultimately, for successfully applying ma-
chine learning algorithms in audio classification tasks. Audio signals
are complex waveforms that capture fluctuations in air pressure over
time. These signals can be characterized by several fundamental at-
tributes: sampling rate, frequency, and amplitude.

• Frequency and Amplitude: Frequency refers to the number of
oscillations a waveform undergoes per unit time and is also mea-
sured in Hz. In the context of audio signals, different frequencies
correspond to different pitches. Amplitude, on the other hand,
measures the magnitude of the oscillations and correlates with
the loudness of the sound. Both frequency and amplitude are
essential features that capture audio signals’ tonal and rhythmic
qualities.

• Sampling Rate: The sampling rate, often denoted in Hertz (Hz),
defines the number of samples taken per second when digitiz-
ing an analog signal. A higher sampling rate allows for a more
accurate digital representation of the signal but also demands
more computational resources for processing. Typical sampling
rates include 44.1 kHz for CD-quality audio and 16 kHz or 8 kHz
for speech recognition tasks. Understanding the trade-offs in se-
lecting an appropriate sampling rate is essential for balancing
accuracy and computational efficiency. In general, with TinyML
projects, we work with 16 kHz. Although music tones can be
heard at frequencies up to 20 kHz, voice maxes out at 8 kHz.
Traditional telephone systems use an 8 kHz sampling frequency.

For an accurate representation of the signal, the sampling
rate must be at least twice the highest frequency present in
the signal.

• Time Domain vs. Frequency Domain: Audio signals can be ana-
lyzed in the time and frequency domains. In the time domain, a
signal is represented as a waveform where the amplitude is plot-
ted against time. This representation helps to observe temporal
features like onset and duration but the signal’s tonal character-
istics are not well evidenced. Conversely, a frequency domain
representation provides a view of the signal’s constituent fre-
quencies and their respective amplitudes, typically obtained via a

https://en.wikipedia.org/wiki/Audio_frequency
https://en.wikipedia.org/wiki/Amplitude
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
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Fourier Transform. This is invaluable for tasks that require under-
standing the signal’s spectral content, such as identifying musical
notes or speech phonemes (our case).

The image below shows the words YES and NO with typical representa-
tions in the Time (Raw Audio) and Frequency domains:

Why Not Raw Audio?

While using raw audio data directly for machine learning tasks may
seem tempting, this approach presents several challenges that make it
less suitable for building robust and efficient models.

Using raw audio data for Keyword Spotting (KWS), for example, on
TinyML devices poses challenges due to its high dimensionality (using a
16 kHz sampling rate), computational complexity for capturing tempo-
ral features, susceptibility to noise, and lack of semantically meaningful
features, making feature extraction techniques like MFCCs a more prac-
tical choice for resource-constrained applications.

Here are some additional details of the critical issues associated with
using raw audio:

• High Dimensionality: Audio signals, especially those sampled
at high rates, result in large amounts of data. For example, a
1-second audio clip sampled at 16 kHz will have 16,000 individ-
ual data points. High-dimensional data increases computational
complexity, leading to longer training times and higher computa-
tional costs, making it impractical for resource-constrained envi-
ronments. Furthermore, the wide dynamic range of audio signals



Overview to MFCCs 670

requires a significant amount of bits per sample, while conveying
little useful information.

• Temporal Dependencies: Raw audio signals have temporal struc-
tures that simple machine learning models may find hard to cap-
ture. While recurrent neural networks like LSTMs can model such
dependencies, they are computationally intensive and tricky to
train on tiny devices.

• Noise and Variability: Raw audio signals often contain back-
ground noise and other non-essential elements affecting model
performance. Additionally, the same sound can have different
characteristics based on various factors such as distance from the
microphone, the orientation of the sound source, and acoustic
properties of the environment, adding to the complexity of the
data.

• Lack of SemanticMeaning: Raw audio doesn’t inherently contain
semantically meaningful features for classification tasks. Features
like pitch, tempo, and spectral characteristics, which can be cru-
cial for speech recognition, are not directly accessible from raw
waveform data.

• Signal Redundancy: Audio signals often contain redundant in-
formation, with certain portions of the signal contributing little to
no value to the task at hand. This redundancy can make learning
inefficient and potentially lead to overfitting.

For these reasons, feature extraction techniques such as Mel-frequency
Cepstral Coefficients (MFCCs), Mel-Frequency Energies (MFEs), and
simple Spectrograms are commonly used to transform raw audio data
into a more manageable and informative format. These features capture
the essential characteristics of the audio signal while reducing dimen-
sionality and noise, facilitating more effective machine learning.

Overview to MFCCs

What are MFCCs?

Mel-frequency Cepstral Coefficients (MFCCs) are a set of features de-
rived from the spectral content of an audio signal. They are based on
human auditory perceptions and are commonly used to capture the
phonetic characteristics of an audio signal. The MFCCs are computed
through a multi-step process that includes pre-emphasis, framing, win-
dowing, applying the Fast Fourier Transform (FFT) to convert the signal

https://annals-csis.org/Volume_18/drp/pdf/185.pdf
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
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to the frequency domain, and finally, applying the Discrete Cosine
Transform (DCT). The result is a compact representation of the original
audio signal’s spectral characteristics.

