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Abstract

Machine Learning Systems with TinyML offers readers an entry point to understand comprehensive ma-
chine learning systems by grounding concepts in accessible TinyML applications. As resource-constrained
edge computing sees rapid expansion, the ability to construct efÏcient ML pipelines grows crucial. This
book aims to demystify the process of developing complete ML systems suitable for deployment - spanning
key phases like data collection, model design, optimization, acceleration, security hardening, and integra-
tion. The text touches on the full breadth of concepts relevant to general ML engineering across industries
and applications through the lens of TinyML. Readers will learn basic principles around designing ML
model architectures, hardware-aware training strategies, performant inference optimization, benchmarking
methodologies and more. Additionally, crucial systems considerations in areas like reliability, privacy, re-
sponsible AI, and solution validation are also explored in depth. In summary, the book strives to equip
newcomers and professionals alike with integrated knowledge covering full stack ML system development,
using easily accessible TinyML applications as the vehicle to impart universal concepts required to unlock
production ML.
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1

Preface

Welcome to Machine Learning Systems with TinyML. This book is your gateway to the fast-paced
world ofAI systems through the lens of embedded systems. It is an extension of the course, TinyML
from CS249r at Harvard University.

Our aim is to make this open-source book a collaborative effort that brings together insights from
students, professionals, and the broader community of appliedmachine learning practitioners. We
want to create a one-stop guide that dives deep into the nuts and bolts of AI systems and theirmany
uses.

“If you want to go fast, go alone. If you want to go far, go together.” – African Proverb

This isn’t just a static textbook; it’s a living, breathing document. We’re making it open-source and
continually updated to meet the ever-changing needs of this dynamic field. Expect a rich blend of
expert knowledge that guides you through the complex interplay between cutting-edge algorithms
and the foundational principles that make them work. We’re setting the stage for the next big leap
in tech innovation.

https://sites.google.com/g.harvard.edu/cs249-tinyml-2023
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Why We Wrote This Book

We’re in an age where technology is always evolving. Open collaboration and sharing knowledge
are the building blocks of true innovation. That’s the spirit behindMachine Learning Systemswith
TinyML. We’re going beyond the traditional textbook model to create a living knowledge hub.

The book covers principles, algorithms, and real-world application case studies, aiming to give you
a deep understanding that will help you navigate the ever-changing landscape of embeddedAI. By
keeping it open, we’re not just making learning accessible; we’re inviting new ideas and ongoing
improvements. In short, we’re building a community where knowledge is free to grow and light
the way forward in global embedded AI tech.
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What You’ll Need to Know

You don’t need to be a machine learning whiz to dive into this book. All you really need is a basic
understanding of systems and a curiosity to explore how embedded hardware, AI, and software
come together. This is where innovation happens, and a basic grasp of how systems work will be
your compass.

We’re also focusing on the exciting overlaps between these fields, aiming to create a learning en-
vironment where traditional boundaries fade away, making room for a more holistic, integrated
view of modern tech. Your interest in embedded AI and low-level software will guide you through
a rich and rewarding learning experience.
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Book Conventions

For details on the conventions used in this book, check out the Conventions section.

./contents/conventions.qmd
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Want to Help Out?

If you’re interested in contributing, you can find the guidelines here.

https://github.com/harvard-edge/cs249r_book
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Get in Touch

Got questions or feedback? Feel free to e-mail Prof. Vĳay Janapa Reddi directly, or you arewelcome
to start a discussion thread on GitHub.

mailto:vj@eecs.harvard.edu?subject=“CS249r%20MLSys%20with%20TinyML%20Book%20-%20”
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About the Book

Overview

Welcome to this collaborative project initiated by the CS249r Tiny Machine Learning class at Har-
vard University. Our goal is to make this book a community resource that assists educators and
learners in understanding TinyML. The book will be regularly updated to reflect new insights into
TinyML and effective teaching methods.

Topics Explored

This book offers a comprehensive look at various aspects of embedded machine learning. The
topics we delve into include:

• Introduction and Overview of Embedded Machine Learning
• Data Engineering Techniques
• Frameworks for Embedded Machine Learning
• EfÏcient Representation and Compression of Models
• Performance Metrics and Benchmarking for Machine Learning Systems
• Edge Learning
• Hardware Acceleration Options: GPUs, TPUs, and FPGAs
• Operational Aspects of Embedded Machine Learning
• Security and Privacy in On-Device Machine Learning
• Ethical Considerations in AI
• Sustainability Concerns in Edge Computing
• Generative AI in Edge Computing

By the time you finish this book, you’ll have a foundational understanding of machine learning
and the Internet of Things. You’ll also learn about real-world applications of embedded machine
learning systems and gain practical experience through project-based assignments.

Who Should Read This

This book is tailored for those new to the exciting field of tiny machine learning (TinyML). It starts
with the basics of machine learning and embedded systems and progresses to more advanced
topics relevant to the TinyML community and broader research areas. The book is particularly
beneficial for:
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• Embedded Systems Engineers: For engineers in the embedded systems domain, this book
serves as an excellent guide to TinyML, helping them create intelligent applications on
resource-limited platforms.

• Students in Computer Science and Electrical Engineering: This book is a useful resource
for students studying computer science and electrical engineering. It introduces them to
the methods, algorithms, and techniques used in TinyML, preparing them for real-world
challenges in embedded machine learning.

• Researchers and Academics: Those involved in machine learning, computer vision, and sig-
nal processing research will find this book insightful. It sheds light on the unique challenges
of running machine learning algorithms on low-power, low-memory devices.

• Industry Professionals: If you’re working in areas like IoT, robotics, wearable tech, or smart
devices, this book will equip you with the knowledge you need to add machine learning
features to your products.

Key Learning Outcomes

Readers will acquire skills in training and deploying deep neural network models on resource-
limited microcontrollers, along with understanding the broader challenges involved in their de-
sign, development, and deployment. Specifically, you’ll learn about:

• Foundational Concepts in Machine Learning
• Fundamentals of Embedded AI
• Hardware Platforms Suitable for Embedded AI
• Techniques for Training Models for Embedded Systems
• Strategies for Model Optimization
• Real-world Applications of Embedded AI
• Current Challenges and Future Trends in Embedded AI

Our aim is to make this book a comprehensive resource for anyone interested in developing intel-
ligent applications on embedded systems. Upon completing the book, you’ll be well-equipped to
design and implement your own machine learning-enabled projects.

Prerequisites for Readers

• Basic Programming Skills: We recommend that you have some prior programming experi-
ence, ideally in Python. A grasp of variables, data types, and control structures will make it
easier to engage with the book.

• Some Machine Learning Knowledge: While not mandatory, a basic understanding of ma-
chine learning concepts will help you absorb the material more readily. If you’re new to the
field, the book provides enough background information to get you up to speed.

• Python Programming (Optional): If you’re familiar with Python, you’ll find it easier to en-
gage with the coding sections of the book. Knowing libraries like NumPy, scikit-learn, and
TensorFlow will be particularly helpful.
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• Willingness to Learn: The book is designed to be accessible to a broad audience, with vary-
ing levels of technical expertise. A willingness to challenge yourself and engage in practical
exercises will help you get the most out of it.

• Resource Availability: For the hands-on aspects, you’ll need a computer with Python and
the relevant libraries installed. Optional access to an embedded development board or mi-
crocontroller will also be beneficial for experimenting with machine learning model deploy-
ment.

Bymeeting these prerequisites, you’ll bewell-positioned to deepen your understanding of TinyML,
engage in coding exercises, and even implement practical applications on embedded devices.
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1. Introduction

1.1. Overview

Welcome to this comprehensive journey into Machine Learning Systems through the lens of Tiny
Machine Learning (TinyML). This book is designed to provide a thorough understanding of ma-
chine learning concepts and their implementation on small devices. Whether you’re a beginner,
an industry expert, or a scholarly researcher, we offer a detailed exploration of machine learning
systems, using TinyML as a practical example to illustrate core principles and applications in a
compact, efÏcient format.

1.2. What’s Inside

We begin by introducing fundamental concepts in embedded systems and machine learning, con-
textualizing them within the broader scope of system design. We emphasize the efÏcacy of deep
learning methods across diverse applications. As we progress, a comprehensive walkthrough of
the machine learning workflow is presented, detailing everything from the intricacies of data en-
gineering to the complexities of advanced model training. Subsequent chapters shift the focus
towards the optimization and deployment of ML models, with a keen emphasis on the nuances
of on-device learning. We then broaden our discussion to include state-of-the-art hardware accel-
eration techniques and delve into the complexities of model lifecycle management. Moreover, the
text explores the intersection of AI with sustainability and ecological considerations, positioning
applied ML systems within this expansive narrative.

A unique aspect of this book is its function as a conduit to seminal scholarly works and academic
research papers, aimed at enriching the reader’s understanding and encouraging deeper explo-
ration of the subject. This approach seeks to bridge the gap between pedagogical materials and
cutting-edge research trends, offering a comprehensive guide that is in step with the evolving field
of applied machine learning.

1.3. Chapter Breakdown

Here’s a closer look at what each chapter covers:

Chapter 1: Introduction This chapter sets the stage, providing an overview of embedded AI and
laying the groundwork for the chapters that follow.

Chapter 2: Embedded Systems We introduce the basics of embedded systems, the platforms
where AI algorithms are widely applied.
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Chapter 3: Deep Learning Primer This chapter offers a comprehensive introduction to the algo-
rithms and principles that underpin AI applications in embedded systems.

Chapter 4: Embedded AI Here, we explore how machine learning techniques can be integrated
into embedded systems, enabling intelligent functionalities.

Chapter 5: AI Workflow This chapter breaks down the machine learning workflow, offering in-
sights into the steps leading to proficient AI applications.

Chapter 6: Data Engineering We focus on the importance of data in AI systems, discussing how
to effectively manage and organize data.

Chapter 7: AI Frameworks This chapter reviews different frameworks for developing machine
learning models, guiding you in choosing the most suitable one for your projects.

Chapter 8: AI Training This chapter delves into model training, exploring techniques for develop-
ing efÏcient and reliable models.

Chapter 9: EfÏcient AIHere, we discuss strategies for achieving efÏciency in AI applications, from
computational resource optimization to performance enhancement.

Chapter 10: Model OptimizationsWe explore various avenues for optimizingAImodels for seam-
less integration into embedded systems.

Chapter 11: AI Acceleration We discuss the role of specialized hardware in enhancing the perfor-
mance of embedded AI systems.

Chapter 12: Benchmarking AI This chapter focuses on how to evaluate AI systems through sys-
tematic benchmarking methods.

Chapter 13: On-Device Learning We explore techniques for localized learning, which enhances
both efÏciency and privacy.

Chapter 14: Embedded AIOps This chapter looks at the processes involved in the seamless inte-
gration, monitoring, and maintenance of AI functionalities in embedded systems.

Chapter 15: Security& PrivacyAsAI becomesmore ubiquitous, this chapter addresses the crucial
aspects of privacy and security in embedded AI systems.

Chapter 16: Responsible AI We discuss the ethical principles guiding the responsible use of AI,
focusing on fairness, accountability, and transparency.

Chapter 17: Sustainable AI This chapter explores practices and strategies for sustainable AI, en-
suring long-term viability and reduced environmental impact.

Chapter 18: AI for Good We highlight positive applications of TinyML in areas like healthcare,
agriculture, and conservation.

Chapter 19: Robust AI We discuss techniques for developing reliable and robust AI models that
can perform consistently across various conditions.

Chapter 20: Generative AI This chapter explores the algorithms and techniques behind generative
AI, opening avenues for innovation and creativity.
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1.4. How to Navigate This Book

To get the most out of this book, consider the following structured approach:

1. Basic Knowledge (Chapters 1-4): Start by building a strong foundation with the initial chap-
ters, which provide an introduction to embedded AI and cover core topics like embedded
systems and deep learning.

2. Development Process (Chapters 5-10): With that foundation, move on to the chapters fo-
cused on practical aspects of the AImodel building process like workflows, data engineering,
training, optimizations and frameworks.

3. Deployment and Monitoring (Chapters 11-14): These chapters offer insights into effectively
deploying AI on devices andmonitoring the operationalization throughmethods like bench-
marking and on-device learning.

4. Responsible and Emerging AI (Chapters 15-18): Critically examine topics like ethics, secu-
rity, sustainability and cutting edge techniques in AI as you conclude the learning journey.

5. InterconnectedLearning: While designed for progressive learning, feel free to navigate chap-
ters based on your interests and needs.

6. Practical Applications: Relate theory to real-world applications by engaging with case stud-
ies and hands-on exercises throughout.

7. Discussion andNetworking: Participate in forums and groups to debate concepts and share
insights.

8. Revisit and Reflect: Revisiting chapters can reinforce learnings and offer new perspectives
on concepts.

By adopting this structured yet flexible approach, you’re setting the stage for a fulfilling and en-
riching learning experience.