The image below shows the words YES and NO in their MFCC represen-
tation:

This video explains the Mel Frequency Cepstral Coefficients
(MFCC) and how to compute them.

Why are MFCCs important?

MFCCs are crucial for several reasons, particularly in the context of
Keyword Spotting (KWS) and TinyML:

• Dimensionality Reduction: MFCCs capture essential spectral
characteristics of the audio signal while significantly reducing
the dimensionality of the data, making it ideal for resource-
constrained TinyML applications.

• Robustness: MFCCs are less susceptible to noise and variations in
pitch and amplitude, providing a more stable and robust feature
set for audio classification tasks.

• Human Auditory System Modeling: The Mel scale in MFCCs
approximates the human ear’s response to different frequencies,
making them practical for speech recognition where human-like
perception is desired.

• Computational Efficiency: The process of calculating MFCCs
is computationally efficient, making it well-suited for real-time
applications on hardware with limited computational resources.

In summary, MFCCs offer a balance of information richness and compu-
tational efficiency, making them popular for audio classification tasks,
particularly in constrained environments like TinyML.

https://youtu.be/SJo7vPgRlBQ?si=KSgzmDg8DtSVqzXp
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Computing MFCCs

The computation of Mel-frequency Cepstral Coefficients (MFCCs) in-
volves several key steps. Let’s walk through these, which are particu-
larly important for Keyword Spotting (KWS) tasks on TinyML devices.

• Pre-emphasis: The first step is pre-emphasis, which is applied
to accentuate the high-frequency components of the audio signal
and balance the frequency spectrum. This is achieved by applying
a filter that amplifies the difference between consecutive samples.
The formula for pre-emphasis is: 𝑦(𝑡) = 𝑥(𝑡)−𝛼𝑥(𝑡−1), where𝛼 is the pre-emphasis factor, typically around 0.97.

• Framing: Audio signals are divided into short frames (the frame
length), usually 20 to 40 milliseconds. This is based on the assump-
tion that frequencies in a signal are stationary over a short period.
Framing helps in analyzing the signal in such small time slots.
The frame stride (or step) will displace one frame and the adjacent.
Those steps could be sequential or overlapped.

• Windowing: Each frame is then windowed to minimize the dis-
continuities at the frame boundaries. A commonly used window
function is the Hamming window. Windowing prepares the sig-
nal for a Fourier transform by minimizing the edge effects. The
image below shows three frames (10, 20, and 30) and the time
samples after windowing (note that the frame length and frame
stride are 20 ms):

• Fast Fourier Transform (FFT) The Fast Fourier Transform (FFT)
is applied to each windowed frame to convert it from the time
domain to the frequency domain. The FFT gives us a complex-
valued representation that includes both magnitude and phase
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information. However, for MFCCs, only the magnitude is used to
calculate the Power Spectrum. The power spectrum is the square
of the magnitude spectrum and measures the energy present at
each frequency component.

The power spectrum 𝑃(𝑓) of a signal 𝑥(𝑡) is defined as𝑃(𝑓) = |𝑋(𝑓)|2, where 𝑋(𝑓) is the Fourier Transform of𝑥(𝑡). By squaring the magnitude of the Fourier Transform,
we emphasize stronger frequencies over weaker ones, thereby
capturing more relevant spectral characteristics of the audio
signal. This is important in applications like audio classifi-
cation, speech recognition, and Keyword Spotting (KWS),
where the focus is on identifying distinct frequency patterns
that characterize different classes of audio or phonemes in
speech.

• Mel Filter Banks: The frequency domain is then mapped to the
Mel scale, which approximates the human ear’s response to differ-
ent frequencies. The idea is to extract more features (more filter
banks) in the lower frequencies and less in the high frequencies.
Thus, it performs well on sounds distinguished by the human
ear. Typically, 20 to 40 triangular filters extract the Mel-frequency
energies. These energies are then log-transformed to convert mul-
tiplicative factors into additive ones, making them more suitable
for further processing.

https://en.wikipedia.org/wiki/Mel_scale
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• Discrete Cosine Transform (DCT): The last step is to apply the
Discrete Cosine Transform (DCT) to the log Mel energies. The
DCT helps to decorrelate the energies, effectively compressing the
data and retaining only the most discriminative features. Usually,
the first 12-13 DCT coefficients are retained, forming the final
MFCC feature vector.

Hands-On using Python

Let’s apply what we discussed while working on an actual audio sample.
Open the notebook on Google CoLab and extract the MLCC features
on your audio samples: [Open In Colab]

Summary

What Feature Extraction technique should we use?

https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/Audio_Data_Analysis.ipynb
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Mel-frequency Cepstral Coefficients (MFCCs), Mel-Frequency Energies
(MFEs), or Spectrogram are techniques for representing audio data,
which are often helpful in different contexts.

In general, MFCCs are more focused on capturing the envelope of the
power spectrum, which makes them less sensitive to fine-grained spec-
tral details but more robust to noise. This is often desirable for speech-
related tasks. On the other hand, spectrograms or MFEs preserve more
detailed frequency information, which can be advantageous in tasks
that require discrimination based on fine-grained spectral content.

MFCCs are particularly strong for

1. Speech Recognition: MFCCs are excellent for identifying pho-
netic content in speech signals.

2. Speaker Identification: They can be used to distinguish between
different speakers based on voice characteristics.

3. Emotion Recognition: MFCCs can capture the nuanced varia-
tions in speech indicative of emotional states.

4. Keyword Spotting: Especially in TinyML, where low computa-
tional complexity and small feature size are crucial.

Spectrograms or MFEs are often more suitable for

1. Music Analysis: Spectrograms can capture harmonic and tim-
bral structures in music, which is essential for tasks like genre
classification, instrument recognition, or music transcription.

2. Environmental Sound Classification: In recognizing non-speech,
environmental sounds (e.g., rain, wind, traffic), the full spectro-
gram can provide more discriminative features.

3. Birdsong Identification: The intricate details of bird calls are
often better captured using spectrograms.

4. Bioacoustic Signal Processing: In applications like dolphin or
bat call analysis, the fine-grained frequency information in a spec-
trogram can be essential.

5. Audio Quality Assurance: Spectrograms are often used in pro-
fessional audio analysis to identify unwanted noises, clicks, or
other artifacts.



Resources 676

Resources

• Audio_Data_Analysis Colab Notebook

https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/Audio_Data_Analysis.ipynb
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Figure 1.31: DALL·E 3 Prompt: 1950s style cartoon illustration of a Latin male and female scientist in a
vibration research room. The man is using a calculus ruler to examine ancient circuitry. The woman is at a
computer with complex vibration graphs. The wooden table has boards with sensors, prominently an
accelerometer. A classic, rounded-back computer shows the Arduino IDE with code for LED pin assignments
and machine learning algorithms for movement detection. The Serial Monitor displays FFT, classification,
wavelets, and DSPs. Vintage lamps, tools, and charts with FFT and Wavelets graphs complete the scene.

677
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Overview

TinyML projects related to motion (or vibration) involve data from
IMUs (usually accelerometers and Gyroscopes). These time-series type
datasets should be preprocessed before inputting them into a Machine
Learning model training, which is a challenging area for embedded
machine learning. Still, Edge Impulse helps overcome this complexity
with its digital signal processing (DSP) preprocessing step and, more
specifically, the Spectral Features Block for Inertial sensors.

But how does it work under the hood? Let’s dig into it.

Extracting Features Review

Extracting features from a dataset captured with inertial sensors, such
as accelerometers, involves processing and analyzing the raw data.
Accelerometers measure the acceleration of an object along one or more
axes (typically three, denoted as X, Y, and Z). These measurements can
be used to understand various aspects of the object’s motion, such as
movement patterns and vibrations. Here’s a high-level overview of the
process:

Data collection: First, we need to gather data from the accelerometers.
Depending on the application, data may be collected at different sam-
pling rates. It’s essential to ensure that the sampling rate is high enough
to capture the relevant dynamics of the studied motion (the sampling
rate should be at least double the maximum relevant frequency present
in the signal).

Data preprocessing: Raw accelerometer data can be noisy and contain
errors or irrelevant information. Preprocessing steps, such as filtering
and normalization, can help clean and standardize the data, making it
more suitable for feature extraction.

The Studio does not perform normalization or standardiza-
tion, so sometimes, when working with Sensor Fusion, it
could be necessary to perform this step before uploading
data to the Studio. This is particularly crucial in sensor fu-
sion projects, as seen in this tutorial, Sensor Data Fusion
with Spresense and CommonSense.

Segmentation: Depending on the nature of the data and the appli-
cation, dividing the data into smaller segments or windows may be
necessary. This can help focus on specific events or activities within the

https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://docs.edgeimpulse.com/experts/air-quality-and-environmental-projects/environmental-sensor-fusion-commonsense
https://docs.edgeimpulse.com/experts/air-quality-and-environmental-projects/environmental-sensor-fusion-commonsense
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dataset, making feature extraction more manageable and meaningful.
The window size and overlap (window span) choice depend on the
application and the frequency of the events of interest. As a rule of
thumb, we should try to capture a couple of “data cycles.”

Feature extraction: Once the data is preprocessed and segmented, you
can extract features that describe the motion’s characteristics. Some
typical features extracted from accelerometer data include:

• Time-domain features describe the data’s statistical properties
within each segment, such as mean, median, standard deviation,
skewness, kurtosis, and zero-crossing rate.

• Frequency-domain features are obtained by transforming the
data into the frequency domain using techniques like the Fast
Fourier Transform (FFT). Some typical frequency-domain features
include the power spectrum, spectral energy, dominant frequen-
cies (amplitude and frequency), and spectral entropy.

• Time-frequency domain features combine the time and frequency
domain information, such as the Short-Time Fourier Transform
(STFT) or the Discrete Wavelet Transform (DWT). They can pro-
vide a more detailed understanding of how the signal’s frequency
content changes over time.