1.5. The Road Ahead

As we navigate the world of ML systems, we’ll cover a broad range of topics, from engineering
principles to ethical considerations and innovative applications. Each chapter will unveil a piece
of this expansiveML systems puzzle, inviting you to forge new connections, ignite discussions, and
fuel your curiosity about AI and ML at large. Join us as we explore this fascinating field, which is
not only reshaping systems but also redrawing the contours of our future.

https://github.com/harvard-edge/cs249r_book/discussions
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1.6. Contribute Back

Learning in the fast-paced world of AI is a collaborative journey. This book aims to nurture a
vibrant community of learners, innovators, and contributors. As you explore the concepts and
engage with the exercises, we encourage you to share your insights and experiences. Whether it’s
a novel approach, an interesting application, or a thought-provoking question, your contributions
can enrich the learning ecosystem. Engage in discussions, offer and seek guidance, and collaborate
on projects to foster a culture of mutual growth and learning. By sharing knowledge, you play an
important role in fostering a globally connected, informed, and empowered community.
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2. Embedded Systems

Figure 2.1. DALL·E 3 Prompt: Illustration of amodern smart device, like awearable watch or smart
thermostat, opened up to reveal its inner components. Within the device, there are tiny robots
analyzing and tweaking the circuits. On the device’s display, a machine learning model is being
trained, showing data points and accuracy metrics, representing the convergence of embedded
systems and AI.

In the domain of TinyML, embedded systems serve as the bedrock, providing a robust platform
where intelligent algorithms can function both efÏciently and effectively. Defined by their spe-
cialized roles and real-time computational capabilities, these systems act as the convergence point
where data and computation intersect on a micro-scale. Tailored to meet the demands of specific
tasks, they excel in optimizing performance, energy usage, and spatial efÏciency-key considera-
tions in the successful implementation of TinyML solutions.

As we journey further into this chapter, we will demystify the intricate yet captivating realm of
embedded systems, gaining insights into their structural design, operational features, and the cru-
cial part they play in enabling TinyML applications. From an introduction to the fundamentals
of microcontroller units to a deep dive into the interfaces and peripherals that amplify their capa-
bilities, this chapter aims to be a comprehensive guide for understanding the nuanced aspects of
embedded systems within the TinyML landscape.
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Learning Objectives

• Understand the definition, characteristics, history, and importance of embedded sys-
tems, especially in relation to TinyML.

• Examine the embedded system architecture includingmicrocontrollers vs microproces-
sors, memory types and management, and System on Chip (SoC).

• Explore embedded system programming including languages like C and Python,
firmware development, and real-time operating systems (RTOS).

• Discuss interfaces and peripherals like digital/analog I/O, communication protocols,
etc.

• Analyze power management considerations, energy-efÏcient design, and battery man-
agement.

• Understand real-time characteristics of embedded systems including clocks, timing,
task scheduling, and error handling.

• Evaluate security, reliability and safety-critical aspects of embedded systems.

• Identify future trends and challenges like edge computing, scalability, and market op-
portunities.

2.1. Basics and Components

2.1.1. Definition and Characteristics

Embedded systems are specialized forms of computing that do not resemble traditional computers.
These systems are dedicated to particular tasks and integrate as components within larger devices.
Unlike general-purpose computers capable of running a multitude of applications, embedded sys-
tems are designed to execute predefined tasks, often with stringent requirements. Due to their
task-specific nature, their architecture is optimized for performance and reliability. The defining
traits of these systems include:

1. Dedicated Functionality: These systems are engineered to carry out a specific function or a
cluster of closely related functions. This specialization allows for optimization, resulting in
enhanced performance and reliability.

2. Real-Time Operation: A large number of embedded systems function in real-time, necessi-
tating immediate responses to environmental inputs or changes within a set time frame.

3. Integration with Physical Hardware: Unlike general-purpose computing systems, embed-
ded systems are tightly integrated with physical components, making them more mechani-
cally oriented.

4. Long Lifecycle: Typically, these systems have an extended lifecycle, continuing to operate for
many years post their initial deployment.
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5. Resource Constraints: Often operating under resource limitations, embedded systems re-
quire efÏcient algorithms and software due to restricted computational power and memory.

2.1.2. Historical Background

The lineage of embedded systems dates back to the 1960s, marked by the introduction of the first
microprocessor, labeled as Figure 2.2. This groundbreaking development led to the creation of the
inaugural embedded system used in the Apollo Guidance Computer, the primary navigational
system for the Apollo spacecraft. Over subsequent years, the domain has expanded remarkably,
finding utility in diverse sectors such as automotive electronics, consumer electronics, telecommu-
nications, and healthcare.

Figure 2.2. Intel 4004.

2.1.3. Importance in TinyML

Within the TinyML framework, embedded systems constitute a vital frontier. The direct integration
ofmachine learning algorithms into these systems enables intelligent, edge-baseddecision-making,
thereby minimizing latency and bolstering security. Here are several factors that underscore the
importance of embedded systems in the TinyML ecosystem:

1. Edge Computing: By localizing computation near the data source, embedded systems am-
plify efÏciency and diminish the need for continuous interaction with centralized data repos-
itories.

2. Low Power Consumption: Designed for minimal energy usage, embedded systems in
TinyML are particularly suited for battery-dependent devices and Internet of Things
applications.
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3. Real-Time Analysis and Decision Making: These systems can conduct instantaneous data
analysis, facilitating immediate decisions based on the generated insights.

4. Security and Privacy: Local data processing on embedded systems enhances security and
privacy by reducing the likelihood of data interception during transmission.

5. Cost-Effective: The deployment of machine learning models on embedded systems can be
economically advantageous, particularly when data transmission and cloud storage could
incur substantial costs.

As we progress further into this chapter, we will uncover the complexities that dictate the oper-
ations of embedded systems and examine how they serve as the foundational layer upon which
TinyML is built, heralding a future filled with integrated, intelligent, and efÏcient devices and
systems.

2.2. Embedded System Architecture

The architectural layout of embedded systems serves as the schematic that outlines the structure
and operations of these specialized entities. It sheds light on the interactions and collaborations
among various components within an embedded system. This section will dissect the key ele-
ments of the architecture, including microcontrollers, microprocessors, diverse types of memory
and their management, as well as the complexities of System on Chip (SoC).

2.2.1. Microcontrollers vs Microprocessors

Comprehending the distinctions betweenmicrocontrollers andmicroprocessors is essential for un-
derstanding the basics of embedded system architecture. In this section, wewill explore the unique
attributes of each:

• Microcontrollers

Microcontrollers are compact, integrated circuits engineered to control specific functions
within an embedded system. They incorporate a processor, memory, and input/output pe-
ripherals within a single unit, as depicted in Figure 2.3, simplifying the overall system design.
Microcontrollers are generally employed in applications where computational demands are
moderate and cost-effectiveness is a primary consideration.

Characteristics:

– Single-chip solution
– On-chip memory and peripherals
– Minimal energy consumption
– Well-suited for control-oriented tasks

• Microprocessors

In contrast, microprocessors aremore intricate and serve as the central processing unitwithin
a system. They lack the integrated memory and input/output peripherals commonly found
in microcontrollers. These processors are typically present in systems requiring elevated
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Figure 2.3. Microcontrollers

computational power and adaptability. They are suitable for devices where high processing
power is a necessity and the tasks are data-intensive.

Characteristics:

– Necessitates external components like memory and input/output peripherals
– Elevated processing power in comparison to microcontrollers
– Greater flexibility for connectivity with diverse components
– Well-suited for data-intensive tasks
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Figure 2.4. Microcontrollers vs Microprocessors Comparison

2.2.2. Memory Types and Management

Embedded systems utilize a variety of memory types, each fulfilling specific roles. EfÏcient mem-
ory management is vital for optimizing both performance and resource utilization. The following
section elaborates on different types of memory and their management within the context of em-
bedded systems:

• ROM (Read-OnlyMemory): This non-volatile memory retains data written during theman-
ufacturing process and remains unaltered throughout the lifespan of the device. It houses
firmware and boot-up instructions.

• RAM (Random Access Memory): This volatile memory stores transient data generated dur-
ing system operation. It is faster and permits read-write operations, but data is lost when
power is disconnected.

• Flash Memory: This is a type of non-volatile memory that can be electrically erased and
reprogrammed. It is commonly used for storing firmware or data that must be retained be-
tween system reboots.

Memory Management:

• Static Memory Allocation: In this approach, memory is allocated prior to runtime and re-
mains fixed throughout system operation.

• DynamicMemoryAllocation: Here, memory is allocated during runtime, offering flexibility
but introducing the risk of increased complexity and potential memory leaks.
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2.2.3. System on Chip (SoC)

The majority of embedded systems are Systems on Chip (SoCs). An SoC embodies an advanced
level of integration technology, incorporating most components required to construct a complete
system onto a single chip. It often includes a microprocessor or microcontroller, blocks of memory,
peripheral interfaces, and other requisite components for a fully operational system. Below is a
detailed examination of its characteristics and applications:

• Integration of Multiple Components: SoCs consolidate multiple components like CPUs,
memory, and peripherals onto a single chip, facilitating higher levels of integration and re-
ducing the need for external components.

• Power EfÏciency: The high degree of integration often results in SoCs being more power-
efÏcient compared to systems assembled from separate chips.

• Cost-Effectiveness: The integrated nature leads to reduced manufacturing expenses, as
fewer individual components are needed.

• Applications: SoCs are employed in a diverse range of sectors including mobile computing,
automotive electronics, and Internet of Things devices where compact form factors and en-
ergy efÏciency are highly valued.

Here is a list of widely recognized SoCs that have found substantial applications across various
domains:

1. Qualcomm Snapdragon: Predominantly used in smartphones and tablets, these SoCs offer
a blend of processing power, graphics, and connectivity features.

2. Apple A-series: Custom-developed SoCs by Apple, used in their lineup of iPhones, iPads,
and in certain versions of Apple TV andHomePod. Notable examples include the A14 Bionic
and A15 Bionic chips.

3. Samsung Exynos: Developed by Samsung, these SoCs are extensively used in their range of
smartphones, tablets, and other electronic devices.

4. NVIDIA Tegra: Initially intended for mobile devices, these SoCs have found significant ap-
plications in automotive and gaming consoles, such as the Nintendo Switch. A visual repre-
sentation can be seen below in Figure 2.5.

5. Intel Atom: Employed in a wide array of systems including netbooks, smartphones, and
even embedded systems, these SoCs are known for their power efÏciency.

6. MediaTek Helio: Commonly found in budget to mid-range smartphones, these chips offer
a balanced mix of power efÏciency and performance.

7. Broadcom SoCs: Extensively used in networking equipment, Broadcom provides a variety
of SoCs with diverse functionalities, including those optimized for wireless communications
and data processing.

8. Texas Instruments (TI) OMAP: Previously popular in smartphones and tablets, these SoCs
offered a range of functionalities including multimedia processing and connectivity.
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9. Xilinx Zynq: Mainly used in embedded systems for industrial automation and in applica-
tions requiring high levels of data processing, such as advanced driver-assistance systems
(ADAS).

10. Altera SoC FPGA: Now a part of Intel, these SoCs combine FPGA technology with ARM
cores, offering flexibility and performance for a range of applications including automotive
and industrial systems.

Figure 2.5. NVIDIA’s Tegra 2 combines two ARM Cortex-A9 cores with an ARM7 for SoC management
tasks.

Each of these Systems on Chip (SoCs) offers a unique array of features and capabilities, tailored
to meet the diverse demands of an ever-evolving technological landscape. They consolidate mul-
tiple components onto a single chip, delivering power efÏciency, cost-effectiveness, and compact
solutions suitable for contemporary electronic devices.

2.3. Embedded System Programming

Programming for embedded systems differs significantly from traditional software development,
being specifically designed to navigate the constraints of limited resources and real-time require-
ments commonly associated with embedded hardware. This section aims to shed light on the dis-
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tinct programming languages employed, delve into the subtleties of firmware development, and
explore the pivotal role of Real-time Operating Systems (RTOS) in this specialized domain.

2.3.1. Programming Languages: C, C++, Python, etc

Choosing the right programming languages is essential in embedded systems, often emphasizing
direct hardware interaction and memory usage optimization. Here, we will examine the unique
attributes of these languages and how they differ from those commonly used inmore conventional
computing systems:

• C: Often considered the bedrock of embedded systems programming, the C language en-
ables direct engagement with hardware, providing capabilities for bit-wise operations and
memory address manipulation. Its procedural nature and low-level functionalities make it
the preferred choice for resource-constrained environments, particularly for firmware devel-
opment.

• C++: Building upon the foundational principles of C, C++ incorporates object-oriented fea-
tures, promoting organized and modular code development. Despite its inherent complex-
ity, it is employed in scenarios where higher-level abstractions do not undermine the detailed
control offered by C.

• Python: Although not a traditional choice for embedded systems due to its higher mem-
ory consumption and runtime delays, Python is gradually gaining traction in the embedded
sphere, particularly in systems with less stringent resource limitations. A specialized variant
known as MicroPython has been developed, optimized for microcontrollers and retaining
the simplicity and ease of Python. This flexible programming paradigm facilitates quick pro-
totyping and development, as illustrated by the code snippet below that interfaces with pins
on a PyBoard.

import pyb # Package from PyBoard

# turn on an LED
pyb.LED(1).on()

# print some text to the serial console
print('Hello MicroPython!')

Comparison with Traditional Systems: In contrast to mainstream computing systems, where lan-
guages like Java, Python, or JavaScript are lauded for their ease of development and extensive
libraries, embedded systems favor languages that provide fine-grained control over hardware and
opportunities for optimization, all while carefully navigating resource constraints.

2.3.2. Firmware Development

Firmware development in embedded systems involves creating programs that are permanently
stored in the device’s non-volatile memory, ensuring consistent operation. This section outlines
how firmware development diverges from software development in traditional computing sys-
tems:

https://store.micropython.org/
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1. Resource Optimization: The imperative for continual optimization is paramount, enabling
the code to operate within the limitations of restricted memory and processing capabilities.

2. Hardware Interaction: Firmware often maintains a close relationship with hardware, requir-
ing an in-depth understanding of hardware components and their functionalities.

3. Lifecycle Management: Firmware updates are less frequent than software updates in tradi-
tional systems, necessitating rigorous testing to prevent failures that could lead to hardware
malfunctions.

4. Security Concerns: Given its integral role, firmware is a potential target for security breaches,
necessitating meticulous attention to security aspects, including secure coding practices and
encryption protocols.

2.3.3. Real-time Operating Systems (RTOS)

RTOSs serve as the backbone for real-time embedded systems, managing task execution in a pre-
dictable and deterministic manner. This is a marked departure from operating systems in general-
purpose computing, as outlined below:

1. Deterministic Timing: RTOSs are designed to respond to inputs or events within a well-
defined time frame, fulfilling the stringent time-sensitive requirements of many embedded
systems.

2. Task Prioritization: These systems enable task prioritization, allowing critical tasks to re-
ceive preferential processing time over less crucial tasks.

3. Microkernel Architecture: Many RTOSs employ a microkernel architecture, epitomizing ef-
ficiency and minimalism by focusing solely on essential functionalities.

4. MemoryManagement: Memorymanagement in RTOSs is oftenmore streamlined compared
to their counterparts in traditional operating systems, contributing to quick response times
and operational efÏciency.

Examples of RTOS: Notable instances in this category include FreeRTOS, RTEMS, and VxWorks,
each providing unique features tailored to meet the varied needs of different embedded systems
applications.

2.4. Interfaces and Peripherals

Embedded systems engage with the external environment through a range of interfaces and pe-
ripherals, which are oftenmore specialized and streamlined than those in general-purpose systems.
Let us explore these in detail:

https://www.freertos.org/index.html
https://www.rtems.org/
https://en.wikipedia.org/wiki/VxWorks
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2.4.1. Digital I/O

Digital Input/Output (I/O) interfaces are fundamental to embedded systems, enabling interaction
with other devices and components. For instance, a digital I/O pin may be used to read a binary
signal (0 or 1) from sensors or to control actuators. In embedded systems, these I/O ports often
operate under strict timing constraints, a

requirement less common in general-purpose computing systems. Moreover, these systems are
usually programmed for specific, optimized operations on digital signals, sometimes needing to
function in real-time or near-real-time settings.

2.4.2. Analog Interfaces

Analog interfaces in embedded systems are vital for interacting with a predominantly analog
world. These interfaces may include components like Analog-to-Digital Converters (ADCs) and
Digital-to-Analog Converters (DACs). For example, ADCs can be employed to read sensor data
from environmental sensors such as temperature or humidity sensors, converting real-world ana-
log data into a digital format that the microcontroller can process.

In contrast to general-purpose systems, embedded systems often utilize analog interfaces more
directly and frequently, especially in sensor-integrated applications that require the conversion of
a broad range of analog signals into digital data for further processing and analysis.

If you examine Figure 2.6 closely, you will notice indications of I/O pinouts for analog, digital, and
communication layouts.

2.4.3. Communication Protocols (SPI, I2C, UART, etc.)

Communication protocols act as the channels that enable communication between various compo-
nents within or connected to an embedded system. Let us examine some commonly used ones:

• SPI (Serial Peripheral Interface): This synchronous serial communication protocol is primar-
ily used for short-distance communication in embedded systems. For instance, it is frequently
employed in communications with SD cards and TFT displays.

• I2C (Inter-Integrated Circuit): This multi-master, multi-slave, packet-switched, single-
ended, serial communication bus is widely used in embedded systems to connect low-speed
peripherals tomotherboards, embedded systems, or cell phones. It is valued for its simplicity
and low pin count.

• UART (Universal Asynchronous Receiver-Transmitter): This protocol enables asyn-
chronous serial communication between devices. It is commonly used in embedded systems
to transmit data between devices over a serial port, such as sending data logs from a sensor
node to a computer.
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Figure 2.6. Nicla Vision pinout
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Compared to general-purpose systems, communication protocols in embedded systems are often
more finely tuned for speed and reliability, especially in critical applications where data trans-
mission integrity is crucial. Additionally, these protocols may be directly integrated into the mi-
crocontroller, facilitating more cohesive and seamless interactions between components, a feature
less commonly observed in general-purpose systems.

2.5. Power Management in Embedded Systems

Power management is a critical focus area in the design of embedded systems, influencing both
the system’s efÏciency and its applicability in real-world scenarios. The wide range of applications
for embedded systems, from handheld devices to industrial equipment, highlights the need for
meticulous power management. Let us explore this essential aspect of embedded systems:

2.5.1. Power Consumption Considerations

In embedded systems, power consumption is a key factor that dictates both performance and
longevity. Microcontrollers in these systems usually operate within a voltage range of 1.8V to
5V, with current consumption varying from microamperes (uA) to milliamperes (mA) during ac-
tive states. In sleep or standby modes, the current consumption can drop to nanoamperes (nA),
extending battery life.

In contrast, general-purpose computing systems like desktop computers consume power on the
scale of tens to hundreds of watts, several orders of magnitude higher than embedded systems.
This significant difference underscores the need for careful power management in embedded sys-
tems, where the power budget is often much more limited.

Managing power consumption involves a complex interplay of factors such as operating voltage,
clock frequency, and the specific tasks the system performs. Engineers often find themselves bal-
ancing power consumption against performance and responsiveness, navigating a complex land-
scape of trade-offs.

2.5.2. Energy-EfÏcient Design

Incorporating energy efÏciency into the design phase is crucial for the successful deployment of
embedded systems. Techniques like dynamic voltage and frequency scaling (DVFS) are often em-
ployed, allowing the system to adjust voltage and frequency dynamically based on processing
needs, thereby optimizing power consumption.

Additionally, the use of low-powermodes, where non-essential peripherals are deactivated or clock
frequencies are reduced, can significantly conserve energy. For example, deep sleep modes that
consume as little as 100 nA can dramatically extend battery life, particularly in battery-operated
embedded systems.

The architecture of the microcontroller, especially its instruction set architecture (ISA), is often
highly specialized to eliminate unnecessary complexities that could increase power consumption.
This specialization allows operations to be executed in fewer cycles compared to general-purpose
processors, reducing the power consumed per operation. Moreover, these specialized ISAs are
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designed to efÏciently execute the specific tasks that the embedded system is intended to perform,
optimizing the execution path and thereby saving energy.

2.5.3. Battery Management

Managing batteries is an integral component of power management strategies in embedded sys-
tems. The goal is to maximize battery life without sacrificing performance. Battery-powered em-
bedded systems often use lithium-ion or lithium-polymer batteries due to their high energy density
and rechargeable features. These batteries typically have a voltage range of 3.7V to 4.2V per cell.
For example, the Nicla Vision utilizes a 3.7V battery, as shown in Figure 2.7.

Figure 2.7. Nicla Vision battery

By focusing on these elements, engineers can create systems that not only meet functional require-
ments but do so in a manner that reflects a deep understanding of the broader impacts of technol-
ogy on society and the environment.

Engineers are tasked with implementing methods such as effective charge regulation, protection
against voltage spikes, and thermal monitoring to ensure the longevity and health of the battery.
Additionally, the incorporation of systems that can tap into renewable energy sources like solar or
kinetic energy can augment battery reserves, leading to enduring and eco-friendly solutions.

The emphasis on power management is driven by the imperative to make the most of available
resources, prolong battery longevity, and minimize operational expenditures. In scenarios where

https://store.arduino.cc/products/nicla-vision
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the embedded systems are situated in remote or hard-to-reach locations, adept powermanagement
can substantially cut down on the frequency of maintenance visits, thereby guaranteeing continu-
ous and seamless functionality.

It’s fair to assert that power management goes beyond being a mere technical specification in
embedded systems; it serves as an important factor that can either make or break the success
of a project. Significant engineering effort is channeled into fine-tuning power management ap-
proaches, aiming to develop systems that are not just operationally efÏcient but also environmen-
tally sustainable. This reflects a profound dedication to both technological innovation and excel-
lence within the realm of embedded systems.

2.6. Real-Time Characteristics

Within the complex tapestry of embedded systems, real-time attributes serve as essential threads,
interlacing various components and tasks into a unified, responsivewhole. This element, often spe-
cific to embedded systems, occupies a vital role in both their architecture and functionality, endow-
ing them with the nimbleness and accuracy needed for timely interaction with their surroundings.
Let’s examine the nuances that underscore the real-time attributes of embedded systems:

2.6.1. Real-time Clocks

Real-time clocks (RTCs) hold a central position in embedded systems, offering an accurate time
benchmark that directs the system’s activities. These clocks frequently come with battery backups
to maintain reliable timekeeping, even when the primary power source is compromised. The role
of RTCs is more critical and widespread in embedded systems compared to general-purpose com-
puting, where timekeeping, while important, usually doesn’t govern the core operations of the
system.

For example, in the realm of industrial automation, RTCs facilitate the precise coordination of tasks,
ensuring synchronized and timely processes. They are particularly crucial in scenarios requiring
time-stamped data, such as environmental monitoring systems where the accuracy and time rele-
vance of data are imperative.

2.6.2. Timing and Synchronization

Timing and synchronization stand as defining features of embedded systems, requiring various
components and processes to operate in concert. The essence of a real-time embedded system
is shaped by its capability to execute tasks within a specified time window. Such systems often
have rigorous timing constraints, necessitating synchronization methods that are both sturdy and
exact.

In the context of automotive control systems, the synchronized and timely operation of diverse sen-
sors and actuators is imperative for both safety and peak performance. This sharply contrasts with
general-purpose systems, where timing, though managed, usually lacks immediate and critical
consequences.
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2.6.3. Task Management and Scheduling

In theworld of embedded systems, themanagement and scheduling of tasks are crucial for effective
real-time responses. Task schedulers in these systems often use techniques like priority scheduling,
where tasks are ranked by importance, allowing higher-priority tasks to interrupt those of lower
priority. This is especially critical in systems where some functions have greater urgency.

For example, in medical devices such as pacemakers, the punctual delivery of electrical impulses
is a high-priority task, and the scheduler must give it precedence over all other activities to ensure
patient safety. This level of refined scheduling and taskmanagement sets embedded systems apart
from the more adaptable but less deterministic scheduling seen in general-purpose systems.

2.6.4. Error Handling and Fault Tolerance

To enhance their real-time features, embedded systems frequently incorporate mechanisms for
error detection and fault resilience. These are engineered to swiftly identify and rectify errors or to
sustain system functionality even when faults occur. In aviation control systems, for instance, real-
time fault tolerance is essential for maintaining the stability and safety of drones. This meticulous
approach to errormanagement is somewhat unique to embedded systems, accentuating the critical
nature of many such applications.

The real-time attributes of embedded systems distinguish them, creating an environment where
accuracy, synchrony, and prompt responses are not optional but obligatory. These attributes res-
onate across a wide range of applications, from automotive systems to industrial automation and
healthcare devices, highlighting the role of embedded systems as quiet yet potent conductors of
a technologically synchronized world. Through their real-time features, embedded systems offer
solutions that not only satisfy functional needs but do so with a degree of precision and depend-
ability that is both extraordinary and essential in today’s world.

2.7. Security and Reliability

In an increasingly interconnected and tech-dependent world, the issues of security and reliability
have risen to become primary considerations in system engineering. This is especially true for em-
bedded systems, which often serve as key components in critical infrastructures and applications,
thereby raising the stakes considerably. Let’s explore the crucial elements that fortify the bastion
of security and reliability in embedded systems:

2.7.1. Secure Boot and Root of Trust

Embedded systems are increasingly central to a variety of critical applications, making it imper-
ative to assure their authenticity and integrity from the moment they boot up. The secure boot
sequence serves as a foundational element in this security framework, permitting the system to
run only code that has been authenticated and deemed trustworthy. This is often augmented by
a “Root of Trust,” a stable and secure environment, typically hardware-based, that validates the
initial firmware and each subsequent layer of software during the boot-up sequence.
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For example, in financial settings involving Point-of-Sale (POS) terminals, a secure boot mecha-
nism guarantees that the firmware remains intact and secure, thereby preventing any malicious
alterations that could lead to significant data breaches. Likewise, in the realm of home automa-
tion, a strong secure boot process acts as a barrier to unauthorized access, thereby protecting user
data and privacy.

2.7.2. Fault Tolerance

Fault tolerance is an essential quality in embedded systems, granting them the ability to maintain
functionality even when faced with faults or system failures. This resilience is achieved through
various means such as redundancy, where vital components are replicated to assume control in
the event of a failure, or via sophisticated error detection and correction methods.

In sectors like aerospace and aviation, fault tolerance is not merely an advantageous feature but an
obligatory specification. For instance, aircraft control systems utilize multiple redundant configu-
rations that operate in parallel to assure uninterrupted functionality, even if a component fails. This
degree of fault tolerance provides a heightened level of reliability, enabling the system to endure
failures without disastrous outcomes, a feature that distinguishes it from conventional computing
systems.

2.7.3. Safety-Critical Systems

Safety-critical systems are defined as those where a malfunction could lead to loss of life, sub-
stantial property damage, or environmental degradation. Such systems demand rigorous design
protocols to guarantee the highest levels of reliability and safety. Embedded systems falling under
this classification often comply with stringent development guidelines and are subject to exhaus-
tive testing to confirm their safety and reliability metrics.