In many cases, the number of extracted features can be large, which
may lead to overfitting or increased computational complexity. Feature
selection techniques, such as mutual information, correlation-based
methods, or principal component analysis (PCA), can help identify the
most relevant features for a given application and reduce the dimen-
sionality of the dataset. The Studio can help with such feature-relevant
calculations.

Let’s explore in more detail a typical TinyML Motion Classification
project covered in this series of Hands-Ons.

A TinyML Motion Classification project

https://www.mdpi.com/1424-8220/22/5/2012
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Short-time_Fourier_transform
https://en.wikipedia.org/wiki/Short-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_wavelet_transform
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In the hands-on project, Motion Classification and Anomaly Detection, we
simulated mechanical stresses in transport, where our problem was to
classify four classes of movement:

• Maritime (pallets in boats)
• Terrestrial (pallets in a Truck or Train)
• Lift (pallets being handled by Fork-Lift)
• Idle (pallets in Storage houses)

The accelerometers provided the data on the pallet (or container).

Below is one sample (raw data) of 10 seconds, captured with a sampling
frequency of 50 Hz:
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The result is similar when this analysis is done over another
dataset with the same principle, using a different sampling
frequency, 62.5 Hz instead of 50 Hz.

Data Pre-Processing

The raw data captured by the accelerometer (a “time series” data) should
be converted to “tabular data” using one of the typical Feature Extrac-
tion methods described in the last section.

We should segment the data using a sliding window over the sample
data for feature extraction. The project captured accelerometer data
every 10 seconds with a sample rate of 62.5 Hz. A 2-second window
captures 375 data points (3 axis × 2 seconds × 62.5 samples). The
window is slid every 80 ms, creating a larger dataset where each instance
has 375 “raw features.”

On the Studio, the previous version (V1) of the Spectral Analysis Block
extracted as time-domain features only the RMS, and for the frequency-
domain, the peaks and frequency (using FFT) and the power character-
istics (PSD) of the signal over time resulting in a fixed tabular dataset
of 33 features (11 per each axis),
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Those 33 features were the Input tensor of a Neural Network Classi-
fier.

In 2022, Edge Impulse released version 2 of the Spectral Analysis block,
which we will explore here.

Edge Impulse - Spectral Analysis Block V.2 under the
hood

In Version 2, Time Domain Statistical features per axis/channel are:

• RMS
• Skewness
• Kurtosis

And the Frequency Domain Spectral features per axis/channel are:

• Spectral Power
• Skewness (in the next version)
• Kurtosis (in the next version)

In this link, we can have more details about the feature extraction.

Clone the public project. You can also follow the explana-
tion, playing with the code using my Google CoLab Note-
book: Edge Impulse Spectral Analysis Block Notebook.

Start importing the libraries:

https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://studio.edgeimpulse.com/public/198358/latest
https://colab.research.google.com/github/Mjrovai/TinyML4D/blob/main/SciTinyM-2023/Edge_Impulse-Spectral_Analysis_Block/Edge_Impulse_Spectral_Analysis_Block_V3.ipynb
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import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import math
from scipy.stats import skew, kurtosis
from scipy import signal
from scipy.signal import welch
from scipy.stats import entropy
from sklearn import preprocessing
import pywt

plt.rcParams['figure.figsize'] = (12, 6)
plt.rcParams['lines.linewidth'] = 3

From the studied project, let’s choose a data sample from accelerometers
as below:

• Window size of 2 seconds: [2,000] ms
• Sample frequency: [62.5] Hz
• We will choose the [None] filter (for simplicity) and a
• FFT length: [16].

f = 62.5 # Hertz
wind_sec = 2 # seconds
FFT_Length = 16
axis = ['accX', 'accY', 'accZ']
n_sensors = len(axis)
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Selecting the Raw Features on the Studio Spectral Analysis tab, we can
copy all 375 data points of a particular 2-second window to the clip-
board.

Paste the data points to a new variable data:

data = [
-5.6330, 0.2376, 9.8701,
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-5.9442, 0.4830, 9.8701,
-5.4217, ...

]
No_raw_features = len(data)
N = int(No_raw_features/n_sensors)

The total raw features are 375, but we will work with each axis individ-
ually, where 𝑁 = 125 (number of samples per axis).

We aim to understand how Edge Impulse gets the processed features.

So, you should also past the processed features on a variable (to compare
the calculated features in Python with the ones provided by the Studio)
:

features = [
2.7322, -0.0978, -0.3813,
2.3980, 3.8924, 24.6841,
9.6303, ...

]
N_feat = len(features)
N_feat_axis = int(N_feat/n_sensors)

The total number of processed features is 39, which means 13 fea-
tures/axis.

Looking at those 13 features closely, we will find 3 for the time domain
(RMS, Skewness, and Kurtosis):

• [rms] [skew] [kurtosis]

and 10 for the frequency domain (we will return to this later).