For instance, in automotive safety features like Anti-lock Braking Systems (ABS) and Electronic Sta-
bility Control (ESC), embedded controllers are crucial. These controllers are engineered in accor-
dancewith rigorous standards like ISO 26262, ensuring theymeet the elevated safety and reliability
criteria essential for safeguarding lives. In the healthcare sector, devices such as pacemakers and
infusion pumps are categorized as safety-critical, where the dependability of embedded systems
can quite literally be life-altering.

The focus on security and reliability in embedded systems is of paramount importance, a point
that is often underestimated by many. As these systems become increasingly woven into the fab-
ric of our everyday lives and critical infrastructure, the principles of security and reliability serve
as guiding lights in their development and deployment. Through features like secure booting and
fault tolerance, these systems offer not just operational efÏciency but also a layer of trust and secu-
rity, providing a steadfast and secure anchor in a rapidly evolving technological landscape. These
foundational tenets shape today’s embedded systems, molding them into dependable stewards
and proficient operators in various critical domains of contemporary society.

https://www.iso.org/standard/43464.html
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2.8. Future Trends and Challenges

Arm, the leading producer of microcontrollers, has reached a milestone by shipping an unprece-
dented 8.0 billion chips, either directly or through its partners. This takes the total number of chips
shipped to date to an astounding quarter of a trillion, or 250 billion (ARM.com, n.d.)!

As we find ourselves at the threshold of a new era marked by extraordinary growth in the embed-
ded systems sector, it becomes both exhilarating and imperative to scrutinize the emerging trends
and challenges that lie ahead. From the expanding horizons of edge computing to the imperatives
of scalability, the landscape is poised for transformation, unveiling new realms of both opportuni-
ties and challenges. Let’s explore the evolving frontier that awaits embedded systems:

2.8.1. Edge Computing and IoT

With the rapid expansion of the Internet of Things (IoT), edge computing is gaining increasing
prominence. Essentially, edge computing enables data to be processed closer to its source, thereby
reducing latency and alleviating the burden on centralized data centers. This shift in computing
paradigms is anticipated to revolutionize embedded systems, endowing them with enhanced pro-
cessing power and the intelligence to perform intricate tasks on-site.

Additionally, as the IoT is projected to include billions of interconnected devices worldwide, em-
bedded systems are slated to be the linchpin in ensuring smooth connectivity and interoperability
among a diverse set of devices. This interconnected ecosystem is expected to enable real-time
analytics and decision-making, laying the groundwork for more intelligent cities, industries, and
households. The challenge resides in crafting systems that are secure, energy-efÏcient, and adept
at managing the anticipated data deluge effectively.

2.8.2. Scalability and Upgradation

As the landscape of embedded systems continues its evolutionary trajectory, the focus will increas-
ingly turn towards scalability and ease of upgradation. Systems will be required to adapt to evolv-
ing technologies and user needs without undergoing extensive modifications. This necessitates
modular architectures and adherence to open standards, facilitating the effortless incorporation of
new functionalities and features.

Moreover, in light of rapid technological advancements, embedded systems will need to incor-
porate capabilities for remote updates and maintenance to ensure their continued relevance and
longevity. The responsibility will fall on the shoulders of developers and manufacturers to engi-
neer systems that not only satisfy current needs but are also prepared for future enhancements,
thereby securing a path for sustainable and progressive development.

2.8.3. Market Opportunities

Themarket landscape for embedded systems is on the cusp of dynamic changes. As various indus-
tries accelerate their adoption of automation and digital transformation, the demand for advanced
embedded systems is set to skyrocket. The integration of Artificial Intelligence (AI) and Machine
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Learning (ML) into embedded systems is expected to offer unparalleled levels of intelligence and
automation.

At the same time, burgeoning opportunities are emerging in sectors like consumer electronics, au-
tomotive, healthcare, and industrial applications. While this growth presents enormous potential
for innovation, it also introduces challenges such as heightened competition and the necessity for
adherence to evolving regulatory frameworks. Companies entering this arena will need to exhibit
agility, innovation, and adaptability to the shifting market conditions in order to establish a com-
petitive edge.

2.9. Conclusion

The table provides a side-by-side comparison between these two distinct types of computing sys-
tems, covering a range of categories including processing power, memory capabilities, user inter-
face, and real-time functionalities, among others. The aim of this comparative analysis is to offer
readers a concise yet thorough understanding of the unique attributes and specificities of both con-
ventional and embedded computing systems. This, in turn, enables a more nuanced and informed
grasp of their respective roles in today’s computing landscape.

Category Traditional Computing System Embedded System Architecture

Hardware
Characteristics
Processing Power High (Multi-core processors) Moderate to Low

(Single/Multi-core, optimized for
specific tasks)

Memory High (Upgradable) Limited (Fixed)
Storage High (Upgradable) Limited (Fixed or expandable to a

certain extent)
Hardware Scalability High (Can upgrade various

components)
Low (Hardware is often fixed and
focused)

Software
Characteristics
Operating System General Purpose (Windows,

Linux, macOS)
Real-Time Operating System
(RTOS) or No OS

Development
Flexibility

High (Supports multiple
programming languages and
frameworks)

Moderate (Focused on specific
programming languages and
tools)

Performance &
EfÏciency
Power Consumption High Low (Optimized for energy

efÏciency)
Real-Time Capabilities Limited (Not optimized for

real-time tasks)
High (Designed for real-time
tasks)

User Interaction
User Interface Complex (GUI-Based) Simple or None (Can be GUI,

command-line, or none)
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Category Traditional Computing System Embedded System Architecture

Connectivity Extensive (Multiple ports and
connectivity options)

Limited (Focused on necessary
connectivity options)

Lifecycle &
Maintenance
Maintenance Regular Maintenance Required Low Maintenance (Set up to run

specific tasks consistently)
Lifecycle Shorter (Due to rapid

technological advancements)
Longer (Designed to perform
specific tasks over a long period)

Cost and Use Cases
Cost Variable (Can be high depending

on specifications)
Generally Lower (Due to focused
functionalities)

Use Cases General (Various applications
across sectors)

Specific (Dedicated to particular
tasks or applications)

As we gaze into the future, it’s clear that the realm of embedded systems stands on the cusp of
a transformative era, characterized by groundbreaking innovations, abundant opportunities, and
formidable challenges. The horizon is replete with the promise of enhanced connectivity, height-
ened intelligence, and superior efÏciency, carving out a trajectory where embedded systems will
serve as the guiding force behind society’s technological progress. The path forward is one of dis-
covery and adaptability, where the confluence of technological prowess and creative ingenuity will
sculpt a future that is not only rich in technological advancements but also attuned to the intricate
and continually shifting needs of a dynamic global landscape. It’s a field teemingwith possibilities,
inviting trailblazers to embark on a journey to define the parameters of a bright and flourishing
future.

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.
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3. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• Embedded Systems Overview.

• Embedded Computer Hardware.

• Embedded I/O.

• Embedded systems software.

• Embedded ML software.

• Embedded Inference.

https://docs.google.com/presentation/d/1Lgrn7bddHYxyrOmk0JfSVmEBimRePqI7WSliUKRPK9E/edit?resourcekey=0-c5JvfDeqHIdV9A5RMAMAyw#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1hDCFcOrZ08kZPhY4DA3gVikGUo47HwNyvqNrLW-t-Tg/edit?resourcekey=0-J6ix5AYvZMGbFFOa7ae4Hw#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1rnWh9XC6iCKSx_hQd4xq2iIDlpc-GkBQw_GjzlP5mQc/edit#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1TApZn9xxPWCRY-D-soJ8YOSsfysnccR5UjOyspzeTuU/edit?resourcekey=0-BRWIyCKPLNQFnIfG0fJJ9A#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/17wgAfoF24Rcx7uPrbau0c8FyzXIUWbe48qGGBOXXT-g/edit?resourcekey=0-Uv29DvmF7gYzKdOoRtn0vw#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1FOUQ9dbe3l_qTa2AnroSbOz0ykuCz5cbTNO77tvFxEs/edit?usp=drive_link
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4. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.
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5. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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6. Deep Learning Primer

Figure 6.1. DALL·E 3 Prompt: Photo of a classic classroom with a large blackboard dominating
one wall. Chalk drawings showcase a detailed deep neural network with several hidden layers,
and each node and connection is precisely labeled with white chalk. The rustic wooden floor and
brick walls provide a contrast to the modern concepts. Surrounding the room, posters mounted
on frames emphasize deep learning themes: convolutional networks, transformers, neurons, acti-
vation functions, and more.

This section offers a brief introduction to deep learning, starting with an overview of its history,
applications, and relevance to embedded AI systems. It examines the core concepts like neural net-
works, highlighting key components like perceptrons, multilayer perceptrons, activation functions,
and computational graphs. The primer also briefly explores major deep learning architecture, con-
trasting their applications and uses. Additionally, it compares deep learning to traditionalmachine
learning to equip readers with the general conceptual building blocks to make informed choices
between deep learning and traditional ML techniques based on problem constraints, setting the
stage for more advanced techniques and applications that will follow in subsequent chapters.
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Learning Objectives

• Understand the basic concepts and definitions of deep neural networks.

• Recognize there are different deep learning model architectures.

• Comparison between deep learning and traditional machine learning approaches
across various dimensions.

• Acquire the basic conceptual building blocks to delve deeper into advanced deep learn-
ing techniques and applications.

6.1. Introduction

6.1.1. Definition and Importance

Deep learning, a specialized area within machine learning and artificial intelligence (AI), utilizes
algorithms modeled after the structure and function of the human brain, known as artificial neu-
ral networks. This field is a foundational element in AI, driving progress in diverse sectors such
as computer vision, natural language processing, and self-driving vehicles. Its significance in em-
bedded AI systems is highlighted by its capability to handle intricate calculations and predictions,
optimizing the limited resources in embedded settings.

Figure 6.2. Source

https://1394217531-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LvBP1svpACTB1R1x_U4%2F-LvCh0IFvnfX-S1za_GI%2F-LvD0gbfAKEIMXcVxdqQ%2Fimage.png?alt=media&token=d6ca58f0-ebe3-4188-a90a-dc68256e1b0a
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6.1.2. Brief History of Deep Learning

The idea of deep learning has origins in early artificial neural networks. It has experienced several
cycles of interest, starting with the introduction of the Perceptron in the 1950s (Rosenblatt 1957),
followed by the invention of backpropagation algorithms in the 1980s (Rumelhart, Hinton, and
Williams 1986).

The term “deep learning” became prominent in the 2000s, characterized by advances in computa-
tional power and data accessibility. Important milestones include the successful training of deep
networks like AlexNet (Krizhevsky, Sutskever, and Hinton 2012) by Geoffrey Hinton, a leading
figure in AI, and the renewed focus on neural networks as effective tools for data analysis and
modeling.

In recent times, deep learning has seen exponential growth, transforming various industries. Com-
putational growth followed an 18-month doubling pattern from 1952 to 2010, which then acceler-
ated to a 6-month cycle from 2010 to 2022, as shown in Figure 6.3. Concurrently, we saw the emer-
gence of large-scale models between 2015 and 2022, appearing 2 to 3 orders of magnitude faster
and following a 10-month doubling cycle.

Figure 6.3. Growth of deep learning models.

Multiple factors have contributed to this surge, including advancements in computational power,
the abundance of big data, and improvements in algorithmic designs. First, the growth of compu-
tational capabilities, especially the arrival of Graphics ProcessingUnits (GPUs) and Tensor Process-
ing Units (TPUs) (N. P. Jouppi et al. 2017a), has significantly sped up the training and inference
times of deep learning models. These hardware improvements have enabled the construction and
training of more complex, deeper networks than what was possible in earlier years.

Second, the digital revolution has yielded a wealth of big data, offering rich material for deep
learning models to learn from and excel in tasks such as image and speech recognition, language

https://amturing.acm.org/award_winners/hinton_4791679.cfm


64 Chapter 6. Deep Learning Primer

translation, and game playing. The presence of large, labeled datasets has been key in refining and
successfully deploying deep learning applications in real-world settings.

Additionally, collaborations and open-source efforts have nurtured a dynamic community of
researchers and practitioners, accelerating advancements in deep learning techniques. Innova-
tions like deep reinforcement learning, transfer learning, and generative adversarial networks
have broadened the scope of what is achievable with deep learning, opening new possibilities in
various sectors including healthcare, finance, transportation, and entertainment.

Organizations around the world recognize the transformative potential of deep learning and are
investing heavily in research and development to leverage its capabilities in providing innovative
solutions, optimizing operations, and creating new business opportunities. As deep learning con-
tinues its upward trajectory, it is set to redefine how we interact with technology, enhancing con-
venience, safety, and connectivity in our lives.

6.1.3. Applications of Deep Learning

Deep learning finds extensive use across numerous industries today. In finance, it is employed for
stockmarket prediction, risk assessment, and fraud detection. Inmarketing, it is used for customer
segmentation, personalization, and content optimization. In healthcare, machine learning aids in
diagnosis, treatment planning, and patient monitoring. The transformative impact on society is
evident.

For instance, deep learning algorithms can predict stock market trends, guiding investment strate-
gies and enhancing financial decisions. Similarly, in healthcare, deep learning can make medical
predictions that improve patient diagnosis and save lives. The benefits are clear: machine learning
not only predicts with greater accuracy than humans but also does so much more quickly.