• [spectral skew][spectral kurtosis][Spectral Power 1] ...
[Spectral Power 8]

Splitting raw data per sensor

The data has samples from all axes; let’s split and plot them separately:
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def plot_data(sensors, axis, title):
[plt.plot(x, label=y) for x,y in zip(sensors, axis)]
plt.legend(loc='lower right')
plt.title(title)
plt.xlabel('#Sample')
plt.ylabel('Value')
plt.box(False)
plt.grid()
plt.show()

accX = data[0::3]
accY = data[1::3]
accZ = data[2::3]
sensors = [accX, accY, accZ]
plot_data(sensors, axis, 'Raw Features')

Subtracting the mean

Next, we should subtract the mean from the data. Subtracting the mean
from a data set is a common data pre-processing step in statistics and
machine learning. The purpose of subtracting the mean from the data
is to center the data around zero. This is important because it can
reveal patterns and relationships that might be hidden if the data is not
centered.

Here are some specific reasons why subtracting the mean can be help-
ful:

• It simplifies analysis: By centering the data, the mean becomes
zero, making some calculations simpler and easier to interpret.
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• It removes bias: If the data is biased, subtracting the mean can
remove it and allow for a more accurate analysis.

• It can reveal patterns: Centering the data can help uncover pat-
terns that might be hidden if the data is not centered. For example,
centering the data can help you identify trends over time if you
analyze a time series dataset.

• It can improve performance: In some machine learning algo-
rithms, centering the data can improve performance by reducing
the influence of outliers and making the data more easily com-
parable. Overall, subtracting the mean is a simple but powerful
technique that can be used to improve the analysis and interpre-
tation of data.

dtmean = [
(sum(x) / len(x))
for x in sensors

]

[
print('mean_' + x + ' =', round(y, 4))
for x, y in zip(axis, dtmean)

][0]

accX = [(x - dtmean[0]) for x in accX]
accY = [(x - dtmean[1]) for x in accY]
accZ = [(x - dtmean[2]) for x in accZ]
sensors = [accX, accY, accZ]

plot_data(sensors, axis, 'Raw Features - Subtract the Mean')
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Time Domain Statistical features

RMS Calculation

The RMS value of a set of values (or a continuous-time waveform) is
the square root of the arithmetic mean of the squares of the values or
the square of the function that defines the continuous waveform. In
physics, the RMS value of an electrical current is defined as the “value
of the direct current that dissipates the same power in a resistor.”

In the case of a set of 𝑛 values 𝑥1,𝑥2,…,𝑥𝑛, the RMS is:𝑥RMS = √ 1𝑛 (𝑥21 +𝑥22 +⋯+𝑥2𝑛)
NOTE that the RMS value is different for the original raw
data, and after subtracting the mean

# Using numpy and standardized data (subtracting mean)
rms = [np.sqrt(np.mean(np.square(x))) for x in sensors]

We can compare the calculated RMS values here with the ones presented
by Edge Impulse:

[print('rms_'+x+'= ', round(y, 4)) for x,y in zip(axis, rms)][0]
print("\nCompare with Edge Impulse result features")
print(features[0:N_feat:N_feat_axis])

rms_accX= 2.7322

rms_accY= 0.7833

rms_accZ= 0.1383

Compared with Edge Impulse result features:

[2.7322, 0.7833, 0.1383]

Skewness and kurtosis calculation

In statistics, skewness and kurtosis are two ways to measure the shape
of a distribution.

Here, we can see the sensor values distribution:

fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(13, 4))
sns.kdeplot(accX, fill=True, ax=axes[0])
sns.kdeplot(accY, fill=True, ax=axes[1])
sns.kdeplot(accZ, fill=True, ax=axes[2])
axes[0].set_title('accX')
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axes[1].set_title('accY')
axes[2].set_title('accZ')
plt.suptitle('IMU Sensors distribution', fontsize=16, y=1.02)
plt.show()

Skewness is a measure of the asymmetry of a distribution. This value
can be positive or negative.

• A negative skew indicates that the tail is on the left side of the
distribution, which extends towards more negative values.

• A positive skew indicates that the tail is on the right side of the
distribution, which extends towards more positive values.

• A zero value indicates no skewness in the distribution at all, mean-
ing the distribution is perfectly symmetrical.

skew = [skew(x, bias=False) for x in sensors]
[print('skew_'+x+'= ', round(y, 4))
for x,y in zip(axis, skew)][0]

print("\nCompare with Edge Impulse result features")
features[1:N_feat:N_feat_axis]

skew_accX= -0.099

skew_accY= 0.1756

https://en.wikipedia.org/wiki/Skewness
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skew_accZ= 6.9463

Compared with Edge Impulse result features:

[-0.0978, 0.1735, 6.8629]

Kurtosis is a measure of whether or not a distribution is heavy-tailed
or light-tailed relative to a normal distribution.

• The kurtosis of a normal distribution is zero.
• If a given distribution has a negative kurtosis, it is said to be

playkurtic, which means it tends to produce fewer and less ex-
treme outliers than the normal distribution.