In manufacturing, deep learning has had a significant impact. By continuously learning from vast
amounts of data collected during the manufacturing process, companies can boost productivity
while minimizing waste through improved efÏciency. This financial benefit for companies trans-
lates to better quality products at lower prices for customers. Machine learning enables manufac-
turers to continually refine their processes, producing higher quality goods more efÏciently than
ever before.

Deep learning also enhances everyday products like Netflix recommendations and Google Trans-
late text translations. Moreover, it helps companies like Amazon andUber reduce customer service
costs by swiftly identifying dissatisfied customers.

6.1.4. Relevance to Embedded AI

Embedded AI, the integration of AI algorithms directly into hardware devices, naturally gains
from the capabilities of deep learning. The combination of deep learning algorithms and embed-
ded systems has laid the groundwork for intelligent, autonomous devices capable of advanced
on-device data processing and analysis. Deep learning aids in extracting complex patterns and
information from input data, serving as an essential tool in the development of smart embedded
systems, from household appliances to industrial machinery. This collaboration aims to usher in
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a new era of intelligent, interconnected devices that can learn and adapt to user behavior and envi-
ronmental conditions, optimizing performance and offering unprecedented levels of convenience
and efÏciency.

6.2. Neural Networks

Deep learning draws inspiration from the neural networks of the human brain to create patterns
used in decision-making. This section delves into the foundational concepts that make up deep
learning, providing insights into the more complex topics discussed later in this primer.

Neural networks serve as the foundation of deep learning, inspired by the biological neural net-
works in the human brain to process and analyze data hierarchically. Below, we examine the pri-
mary components and structures commonly found in neural networks.

6.2.1. Perceptrons

The perceptron is the basic unit or node that serves as the foundation for more complex structures.
A perceptron takes various inputs, applies weights and a bias to these inputs, and then uses an
activation function to produce an output.

Figure 6.4. Perceptron (source)

Conceived in the 1950s, perceptrons paved the way for the development of more intricate neural
networks and have been a fundamental building block in the field of deep learning.

6.2.2. Multi-layer Perceptrons

Multi-layer perceptrons (MLPs) are an evolution of the single-layer perceptron model, featuring
multiple layers of nodes connected in a feedforward manner. These layers include an input layer

https://upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Rosenblattperceptron.png/500px-Rosenblattperceptron.png
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for data reception, several hidden layers for data processing, and an output layer for final result
generation. MLPs are skilled at identifying non-linear relationships and use a backpropagation
technique for training, where weights are optimized through a gradient descent algorithm.

Figure 6.5. Multilayer Perceptron

6.2.2.1. Forward Pass

The forward pass is the initial phase where data moves through the network from the input to the
output layer. During this phase, each layer performs specific computations on the input data, using
weights and biases before passing the resulting values to subsequent layers. The final output of
this phase is used to compute the loss, indicating the difference between the predicted output and
actual target values.

6.2.2.2. Backward Pass (Backpropagation)

Backpropagation is a key algorithm in training deep neural networks. This phase involves calcu-
lating the gradient of the loss function concerning each weight by using the chain rule, effectively
moving backward through the network. The gradients calculated in this step guide the adjustment
of weights with the objective of minimizing the loss function, thereby enhancing the network’s per-
formance with each iteration of training.

Grasping these foundational concepts paves the way to understanding more intricate deep learn-
ing architectures and techniques, fostering the development of more sophisticated and efÏcacious
applications, especially within the realm of embedded AI systems.

https://www.youtube.com/embed/aircAruvnKk?si=qfkBf8MJjC2WSyw3

https://www.youtube.com/embed/aircAruvnKk?si=qfkBf8MJjC2WSyw3
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6.2.3. Model Architectures

Deep learning architectures refer to the various structured approaches that dictate how neurons
and layers are organized and interact in neural networks. These architectures have evolved to tackle
different problems and data types effectively. This section offers an overview of some well-known
deep learning architectures and their characteristics.

6.2.3.1. Multi-Layer Perceptrons (MLPs)

MLPs are basic deep learning architectures, comprising three or more layers: an input layer, one or
more hidden layers, and an output layer. These layers are fully connected, meaning each neuron in
a layer is linked to every neuron in the preceding and following layers. MLPs can model intricate
functions and are used in a broad array of tasks, such as regression, classification, and pattern
recognition. Their capacity to learn non-linear relationships through backpropagationmakes them
a versatile instrument in the deep learning toolkit.

In embedded AI systems, MLPs can function as compact models for simpler tasks like sensor data
analysis or basic pattern recognition, where computational resources are limited. Their ability
to learn non-linear relationships with relatively less complexity makes them a suitable choice for
embedded systems.

6.2.3.2. Convolutional Neural Networks (CNNs)

CNNs are mainly used in image and video recognition tasks. This architecture employs convolu-
tional layers that apply a series of filters to the input data to identify features like edges, corners,
and textures. A typical CNN also includes pooling layers to reduce the spatial dimensions of the
data, and fully connected layers for classification. CNNs have proven highly effective in tasks such
as image recognition, object detection, and computer vision applications.

In embedded AI, CNNs are crucial for image and video recognition tasks, where real-time pro-
cessing is often needed. They can be optimized for embedded systems by using techniques like
quantization and pruning to minimize memory usage and computational demands, enabling efÏ-
cient object detection and facial recognition functionalities in devices with limited computational
resources.

6.2.3.3. Recurrent Neural Networks (RNNs)

RNNs are suitable for sequential data analysis, like time series forecasting and natural language
processing. In this architecture, connections between nodes form a directed graph along a tem-
poral sequence, allowing information to be carried across sequences through hidden state vectors.
Variants of RNNs include Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU),
designed to capture longer dependencies in sequence data.

In embedded systems, these networks can be used in voice recognition systems, predictive main-
tenance, or in IoT devices where sequential data patterns are common. Optimizations specific to
embedded platforms can assist in managing their typically high computational and memory re-
quirements.
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6.2.3.4. Generative Adversarial Networks (GANs)

GANs consist of two networks, a generator and a discriminator, trained simultaneously through
adversarial training (Goodfellow et al. 2020). The generator produces data that tries to mimic the
real data distribution, while the discriminator aims to distinguish between real and generated data.
GANs are widely used in image generation, style transfer, and data augmentation.

In embedded settings, GANs could be used for on-device data augmentation to enhance the train-
ing of models directly on the embedded device, enabling continual learning and adaptation to new
data without the need for cloud computing resources.

6.2.3.5. Autoencoders

Autoencoders are neural networks used for data compression and noise reduction (Bank, Koenig-
stein, and Giryes 2023). They are structured to encode input data into a lower-dimensional rep-
resentation and then decode it back to its original form. Variants like Variational Autoencoders
(VAEs) introduce probabilistic layers that allow for generative properties, finding applications in
image generation and anomaly detection.

Using autoencoders can help in efÏcient data transmission and storage, improving the overall per-
formance of embedded systems with limited computational and memory resources.

6.2.3.6. Transformer Networks

Transformer networks have emerged as a powerful architecture, especially in natural language
processing (Vaswani et al. 2017). These networks use self-attention mechanisms to weigh the influ-
ence of different input words on each output word, enabling parallel computation and capturing
intricate patterns in data. Transformer networks have led to state-of-the-art results in tasks like
language translation, summarization, and text generation.

These networks can be optimized to perform language-related tasks directly on-device. For ex-
ample, transformers can be used in embedded systems for real-time translation services or voice-
assisted interfaces, where latency and computational efÏciency are crucial. Techniques such as
model distillation can be employed to deploy these networks on embedded devices with limited
resources.

Each of these architectures serves specific purposes and excels in different domains, offering a rich
toolkit for addressing diverse problems in the realm of embedded AI systems. Understanding the
nuances of these architectures is crucial in designing effective and efÏcient deep learning models
for various applications.

6.2.4. Traditional ML vs Deep Learning

To succinctly highlight the differences, a comparative table illustrates the contrasting characteristics
between traditional ML and deep learning:
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Aspect Traditional ML Deep Learning

Data
Requirements

Low to Moderate (efÏcient with
smaller datasets)

High (requires large datasets for
nuanced learning)

Model Complexity Moderate (suitable for well-defined
problems)

High (detects intricate patterns,
suited for complex tasks)

Computational
Resources

Low to Moderate (cost-effective,
less resource-intensive)

High (demands substantial
computational power and resources)

Deployment
Speed

Fast (quicker training and
deployment cycles)

Slow (prolonged training times,
especially with larger datasets)

Interpretability High (clear insights into decision
pathways)

Low (complex layered structures,
“black box” nature)

Maintenance Easier (simple to update and
maintain)

Complex (requires more efforts in
maintenance and updates)

6.2.5. Choosing Traditional ML vs. DL

6.2.5.1. Data Availability and Volume

• Amount of Data: Traditional machine learning algorithms, such as decision trees or Naive
Bayes, are often more suitable when data availability is limited, offering robust predictions
even with smaller datasets. This is particularly true in cases like medical diagnostics for
disease prediction and customer segmentation in marketing.

• Data Diversity and Quality: Traditional machine learning algorithms are flexible in han-
dling various data types and often require less preprocessing compared to deep learning
models. They may also be more robust in situations with noisy data.

6.2.5.2. Complexity of the Problem

• Problem Granularity: Problems that are simple to moderately complex, which may involve
linear or polynomial relationships between variables, often find a better fit with traditional
machine learning methods.

• Hierarchical Feature Representation: Deep learning models are excellent in tasks that re-
quire hierarchical feature representation, such as image and speech recognition. However,
not all problems require this level of complexity, and traditionalmachine learning algorithms
may sometimes offer simpler and equally effective solutions.

6.2.5.3. Hardware and Computational Resources

• Resource Constraints: The availability of computational resources often influences the
choice between traditional ML and deep learning. The former is generally less resource-
intensive and thus preferable in environments with hardware limitations or budget
constraints.
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• Scalability and Speed: Traditional machine learning algorithms, like support vector ma-
chines (SVM), often allow for faster training times and easier scalability, particularly benefi-
cial in projects with tight timelines and growing data volumes.

6.2.5.4. Regulatory Compliance

Regulatory compliance is crucial in various industries, requiring adherence to guidelines and best
practices such as the GDPR in the EU. TraditionalMLmodels, due to their inherent interpretability,
often align better with these regulations, especially in sectors like finance and healthcare.

6.2.5.5. Interpretability

Understanding the decision-making process is easier with traditional machine learning techniques
compared to deep learningmodels, which function as “black boxes,” making it challenging to trace
decision pathways.

6.2.6. Making an Informed Choice

Given the constraints of embedded AI systems, understanding the differences between traditional
ML techniques and deep learning becomes essential. Both avenues offer unique advantages, and
their distinct characteristics often dictate the choice of one over the other in different scenarios.

Despite this, deep learning has been steadily outperforming traditional machine learningmethods
in several key areas due to a combination of abundant data, computational advancements, and
proven effectiveness in complex tasks.

Here are some specific reasons why we focus on deep learning in this text:

1. Superior Performance in Complex Tasks: Deep learning models, particularly deep neural
networks, excel in tasks where the relationships between data points are incredibly intricate.
Tasks like image and speech recognition, language translation, and playing complex games
like Go and Chess have seen significant advancements primarily through deep learning al-
gorithms.

2. EfÏcient Handling of Unstructured Data: Unlike traditional machine learning methods,
deep learning can process unstructured data more effectively. This is crucial in today’s data
landscape, where a large majority of data is unstructured, such as text, images, and videos.

3. Leveraging Big Data: With the availability of big data, deep learning models have the ca-
pacity to continually learn and improve. These models excel at utilizing large datasets to
enhance their predictive accuracy, a limitation in traditional machine learning approaches.

4. Hardware Advancements and Parallel Computing: The advent of powerful GPUs and the
availability of cloud computing platforms have enabled the rapid training of deep learn-
ing models. These advancements have addressed one of the significant challenges of deep
learning-the need for substantial computational resources.
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5. Dynamic Adaptability and Continuous Learning: Deep learning models can adapt to new
information or data dynamically. They can be trained to generalize their learning to new,
unseen data, which is crucial in rapidly evolving fields like autonomous driving or real-time
language translation.

While deep learning has gained significant traction, it’s essential to understand that traditional ma-
chine learning is far from obsolete. As we delve deeper into the intricacies of deep learning, we
will also highlight situations where traditional machine learning methods may be more appropri-
ate due to their simplicity, efÏciency, and interpretability. By focusing on deep learning in this
text, we aim to equip readers with the knowledge and tools needed to tackle modern, complex
problems across various domains, while also providing insights into the comparative advantages
and appropriate application scenarios for both deep learning and traditional machine learning
techniques.

6.3. Conclusion

Deep learning has risen as a potent set of techniques for addressing intricate pattern recognition
and prediction challenges. Starting with an overview, we outlined the fundamental concepts and
principles governing deep learning, laying the groundwork for more advanced studies.

Central to deep learning, we explored the basic ideas of neural networks, the powerful computa-
tional models inspired by the human brain’s interconnected neuron structure. This exploration
allowed us to appreciate the capabilities and potential of neural networks in creating sophisticated
algorithms capable of learning and adapting from data.

Understanding the role of libraries and frameworks was a key part of our discussion, offering in-
sights into the tools that can facilitate the development and deployment of deep learning models.
These resources not only ease the implementation of neural networks but also open avenues for
innovation and optimization.

Next, we tackled the challenges one might face when embedding deep learning algorithms within
embedded systems, providing a critical perspective on the complexities and considerations that
come with bringing AI to edge devices.

Furthermore, we delved into an examination of the limitations of deep learning. Through a se-
ries of discussions, we unraveled the challenges faced in deep learning applications and outlined
scenarios where traditional machine learning might outperform deep learning. These sections are
crucial for fostering a balanced view of the capabilities and limitations of deep learning.

In this primer, we have equipped you with the knowledge to make informed choices between
deploying traditional machine learning or deep learning techniques, depending on the unique de-
mands and constraints of a specific problem.

Aswe conclude this chapter, wehope you are nowwell-equippedwith the basic “language” of deep
learning and prepared to delve deeper into the subsequent chapters with a solid understanding
and critical perspective. The journey ahead is filled with exciting opportunities and challenges in
embedding AI within systems.
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6.4. Exercises

Now would be an excellent time to try some deep learning models:

Deep Learning Basic Models

• MLP (DNN) – Regression

– Boston Housing

• MLP (DNN) – Classification

– MNIST

– Breast Cancer

• CNN – Classification

– Cifar-10

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.

https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/1_Fundamentals/Class_07/TF_Boston_Housing_Regression.ipynb
https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/1_Fundamentals/Class_09/TF_MNIST_Classification_v2.ipynb
https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/1_Fundamentals/Class_13/docs/WDBC_Project/Breast_Cancer_Classification.ipynb
https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/1_Fundamentals/Class_11/CNN_Cifar_10.ipynb
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7. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• Past, Present, and Future of ML.

• Thinking About Loss.

• Minimizing Loss.

• First Neural Network.

• Understanding Neurons.

• Intro to CLassification.

• Training, Validation, and Test Data.

• Intro to Convolutions.

https://docs.google.com/presentation/d/16ensKAKBG8DOUHF4f5thTJklVGTadxjm3kPkdoPyabI/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1X92JqVkUY7k6yJXQcT2u83dpdrx5UzGFAJkkDMDfKe0/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1x3xbZHo4VtaZgoXfueCbOGGXuWRYj0nOsKwAAoGsrD0/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1zQwhTwF_plXBPQLxluahpzoQg-VdMyJbctaJxSUncag/edit?usp=drive_link
https://docs.google.com/presentation/d/1jXCAC6IT5f9XFKZbfhJ4p2D5URVTYqgAnkcQR4ALhSk/edit?usp=drive_link&resourcekey=0-K228bxVdwO2w3kr0daV2cw
https://docs.google.com/presentation/d/1VtWV9LAVLJ0uAkhFMbDJFjsUH6IvBDnPde4lR1cD2mo/edit?usp=drive_link
https://docs.google.com/presentation/d/1G56D0-qG9YWnzQQeje9LMpcLSotMgBCiMyfj53yz7lY/edit?usp=drive_link
https://docs.google.com/presentation/d/1hQDabWqaKUWRb60Cze-MhAyeUUVyNgyTUMBpLnqhtvc/edit?resourcekey=0-uHZoNwsbjeY3EIMD3fYAfg#slide=id.g94db9f9f78_0_2
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8. Exercises

Coming soon.





77

9. Labs

Coming soon.
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10. Embedded AI

Figure 10.1. DALL·E 3 Prompt: Illustration in a rectangular format depicting the merger of em-
bedded systems with Embedded AI. The left half of the image portrays traditional embedded sys-
tems, includingmicrocontrollers andprocessors, detailed andprecise. The right half showcases the
world of artificial intelligence, with abstract representations of machine learning models, neurons,
and data flow. The two halves are distinctly separated, emphasizing the individual significance of
embedded tech and AI, but they come together in harmony at the center.

Before delving into the intricacies of TinyML, it’s crucial to grasp the distinctions among Cloud
ML, Edge ML, and TinyML. In this chapter, we’ll explore each of these facets individually before
comparing and contrasting them.

Learning Objectives

• Compare Cloud ML, Edge ML, and TinyML in terms of processing location, latency,
privacy, computational power, etc.

• Identify benefits and challenges of each embedded ML approach.

• Recognize use cases suited for Cloud ML, Edge ML, and TinyML.
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• Trace the evolution of embedded systems and machine learning.

• Contrast different embedded ML approaches to select the right implementation based
on application requirements.

10.1. Introduction

ML is rapidly evolving, with new paradigms emerging that are reshaping how these algorithms
are developed, trained, and deployed. In particular, the area of embedded machine learning is
experiencing significant innovation, driven by the proliferation of smart sensors, edge devices, and
microcontrollers. This chapter explores the landscape of embeddedmachine learning, covering the
key approaches of Cloud ML, Edge ML, and TinyML (Figure 10.2).

Figure 10.2. Cloud vs. Edge vs. TinyML: The Spectrum of Distributed Intelligence

We begin by outlining the features or characteristics, benefits, challenges, and use cases for each
embedded ML variant. This provides context on where these technologies do well and where
they face limitations. We then bring all three approaches together into a comparative analysis,
evaluating them across critical parameters like latency, privacy, computational demands, andmore.
This side-by-side perspective highlights the unique strengths and tradeoffs involved in selecting
among these strategies.

Next, we trace the evolution timeline of embedded systems and machine learning, from the ori-
gins of wireless sensor networks to the integration of ML algorithms into microcontrollers. This
historical lens enriches our understanding of the rapid pace of advancement in this domain. Fi-
nally, practical hands-on exercises offer an opportunity to experiment first-hand with embedded
computer vision applications.
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By the end of this multipronged exploration of embedded ML, you will possess the conceptual
and practical knowledge to determine the appropriate ML implementation for your specific use
case constraints. The chapter aims to equip you with the contextual clarity and technical skills to
navigate this quickly shifting landscape, empowering impactful innovations.

10.2. Cloud ML

10.2.1. Characteristics

CloudML is a specialized branch of the broader machine learning field that operates within cloud
computing environments. It offers a virtual platform for the development, training, and deploy-
ment of machine learning models, providing both flexibility and scalability.

At its foundation, Cloud ML utilizes a powerful blend of high-capacity servers, expansive storage
solutions, and robust networking architectures, all located in data centers around the world (Fig-
ure 10.3). This setup centralizes computational resources, simplifying themanagement and scaling
of machine learning projects.

The cloud environment excels in data processing and model training, designed to manage large
data volumes and complex computations. Models crafted in Cloud ML can leverage vast amounts
of data, processed and analyzed centrally, thereby enhancing the model’s learning and predictive
performance.

Figure 10.3. Cloud ML Example: Cloud TPU accelerator supercomputers in google data center (Source:
Google)

https://blog.google/technology/ai/google-gemini-ai/#scalable-efficient
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10.2.2. Benefits

Cloud ML is synonymous with immense computational power, adept at handling complex algo-
rithms and large datasets. This is particularly advantageous for machine learning models that
demand significant computational resources, effectively circumventing the constraints of local se-
tups.

A key advantage of Cloud ML is its dynamic scalability. As data volumes or computational needs
grow, the infrastructure can adapt seamlessly, ensuring consistent performance.

Cloud ML platforms often offer a wide array of advanced tools and algorithms. Developers can
utilize these resources to accelerate the building, training, and deployment of sophisticatedmodels,
thereby fostering innovation.

10.2.3. Challenges

Despite its capabilities, Cloud ML can face latency issues, especially in applications that require
real-time responses. The time taken to send data to centralized servers and back can introduce
delays, a significant drawback in time-sensitive scenarios.

Centralizing data processing and storage can also create vulnerabilities in data privacy and secu-
rity. Data centers become attractive targets for cyber-attacks, requiring substantial investments in
security measures to protect sensitive data.

Additionally, as data processing needs escalate, so do the costs of using cloud services. Organiza-
tions dealing with large data volumes may encounter rising costs, potentially affecting the long-
term scalability and feasibility of their operations.

10.2.4. Example Use Cases

Cloud ML plays an important role in powering virtual assistants like Siri and Alexa. These sys-
tems harness the cloud’s computational prowess to analyze and process voice inputs, delivering
intelligent and personalized responses to users.

It also serves as the foundation for advanced recommendation systems in platforms like Netflix
and Amazon. These systems sift through extensive datasets to identify patterns and preferences,
offering personalized content or product suggestions to boost user engagement.

In the financial realm, CloudML has been instrumental in creating robust fraud detection systems.
These systems scrutinize vast amounts of transactional data to flag potential fraudulent activities,
enabling timely interventions and reducing financial risks.

In summary, it’s virtually impossible to navigate the internet today without encountering some
form of Cloud ML, either directly or indirectly. From the personalized ads that appear on your
social media feed to the predictive text features in email services, Cloud ML is deeply integrated
into our online experiences. It powers smart algorithms that recommend products on e-commerce
sites, fine-tunes search engines to deliver accurate results, and even automates the tagging and
categorization of photos on platforms like Facebook.
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Furthermore, Cloud ML bolsters user security through anomaly detection systems that monitor
for unusual activities, potentially shielding users from cyber threats. Essentially, it acts as the un-
seen powerhouse, continuously operating behind the scenes to refine, secure, and personalize our
digital interactions, making themodern internet amore intuitive and user-friendly environment.

10.3. Edge ML

10.3.1. Characteristics

Definition of Edge ML

EdgeMachine Learning (EdgeML) is the practice of runningmachine learning algorithms directly
on endpoint devices or closer to where the data is generated, rather than relying on centralized
cloud servers. This approach aims to bring computation closer to the data source, reducing the
need to send large volumes of data over networks, which often results in lower latency and im-
proved data privacy.

Decentralized Data Processing

In Edge ML, data processing happens in a decentralized fashion. Instead of sending data to re-
mote servers, the data is processed locally on devices like smartphones, tablets, or IoT devices
(Figure 10.4). This local processing allows devices to make quick decisions based on the data they
collect, without having to rely heavily on a central server’s resources. This decentralization is par-
ticularly important in real-time applications where even a slight delay can have significant conse-
quences.

Local Data Storage and Computation

Local data storage and computation are key features of Edge ML. This setup ensures that data can
be stored and analyzed directly on the devices, thereby maintaining the privacy of the data and
reducing the need for constant internet connectivity. Moreover, this often leads to more efÏcient
computation, as data doesn’t have to travel long distances, and computations are performed with
a more nuanced understanding of the local context, which can sometimes result in more insightful
analyses.

10.3.2. Benefits

Reduced Latency

One of the main advantages of Edge ML is the significant reduction in latency compared to Cloud
ML. In situations where milliseconds count, such as in autonomous vehicles where quick decision-
making can mean the difference between safety and an accident, this reduced latency can be a
critical benefit.

Enhanced Data Privacy

Edge ML also offers improved data privacy, as data is primarily stored and processed locally. This
minimizes the risk of data breaches that are more common in centralized data storage solutions.
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Figure 10.4. Edge ML Example: Data is processed locally on Internet of Things (IoT) devices (Source: Edge
Impulse)

This means sensitive information can be kept more secure, as it’s not sent over networks where it
could potentially be intercepted.

Lower Bandwidth Usage

Operating closer to the data source means that less data needs to be sent over networks, reducing
bandwidth usage. This can result in cost savings and efÏciency gains, especially in environments
where bandwidth is limited or costly.

10.3.3. Challenges

Limited Computational Resources Compared to Cloud ML

However, Edge ML is not without its challenges. One of the main concerns is the limited compu-
tational resources compared to cloud-based solutions. Endpoint devices may not have the same
processing power or storage capacity as cloud servers, which can limit the complexity of the ma-
chine learning models that can be deployed.

Complexity in Managing Edge Nodes

Managing a network of edge nodes can introduce complexity, especially when it comes to coor-
dination, updates, and maintenance. Ensuring that all nodes are operating seamlessly and are
up-to-date with the latest algorithms and security protocols can be a logistical challenge.

Security Concerns at the Edge Nodes

https://docs.edgeimpulse.com/docs/concepts/what-is-edge-machine-learning
https://docs.edgeimpulse.com/docs/concepts/what-is-edge-machine-learning
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While Edge ML offers enhanced data privacy, edge nodes can sometimes be more vulnerable to
physical and cyber-attacks. Developing robust security protocols that protect data at each node,
without compromising the system’s efÏciency, remains a significant challenge in deploying Edge
ML solutions.

10.3.4. Example Use Cases

Edge ML has a wide range of applications, from autonomous vehicles and smart homes to in-
dustrial IoT. These examples were chosen to highlight scenarios where real-time data processing,
reduced latency, and enhanced privacy are not just beneficial but often critical to the operation and
success of these technologies. They serve to demonstrate the pivotal role that Edge ML can play
in driving advancements in various sectors, fostering innovation, and paving the way for more
intelligent, responsive, and adaptive systems.

Autonomous Vehicles

Autonomous vehicles stand as a prime example of EdgeML’s potential. These vehicles rely heavily
on real-time data processing to navigate and make decisions. Localized machine learning models
assist in quickly analyzing data from various sensors to make immediate driving decisions, essen-
tially ensuring safety and smooth operation.

Smart Homes and Buildings

In smart homes and buildings, Edge ML plays a crucial role in efÏciently managing various sys-
tems, from lighting and heating to security. By processing data locally, these systems can operate
more responsively and in harmony with the occupants’ habits and preferences, creating a more
comfortable living environment.

Industrial IoT

The Industrial Internet of Things (IoT) leverages Edge ML to monitor and control complex indus-
trial processes. Here, machine learning models can analyze data from numerous sensors in real-
time, enabling predictive maintenance, optimizing operations, and enhancing safety measures.
This brings about a revolution in industrial automation and efÏciency.