• If a given distribution has a positive kurtosis , it is said to be
leptokurtic, which means it tends to produce more outliers than
the normal distribution.

kurt = [kurtosis(x, bias=False) for x in sensors]
[print('kurt_'+x+'= ', round(y, 4))
for x,y in zip(axis, kurt)][0]

print("\nCompare with Edge Impulse result features")
features[2:N_feat:N_feat_axis]

kurt_accX= -0.3475

kurt_accY= 1.2673

kurt_accZ= 68.1123

Compared with Edge Impulse result features:

[-0.3813, 1.1696, 65.3726]

https://en.wikipedia.org/wiki/Kurtosis
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Spectral features

The filtered signal is passed to the Spectral power section, which com-
putes the FFT to generate the spectral features.

Since the sampled window is usually larger than the FFT size, the
window will be broken into frames (or “sub-windows”), and the FFT is
calculated over each frame.

FFT length - The FFT size. This determines the number of FFT bins and
the resolution of frequency peaks that can be separated. A low number
means more signals will average together in the same FFT bin, but it also
reduces the number of features and model size. A high number will
separate more signals into separate bins, generating a larger model.

• The total number of Spectral Power features will vary depending
on how you set the filter and FFT parameters. With No filtering,
the number of features is 1/2 of the FFT Length.

Spectral Power - Welch’s method

We should use Welch’s method to split the signal on the frequency
domain in bins and calculate the power spectrum for each bin. This
method divides the signal into overlapping segments, applies a window
function to each segment, computes the periodogram of each segment
using DFT, and averages them to obtain a smoother estimate of the
power spectrum.

# Function used by Edge Impulse instead of scipy.signal.welch().
def welch_max_hold(fx, sampling_freq, nfft, n_overlap):

n_overlap = int(n_overlap)
spec_powers = [0 for _ in range(nfft//2+1)]
ix = 0
while ix <= len(fx):

# Slicing truncates if end_idx > len,
# and rfft will auto-zero pad
fft_out = np.abs(np.fft.rfft(fx[ix:ix+nfft], nfft))
spec_powers = np.maximum(spec_powers, fft_out**2/nfft)
ix = ix + (nfft-n_overlap)

return np.fft.rfftfreq(nfft, 1/sampling_freq), spec_powers

Applying the above function to 3 signals:

fax,Pax = welch_max_hold(accX, fs, FFT_Length, 0)
fay,Pay = welch_max_hold(accY, fs, FFT_Length, 0)
faz,Paz = welch_max_hold(accZ, fs, FFT_Length, 0)
specs = [Pax, Pay, Paz ]

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html
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We can plot the Power Spectrum P(f):

plt.plot(fax,Pax, label='accX')
plt.plot(fay,Pay, label='accY')
plt.plot(faz,Paz, label='accZ')
plt.legend(loc='upper right')
plt.xlabel('Frequency (Hz)')
#plt.ylabel('PSD [V**2/Hz]')
plt.ylabel('Power')
plt.title('Power spectrum P(f) using Welch's method')
plt.grid()
plt.box(False)
plt.show()

Besides the Power Spectrum, we can also include the skewness and
kurtosis of the features in the frequency domain (should be available
on a new version):

spec_skew = [skew(x, bias=False) for x in specs]
spec_kurtosis = [kurtosis(x, bias=False) for x in specs]

Let’s now list all Spectral features per axis and compare them with EI:

print("EI Processed Spectral features (accX): ")
print(features[3:N_feat_axis][0:])
print("\nCalculated features:")
print (round(spec_skew[0],4))
print (round(spec_kurtosis[0],4))
[print(round(x, 4)) for x in Pax[1:]][0]

EI Processed Spectral features (accX):
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2.398, 3.8924, 24.6841, 9.6303, 8.4867, 7.7793, 2.9963, 5.6242, 3.4198,
4.2735

Calculated features:

2.9069 8.5569 24.6844 9.6304 8.4865 7.7794 2.9964 5.6242 3.4198 4.2736

print("EI Processed Spectral features (accY): ")
print(features[16:26][0:]) # 13: 3+N_feat_axis;

# 26 = 2x N_feat_axis
print("\nCalculated features:")
print (round(spec_skew[1],4))
print (round(spec_kurtosis[1],4))
[print(round(x, 4)) for x in Pay[1:]][0]

EI Processed Spectral features (accY):

0.9426, -0.8039, 5.429, 0.999, 1.0315, 0.9459, 1.8117, 0.9088, 1.3302, 3.112

Calculated features:

1.1426 -0.3886 5.4289 0.999 1.0315 0.9458 1.8116 0.9088 1.3301 3.1121

print("EI Processed Spectral features (accZ): ")
print(features[29:][0:]) #29: 3+(2*N_feat_axis);
print("\nCalculated features:")
print (round(spec_skew[2],4))
print (round(spec_kurtosis[2],4))
[print(round(x, 4)) for x in Paz[1:]][0]

EI Processed Spectral features (accZ):

0.3117, -1.3812, 0.0606, 0.057, 0.0567, 0.0976, 0.194, 0.2574, 0.2083, 0.166

Calculated features:

0.3781 -1.4874 0.0606 0.057 0.0567 0.0976 0.194 0.2574 0.2083 0.166

Time-frequency domain

Wavelets

Wavelet is a powerful technique for analyzing signals with transient
features or abrupt changes, such as spikes or edges, which are difficult
to interpret with traditional Fourier-based methods.

Wavelet transforms work by breaking down a signal into different fre-
quency components and analyzing them individually. The transforma-
tion is achieved by convolving the signal with a wavelet function, a

https://en.wikipedia.org/wiki/Wavelet
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small waveform centered at a specific time and frequency. This process
effectively decomposes the signal into different frequency bands, each
of which can be analyzed separately.

One of the critical benefits of wavelet transforms is that they allow
for time-frequency analysis, which means that they can reveal the fre-
quency content of a signal as it changes over time. This makes them
particularly useful for analyzing non-stationary signals, which vary
over time.

Wavelets have many practical applications, including signal and image
compression, denoising, feature extraction, and image processing.

Let’s select Wavelet on the Spectral Features block in the same project:

• Type: Wavelet
• Wavelet Decomposition Level: 1
• Wavelet: bior1.3
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The Wavelet Function

wavelet_name='bior1.3'
num_layer = 1

wavelet = pywt.Wavelet(wavelet_name)
[phi_d,psi_d,phi_r,psi_r,x] = wavelet.wavefun(level=5)
plt.plot(x, psi_d, color='red')
plt.title('Wavelet Function')
plt.ylabel('Value')
plt.xlabel('Time')
plt.grid()
plt.box(False)
plt.show()
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As we did before, let’s copy and past the Processed Features:

features = [
3.6251, 0.0615, 0.0615,
-7.3517, -2.7641, 2.8462,
5.0924, ...

]
N_feat = len(features)
N_feat_axis = int(N_feat/n_sensors)

Edge Impulse computes the Discrete Wavelet Transform (DWT) for
each one of the Wavelet Decomposition levels selected. After that, the
features will be extracted.

In the case of Wavelets, the extracted features are basic statistical values,
crossing values, and entropy. There are, in total, 14 features per layer as
below:

• [11] Statistical Features: n5, n25, n75, n95, mean, median, stan-
dard deviation (std), variance (var) root mean square (rms), kur-
tosis, and skewness (skew).

• [2] Crossing Features: Zero crossing rate (zcross) and mean cross-
ing rate (mcross) are the times that the signal passes through the

https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html
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baseline (𝑦 = 0) and the average level (y = u) per unit of time,
respectively

• [1] Complexity Feature: Entropy is a characteristic measure of the
complexity of the signal

All the above 14 values are calculated for each Layer (including L0, the
original signal)

• The total number of features varies depending on how you set the
filter and the number of layers. For example, with [None] filtering
and Level[1], the number of features per axis will be 14 × 2 (L0
and L1) = 28. For the three axes, we will have a total of 84 features.

Wavelet Analysis

Wavelet analysis decomposes the signal (accX, accY, and accZ) into
different frequency components using a set of filters, which separate
these components into low-frequency (slowly varying parts of the sig-
nal containing long-term patterns), such as accX_l1, accY_l1, accZ_l1
and, high-frequency (rapidly varying parts of the signal containing
short-term patterns) components, such as accX_d1, accY_d1, accZ_d1,
permitting the extraction of features for further analysis or classifica-
tion.

Only the low-frequency components (approximation coefficients, or cA)
will be used. In this example, we assume only one level (Single-level
Discrete Wavelet Transform), where the function will return a tuple.
With a multilevel decomposition, the “Multilevel 1D Discrete Wavelet
Transform”, the result will be a list (for detail, please see: Discrete
Wavelet Transform (DWT) )

(accX_l1, accX_d1) = pywt.dwt(accX, wavelet_name)
(accY_l1, accY_d1) = pywt.dwt(accY, wavelet_name)
(accZ_l1, accZ_d1) = pywt.dwt(accZ, wavelet_name)
sensors_l1 = [accX_l1, accY_l1, accZ_l1]

# Plot power spectrum versus frequency
plt.plot(accX_l1, label='accX')
plt.plot(accY_l1, label='accY')
plt.plot(accZ_l1, label='accZ')
plt.legend(loc='lower right')
plt.xlabel('Time')
plt.ylabel('Value')

https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html
https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html
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plt.title('Wavelet Approximation')
plt.grid()
plt.box(False)
plt.show()

Feature Extraction

Let’s start with the basic statistical features. Note that we apply the
function for both the original signals and the resultant cAs from the
DWT:

def calculate_statistics(signal):
n5 = np.percentile(signal, 5)
n25 = np.percentile(signal, 25)
n75 = np.percentile(signal, 75)
n95 = np.percentile(signal, 95)
median = np.percentile(signal, 50)
mean = np.mean(signal)
std = np.std(signal)
var = np.var(signal)
rms = np.sqrt(np.mean(np.square(signal)))
return [n5, n25, n75, n95, median, mean, std, var, rms]

stat_feat_l0 = [calculate_statistics(x) for x in sensors]
stat_feat_l1 = [calculate_statistics(x) for x in sensors_l1]

The Skelness and Kurtosis:

skew_l0 = [skew(x, bias=False) for x in sensors]
skew_l1 = [skew(x, bias=False) for x in sensors_l1]
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kurtosis_l0 = [kurtosis(x, bias=False) for x in sensors]
kurtosis_l1 = [kurtosis(x, bias=False) for x in sensors_l1]

Zero crossing (zcross) is the number of times the wavelet coefficient
crosses the zero axis. It can be used to measure the signal’s frequency
content since high-frequency signals tend to have more zero crossings
than low-frequency signals.