The applicability of Edge ML is vast and not limited to these examples. Various other sectors,
including healthcare, agriculture, and urban planning, are exploring and integrating Edge ML
to develop solutions that are both innovative and responsive to real-world needs and challenges,
heralding a new era of smart, interconnected systems.

10.4. Tiny ML

10.4.1. Characteristics

Definition of TinyML

TinyML sits at the crossroads of embedded systems and machine learning, representing a bur-
geoning field that brings smart algorithms directly to tiny microcontrollers and sensors. These
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microcontrollers operate under severe resource constraints, particularly in terms of memory, stor-
age, and computational power (see a TinyML kit example in Figure 10.5).

On-Device Machine Learning

In TinyML, the focus is on on-device machine learning. This means that machine learning mod-
els are not just deployed but also trained right on the device, eliminating the need for external
servers or cloud infrastructures. This allows TinyML to enable intelligent decision-making right
where the data is generated, making real-time insights and actions possible, even in settings where
connectivity is limited or unavailable.

Low Power and Resource-Constrained Environments

TinyML excels in low-power and resource-constrained settings. These environments require so-
lutions that are highly optimized to function within the available resources. TinyML meets this
need through specialized algorithms and models designed to deliver decent performance while
consuming minimal energy, thus ensuring extended operational periods, even in battery-powered
devices.

Figure 10.5. Tiny ML Example: (Left) A TinyML kit that includes Arduino Nano 33 BLE Sense, an OV7675
camera module, and TinyML shield. (Right) The Nano 33 BLE includes a host of onboard integrated sensors,
a Bluetooth Low Energy module, and an Arm Cortex-M microcontroller that can run neural-network models
using TensorFlow Lite for Microcontrollers. (Source: Widening Access to Applied Machine Learning with
TinyML))

10.4.2. Benefits

Extremely Low Latency

One of the standout benefits of TinyML is its ability to offer ultra-low latency. Since computa-
tion occurs directly on the device, the time required to send data to external servers and receive
a response is eliminated. This is crucial in applications requiring immediate decision-making, en-
abling quick responses to changing conditions.

High Data Security

https://arxiv.org/pdf/2106.04008.pdf
https://arxiv.org/pdf/2106.04008.pdf
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TinyML inherently enhances data security. Because data processing and analysis happen on the
device itself, the risk of data interception during transmission is virtually eliminated. This local-
ized approach to data management ensures that sensitive information stays on the device, thereby
strengthening user data security.

Energy EfÏciency

TinyML operates within an energy-efÏcient framework, a necessity given the resource-constrained
environments in which it functions. By employing lean algorithms and optimized computational
methods, TinyML ensures that devices can execute complex tasks without rapidly depleting bat-
tery life, making it a sustainable option for long-term deployments.

10.4.3. Challenges

Limited Computational Capabilities

However, the shift to TinyML comes with its set of hurdles. The primary limitation is the con-
strained computational capabilities of the devices. The need to operate within such limits means
that deployed models must be simplified, which could affect the accuracy and sophistication of
the solutions.

Complex Development Cycle

TinyML also introduces a complicated development cycle. Crafting models that are both
lightweight and effective demands a deep understanding of machine learning principles, along
with expertise in embedded systems. This complexity calls for a collaborative development
approach, where multi-domain expertise is essential for success.

Model Optimization and Compression

A central challenge in TinyML is model optimization and compression. Creatingmachine learning
models that can operate effectively within the limited memory and computational power of micro-
controllers requires innovative approaches tomodel design. Developers often face the challenge of
striking a delicate balance, optimizing models to maintain effectiveness while fitting within strin-
gent resource constraints.

10.4.4. Example Use Cases

Wearable Devices

In wearables, TinyML opens the door to smarter, more responsive gadgets. From fitness trackers
offering real-time workout feedback to smart glasses processing visual data on the fly, TinyML
is transforming how we engage with wearable tech, delivering personalized experiences directly
from the device.

Predictive Maintenance

In industrial settings, TinyML plays a significant role in predictive maintenance. By deploying
TinyML algorithms on sensors that monitor equipment health, companies can preemptively iden-
tify potential issues, reducing downtime and preventing costly breakdowns. On-site data analysis
ensures quick responses, potentially stopping minor issues from becoming major problems.
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Anomaly Detection

TinyML can be employed to create anomaly detection models that identify unusual data patterns.
For instance, a smart factory could use TinyML tomonitor industrial processes and spot anomalies,
helping prevent accidents and improve product quality. Similarly, a security company could use
TinyML to monitor network trafÏc for unusual patterns, aiding in the detection and prevention of
cyber attacks. In healthcare, TinyML couldmonitor patient data for anomalies, aiding early disease
detection and better patient treatment.

Environmental Monitoring

In the field of environmental monitoring, TinyML enables real-time data analysis from various
field-deployed sensors. These could range from air quality monitoring in cities to wildlife tracking
in protected areas. Through TinyML, data can be processed locally, allowing for quick responses to
changing conditions and providing a nuanced understanding of environmental patterns, crucial
for informed decision-making.

In summary, TinyML serves as a trailblazer in the evolution of machine learning, fostering inno-
vation across various fields by bringing intelligence directly to the edge. Its potential to transform
our interaction with technology and the world is immense, promising a future where devices are
not just connected but also intelligent, capable of making real-time decisions and responses.

10.5. Comparison

Up to this point, we’ve explored each of the different ML variants individually. Now, let’s bring
them all together for a comprehensive view. Below is a table offering a comparative analysis of
Cloud ML, Edge ML, and TinyML based on various features and aspects. This comparison aims
to provide a clear perspective on the unique advantages and distinguishing factors of each, aiding
in making informed decisions based on the specific needs and constraints of a given application or
project.

Feature/AspectCloud ML Edge ML TinyML

Processing
Location

Centralized servers (Data
Centers)

Local devices (closer to
data sources)

On-device
(microcontrollers,
embedded systems)

Latency High (Depends on
internet connectivity)

Moderate (Reduced
latency compared to
Cloud ML)

Low (Immediate
processing without
network delay)

Data
Privacy

Moderate (Data
transmitted over
networks)

High (Data remains on
local networks)

Very High (Data
processed on-device, not
transmitted)

Computational
Power

High (Utilizes powerful
data center infrastructure)

Moderate (Utilizes local
device capabilities)

Low (Limited to the
power of the embedded
system)

Energy
Consump-
tion

High (Data centers
consume significant
energy)

Moderate (Less than data
centers, more than
TinyML)

Low (Highly
energy-efÏcient,
designed for low power)
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Feature/AspectCloud ML Edge ML TinyML

Scalability High (Easy to scale with
additional server
resources)

Moderate (Depends on
local device capabilities)

Low (Limited by the
hardware resources of
the device)

Cost High (Recurring costs for
server usage,
maintenance)

Variable (Depends on the
complexity of local
setup)

Low (Primarily upfront
costs for hardware
components)

Connectivity
Depen-
dence

High (Requires stable
internet connectivity)

Low (Can operate with
intermittent
connectivity)

Very Low (Can operate
without any network
connectivity)

Real-time
Processing

Moderate (Can be affected
by network latency)

High (Capable of
real-time processing
locally)

Very High (Immediate
processing with minimal
latency)

Application
Examples

Big Data Analysis, Virtual
Assistants

Autonomous Vehicles,
Smart Homes

Wearables, Sensor
Networks

Development
Complexity

Moderate to High
(Requires knowledge in
cloud computing)

Moderate (Requires
knowledge in local
network setup)

Moderate to High
(Requires expertise in
embedded systems)

10.6. Evolution Timeline

10.6.1. Late 1990s - Early 2000s: The Dawn of Wireless Sensor Networks

During the late 1990s and early 2000s, wireless sensor networks (WSNs) marked a significant mile-
stone in information technology. These networks consisted of sensor nodes that could collect and
wirelessly transmit data. With capabilities to monitor various environmental conditions like tem-
perature and humidity, WSNs found applications across diverse sectors, including industrial au-
tomation, healthcare, and environmental monitoring. This era also saw the development of stan-
dardized protocols like Zigbee, which facilitated secure and reliable data transmission.

10.6.2. Mid-2000s: The Rise of the Internet of Things (IoT)

Moving into the mid-2000s, the Internet of Things (IoT) began to take shape. IoT expanded upon
the principles of WSNs, connecting a variety of devices and enabling them to communicate and
share data over the internet. The incorporation of embedded systems in IoT devices led to smarter
operations, as these devices could nownot only collect but also process data for intelligent decision-
making. This erawitnessed thewidespread adoption of smart homes and industrial IoT, transform-
ing our interaction with devices and systems.

10.6.3. Late 2000s - Early 2010s: The Smartphone Revolution and Mobile Computing

The late 2000s ushered in the smartphone revolution, significantly impacting the evolution of em-
bedded systems. Smartphones evolved into powerful computing devices, equipped with various
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sensors and embedded systems capable of executing complex tasks. This integration laid the foun-
dation for mobile computing, with applications ranging from gaming and navigation to health
monitoring.

10.6.4. Mid-2010s: The Era of Big Data and Edge Computing

By the mid-2010s, the enormous volume of data generated by interconnected devices necessitated
new data processing strategies. Big Data technologies emerged to manage this data influx, and
alongside, the concept of edge computing gained prominence. Edge computing brought data
processing closer to the data source, reducing latency and bandwidth usage. Embedded systems
adapted to support edge computing, enabling substantial local data processing and lessening the
reliance on centralized data centers.

10.6.5. Late 2010s - Early 2020s: Integration of Machine Learning and AI

As we approached the late 2010s and early 2020s, machine learning and AI became integral to em-
bedded systems. This integration led to the development of smart devices with enhanced decision-
making and predictive capabilities. Advances in natural language processing, computer vision,
and predictive analytics were notable, as embedded systems became capable of supporting com-
plex AI algorithms.

10.6.6. Early 2020s: The Advent of TinyML

Entering the 2020s, the field saw the emergence of TinyML, bringing machine learning capabilities
to ultra-low-power microcontrollers. This development enabled the deployment of ML models di-
rectly onto small embedded devices, allowing for intelligent edge data processing even on devices
with limited computational resources. This has expanded the possibilities for IoT devices, making
them smarter and more autonomous.

10.6.7. 2023 and Beyond: Towards a Future of Ubiquitous Embedded AI

As we move further into this decade, we foresee a transformative phase where embedded AI and
TinyML transition from being innovative concepts to pervasive forces integral to our technological
landscape. This promises a future where the lines between artificial intelligence and daily func-
tionalities increasingly blur, heralding a new era of innovation and efÏciency.

10.7. Conclusion

In this chapter, we’ve offered a panoramic view of the evolving landscape of embedded machine
learning, covering cloud, edge, and tiny ML paradigms. Cloud-based machine learning leverages
the immense computational resources of cloud platforms to enable powerful and accurate models
but comes with its own set of limitations, including latency and privacy concerns. Edge ML mit-
igates these limitations by bringing ML inference directly to edge devices, offering lower latency
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and reduced connectivity needs. TinyML takes this a step further by miniaturizing ML models
to run directly on highly resource-constrained devices, opening up a new category of intelligent
applications.

Each approach comes with its own set of trade-offs, including model complexity, latency, privacy,
and hardware costs. Over time, we anticipate a convergence of these embedded ML approaches,
with cloud pre-training facilitating more sophisticated edge and tiny ML implementations. Ad-
vances like federated learning and on-device learning will also enable embedded devices to refine
their models by learning from real-world data.

The embedded ML landscape is in a state of rapid evolution, poised to enable intelligent applica-
tions across a broad spectrum of devices and use cases. This chapter serves as a snapshot of the
current state of embeddedML, and as algorithms, hardware, and connectivity continue to improve,
we can expect embedded devices of all sizes to become increasingly capable, unlocking transfor-
mative new applications for artificial intelligence.

Resources

Here are a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the future.

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.
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11. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• Embedded ML Software.

• Embedded Inference.

https://docs.google.com/presentation/d/17wgAfoF24Rcx7uPrbau0c8FyzXIUWbe48qGGBOXXT-g/edit?resourcekey=0-Uv29DvmF7gYzKdOoRtn0vw#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1FOUQ9dbe3l_qTa2AnroSbOz0ykuCz5cbTNO77tvFxEs/edit?usp=drive_link
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12. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.
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13. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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14. AI Workflow

Figure 14.1. DALL·E 3 Prompt: Create a rectangular illustration of a stylized flowchart representing
the AI workflow/pipeline. From left to right, depict the stages as follows: ‘Data Collection’ with a
database icon, ‘Data Preprocessing’ with a filter icon, ‘Model Design’ with a brain icon, ‘Training’
with a weight icon, ‘Evaluation’ with a checkmark, and ‘Deployment’ with a rocket. Connect each
stage with arrows to guide the viewer horizontally through the AI processes, emphasizing the
sequential and interconnected nature of these steps.

In this chapter, we’ll explore the machine learning (ML) workflow, setting the stage for subsequent
chapters that delve into the specifics. To ensurewedon’t lose sight of the bigger picture, this chapter
offers a high-level overview of the steps involved in the ML workflow.

The ML workflow is a structured approach that guides professionals and researchers through the
process of developing, deploying, andmaintainingMLmodels. Thisworkflow is generally divided
into several crucial stages, each contributing to the effective development of intelligent systems.
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Learning Objectives

• Understand theMLworkflow and gain insights into the structured approach and stages
involved in developing, deploying, and maintaining machine learning models.