Mean crossing (mcross), on the other hand, is the number of times
the wavelet coefficient crosses the mean of the signal. It can be used to
measure the amplitude since high-amplitude signals tend to have more
mean crossings than low-amplitude signals.

def getZeroCrossingRate(arr):
my_array = np.array(arr)
zcross = float(

"{:.2f}".format(
(((my_array[:-1] * my_array[1:]) < 0).sum()) / len(arr)

)
)
return zcross

def getMeanCrossingRate(arr):
mcross = getZeroCrossingRate(np.array(arr) - np.mean(arr))
return mcross

def calculate_crossings(list):
zcross=[]
mcross=[]
for i in range(len(list)):

zcross_i = getZeroCrossingRate(list[i])
zcross.append(zcross_i)
mcross_i = getMeanCrossingRate(list[i])
mcross.append(mcross_i)

return zcross, mcross

cross_l0 = calculate_crossings(sensors)
cross_l1 = calculate_crossings(sensors_l1)

In wavelet analysis, entropy refers to the degree of disorder or random-
ness in the distribution of wavelet coefficients. Here, we used Shannon
entropy, which measures a signal’s uncertainty or randomness. It is
calculated as the negative sum of the probabilities of the different pos-
sible outcomes of the signal multiplied by their base 2 logarithm. In
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the context of wavelet analysis, Shannon entropy can be used to mea-
sure the complexity of the signal, with higher values indicating greater
complexity.

def calculate_entropy(signal, base=None):
value, counts = np.unique(signal, return_counts=True)
return entropy(counts, base=base)

entropy_l0 = [calculate_entropy(x) for x in sensors]
entropy_l1 = [calculate_entropy(x) for x in sensors_l1]

Let’s now list all the wavelet features and create a list by layers.

L1_features_names = [
"L1-n5", "L1-n25", "L1-n75", "L1-n95", "L1-median",
"L1-mean", "L1-std", "L1-var", "L1-rms", "L1-skew",
"L1-Kurtosis", "L1-zcross", "L1-mcross", "L1-entropy"

]

L0_features_names = [
"L0-n5", "L0-n25", "L0-n75", "L0-n95", "L0-median",
"L0-mean", "L0-std", "L0-var", "L0-rms", "L0-skew",
"L0-Kurtosis", "L0-zcross", "L0-mcross", "L0-entropy"

]

all_feat_l0 = []
for i in range(len(axis)):

feat_l0 = (
stat_feat_l0[i]
+ [skew_l0[i]]
+ [kurtosis_l0[i]]
+ [cross_l0[0][i]]
+ [cross_l0[1][i]]
+ [entropy_l0[i]]

)
[print(axis[i] + ' +x+= ', round(y, 4))

for x, y in zip(LO_features_names, feat_l0)][0]
all_feat_l0.append(feat_l0)

all_feat_l0 = [
item
for sublist in all_feat_l0
for item in sublist

]
print(f"\nAll L0 Features = {len(all_feat_l0)}")
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all_feat_l1 = []
for i in range(len(axis)):

feat_l1 = (
stat_feat_l1[i]
+ [skew_l1[i]]
+ [kurtosis_l1[i]]
+ [cross_l1[0][i]]
+ [cross_l1[1][i]]
+ [entropy_l1[i]]

)
[print(axis[i]+' '+x+'= ', round(y, 4))

for x,y in zip(L1_features_names, feat_l1)][0]
all_feat_l1.append(feat_l1)

all_feat_l1 = [
item
for sublist in all_feat_l1
for item in sublist

]
print(f"\nAll L1 Features = {len(all_feat_l1)}")
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Summary

Edge Impulse Studio is a powerful online platform that can handle the
pre-processing task for us. Still, given our engineering perspective, we
want to understand what is happening under the hood. This knowledge
will help us find the best options and hyper-parameters for tuning our
projects.
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Daniel Situnayake wrote in his blog: “Raw sensor data is highly dimen-
sional and noisy. Digital signal processing algorithms help us sift the
signal from the noise. DSP is an essential part of embedded engineering,
and many edge processors have on-board acceleration for DSP. As an
ML engineer, learning basic DSP gives you superpowers for handling
high-frequency time series data in your models.” I recommend you
read Dan’s excellent post in its totality: nn to cpp: What you need to
know about porting deep learning models to the edge.

https://situnayake.com/
https://situnayake.com/2023/03/21/nn-to-cpp.html
https://situnayake.com/2023/03/21/nn-to-cpp.html
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