• Learn about the unique challenges and distinctions between workflows for Traditional
machine learning and embedded AI.

• Appreciate the various roles involved in ML projects and understand their respective
responsibilities and significance.

• Understanding the importance, applications, and the considerations for implementing
ML models in resource-constrained environments.

• Gain awareness about the ethical and legal aspects that need to be considered and ad-
hered to in ML and embedded AI projects.

• Establish a basic understanding of ML workflows and roles to be well-prepared for
deeper exploration in the following chapters.

14.1. Overview

Figure 14.2. Multi-step design methodology for the development of a machine learning model. Commonly
referred to as the machine learning lifecycle

Developing a successful machine learning model requires a systematic workflow. This end-to-end
process enables you to build, deploy and maintain models effectively. As shown in Figure 14.2, It
typically involves the following key steps:
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1. ProblemDefinition - Start by clearly articulating the specific problem youwant to solve. This
focuses your efforts during data collection and model building.

2. Data Collection to Preparation - Gather relevant, high-quality training data that captures all
aspects of the problem. Clean and preprocess the data to get it ready for modeling.

3. Model Selection and Training - Choose a machine learning algorithm suited to your prob-
lem type and data. Consider pros and cons of different approaches. Feed the prepared data
into the model to train it. Training time varies based on data size and model complexity.

4. Model Evaluation - Test the trained model on new unseen data to measure its predictive
accuracy. Identify any limitations.

5. Model Deployment - Integrate the validated model into applications or systems to start op-
erationalization.

6. Monitor and Maintain - Track model performance in production. Retrain periodically on
new data to keep it current.

Following this structured ML workflow helps guide you through the key phases of development.
It ensures you build effective and robust models that are ready for real-world deployment. The
end result is higher quality models that solve your business needs.

TheMLworkflow is iterative, requiring ongoingmonitoring andpotential adjustments. Additional
considerations include:

• Version Control: Keep track of code and data changes to reproduce results and revert to
earlier versions if needed.

• Documentation: Maintain detailed documentation to allow forworkflowunderstanding and
reproduction.

• Testing: Rigorously test the workflow to ensure its functionality.
• Security: Safeguard your workflow and data, particularly when deploying models in pro-

duction settings.

14.2. Traditional vs. Embedded AI

TheMLworkflow serves as a universal guide, applicable across various platforms including cloud-
based solutions, edge computing, and TinyML. However, the workflow for Embedded AI intro-
duces unique complexities and challenges, which not only make it a captivating domain but also
pave the way for remarkable innovations.

14.2.1. Resource Optimization

• Traditional ML Workflow: Prioritizes model accuracy and performance, often leveraging
abundant computational resources in cloud or data center environments.

• Embedded AI Workflow: Requires careful planning to optimize model size and computa-
tional demands, given the resource constraints of embedded systems. Techniques like model
quantization and pruning are crucial.
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14.2.2. Real-time Processing

• Traditional ML Workflow: Less emphasis on real-time processing, often relying on batch
data processing.

• Embedded AI Workflow: Prioritizes real-time data processing, making low latency and
quick execution essential, especially in applications like autonomous vehicles and industrial
automation.

14.2.3. Data Management and Privacy

• Traditional MLWorkflow: Processes data in centralized locations, often necessitating exten-
sive data transfer and focusing on data security during transit and storage.

• Embedded AI Workflow: Leverages edge computing to process data closer to its source,
reducing data transmission and enhancing privacy through data localization.

14.2.4. Hardware-Software Integration

• Traditional ML Workflow: Typically operates on general-purpose hardware, with software
development occurring somewhat independently.

• Embedded AI Workflow: Involves a more integrated approach to hardware and software
development, often incorporating custom chips or hardware accelerators to achieve optimal
performance.

14.3. Roles & Responsibilities

Creating an ML solution, especially for embedded AI, is a multidisciplinary effort involving vari-
ous specialists.

Here’s a rundown of the typical roles involved:

Role Responsibilities

Project Manager Oversees the project, ensuring timelines and milestones are met.
Domain Experts Offer domain-specific insights to define project requirements.
Data Scientists Specialize in data analysis and model development.
Machine Learning
Engineers

Focus on model development and deployment.

Data Engineers Manage data pipelines.
Embedded Systems
Engineers

Integrate ML models into embedded systems.

Software Developers Develop software components for AI system integration.
Hardware Engineers Design and optimize hardware for the embedded AI system.
UI/UX Designers Focus on user-centric design.
QA Engineers Ensure the system meets quality standards.
Ethicists and Legal
Advisors

Consult on ethical and legal compliance.
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Role Responsibilities

Operations and
Maintenance
Personnel

Monitor and maintain the deployed system.

Security Specialists Ensure system security.

Understanding these roles is crucial for the successful completion of an ML project. As we pro-
ceed through the upcoming chapters, we’ll delve into each role’s essence and expertise, fostering a
comprehensive understanding of the complexities involved in embedded AI projects. This holistic
view not only facilitates seamless collaboration but also nurtures an environment ripe for innova-
tion and breakthroughs.

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.
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15. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• ML Workflow.

• ML Lifecycle.

https://docs.google.com/presentation/d/1rWXLegepZjpJHonYLKcOJYfOIunmOBnrg0SGhy1pZ_I/edit
https://docs.google.com/presentation/d/1P-h2Zi0FzyA3TvV3oezjpcSylzEbts9b3uKS07_lF4A/edit
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16. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.
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17. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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18. Data Engineering

Figure 18.1. DALL·E 3 Prompt: Create a rectangular illustration visualizing the concept of data
engineering. Include elements such as raw data sources, data processing pipelines, storage sys-
tems, and refined datasets. Show how raw data is transformed through cleaning, processing, and
storage to become valuable information that can be analyzed and used for decision-making.

Data is the lifeblood of AI systems. Without good data, even the most advanced machine learn-
ing algorithms will fail. In this section, we will dive into the intricacies of building high-quality
datasets to fuel our AI models. Data engineering encompasses the processes of collecting, storing,
processing, and managing data for training machine learning models.

Learning Objectives

• Understand the importance of clearly defining the problem statement and objectives
when embarking on a ML project.

• Recognize various data sourcing techniques likeweb scraping, crowdsourcing, and syn-
thetic data generation, along with their advantages and limitations.

• Appreciate the need for thoughtful data labeling, using manual or AI-assisted ap-
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proaches, to create high-quality training datasets.

• Briefly learn different methods for storing and managing data such as databases, data
warehouses, and data lakes.

• Comprehend the role of transparency throughmetadata and dataset documentation, as
well as tracking data provenance to facilitate ethics, auditing, and reproducibility.

• Understand how licensing protocols govern legal data access and usage, necessitating
careful compliance.

• Recognize key challenges in data engineering, including privacy risks, representation
gaps, legal restrictions around data access, and balancing competing priorities.

18.1. Introduction

Dataset creators face complex privacy and representation challenges when building high-quality
training data, especially for sensitive domains like healthcare. Legally, creators may need to re-
move direct identifiers like names and ages. Even without legal obligations, removing such in-
formation can help build user trust. However, excessive anonymization can compromise dataset
utility. Techniques like differential privacy1, aggregation, and reducing detail provide alternatives
to balance privacy and utility, but have downsides. Creatorsmust strike a thoughtful balance based
on use case.

Looking beyond privacy, creators need to proactively assess and address representation gaps that
could introduce model biases. It is crucial yet insufÏcient to ensure diversity across individual
variables like gender, race, and accent. Combinations of characteristics also require assessment, as
models can struggle when certain intersections are absent. For example, a medical dataset could
have balanced gender, age, and diagnosis data individually, but lack enough cases capturing el-
derly women with a specific condition. Such higher-order gaps are not immediately obvious but
can critically impact model performance.

Creating useful, ethical training data requires holistic consideration of privacy risks and represen-
tation gaps. Perfect solutions are elusive. However, conscientious data engineering practices like
anonymization, aggregation, undersampling overrepresented groups, and synthesized data gener-
ation can help balance competing needs. This facilitates models that are both accurate and socially
responsible. Cross-functional collaboration and external audits can also strengthen training data.
The challenges are multifaceted, but surmountable with thoughtful effort.

We begin by discussing data collection: Where do we source data, and how do we gather it? Op-
tions range from scraping the web, accessing APIs, utilizing sensors and IoT devices, to conducting
surveys and gathering user input. These methods reflect real-world practices. Next, we delve into
data labeling, including considerations for human involvement. We’ll discuss the trade-offs and
limitations of human labeling and explore emerging methods for automated labeling. Following
that, we’ll address data cleaning and preprocessing, a crucial yet frequently undervalued step in
preparing raw data for AI model training. Data augmentation comes next, a strategy for enhanc-
ing limited datasets by generating synthetic samples. This is particularly pertinent for embedded
systems, as many use cases don’t have extensive data repositories readily available for curation.

https://blog.google/technology/health/healthcare-ai-systems-put-people-center/
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Synthetic data generation emerges as a viable alternative, though it comeswith its own set of advan-
tages and disadvantages. We’ll also touch upon dataset versioning, emphasizing the importance
of tracking data modifications over time. Data is ever-evolving; hence, it’s imperative to devise
strategies for managing and storing expansive datasets. By the end of this section, you’ll possess a
comprehensive understanding of the entire data pipeline, from collection to storage, essential for
operationalizing AI systems. Let’s embark on this journey!

18.2. Problem Definition

In many domains of machine learning, while sophisticated algorithms take center stage, the funda-
mental importance of data quality is often overlooked. This neglect gives rise to “Data Cascades”
(see Figure 18.2) - events where lapses in data quality compound, leading to negative downstream
consequences such as flawed predictions, project terminations, and even potential harm to com-
munities.

Figure 18.2. A visual representation of the stages in the machine learning pipeline and the potential pitfalls,
illustrating how data quality lapses can lead to cascading negative consequences throughout the process.

DespitemanyMLprofessionals recognizing the importance of data, numerous practitioners report
facing these cascades. This highlights a systemic issue: while the allure of developing advanced
models remains, data is often underappreciated.

Take, for example, Keyword Spotting (KWS) (see Figure 18.3). KWS serves as a prime example
of TinyML in action and is a critical technology behind voice-enabled interfaces on endpoint de-
vices such as smartphones. Typically functioning as lightweightwake-word engines, these systems
are consistently active, listening for a specific phrase to trigger further actions. When we say the
phrases “Ok Google” or “Alexa,” this initiates a process on amicrocontroller embeddedwithin the
device. Despite their limited resources, these microcontrollers play an important role in enabling
seamless voice interactions with devices, often operating in environments with high levels of am-
bient noise. The uniqueness of the wake-word helps minimize false positives, ensuring that the
system is not triggered inadvertently.

It is important to appreciate that these keyword spotting technologies are not isolated; they inte-
grate seamlessly into larger systems, processing signals continuously while managing low power
consumption. These systems extend beyond simple keyword recognition, evolving to facilitate di-
verse sound detections, such as the breaking of glass. This evolution is geared towards creating in-

https://research.google/pubs/pub49953/
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telligent devices capable of understanding and responding to amyriad of vocal commands, herald-
ing a future where even household appliances can be controlled through voice interactions.

Figure 18.3. The seamless integration of Keyword Spotting technology allows users to command their devices
with simple voice prompts, even in ambient noise environments.

Building a reliable KWS model is not a straightforward task. It demands a deep understanding of
the deployment scenario, encompassing where and how these devices will operate. For instance,
a KWS model’s effectiveness is not just about recognizing a word; it’s about discerning it among
various accents and background noises, whether in a bustling cafe or amid the blaring sound of a
television in a living room or a kitchen where these devices are commonly found. It’s about ensur-
ing that a whispered “Alexa” in the dead of night or a shouted “OkGoogle” in a noisymarketplace
are both recognized with equal precision.

Moreover, many of the current KWS voice assistants support a limited number of languages, leav-
ing a substantial portion of the world’s linguistic diversity unrepresented. This limitation is partly
due to the difÏculty in gathering andmonetizing data for languages spoken by smaller populations.
The long-tail distribution of languages implies that many languages have limited data available,
making the development of supportive technologies challenging.

This level of accuracy and robustness hinges on the availability of data, quality of data, ability to
label the data correctly, and ensuring transparency of the data for the end user-all before the data
is used to train the model. But it all begins with a clear understanding of the problem statement
or definition.

Generally, in ML, problem definition has a few key steps:

1. Identifying the problem definition clearly
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2. Setting clear objectives

3. Establishing success benchmark

4. Understanding end-user engagement/use

5. Understanding the constraints and limitations of deployment

6. Followed by finally doing the data collection.

Laying a solid foundation for a project is essential for its trajectory and eventual success. Central to
this foundation is first identifying a clear problem, such as ensuring that voice commands in voice
assistance systems are recognized consistently across varying environments. Clear objectives, like
creating representative datasets for diverse scenarios, provide a unified direction. Benchmarks,
such as system accuracy in keyword detection, offer measurable outcomes to gauge progress. En-
gaging with stakeholders, from end-users to investors, provides invaluable insights and ensures
alignment with market needs. Additionally, when delving into areas like voice assistance, un-
derstanding platform constraints is pivotal. Embedded systems, such as microcontrollers, come
with inherent limitations in processing power, memory, and energy efÏciency. Recognizing these
limitations ensures that functionalities, like keyword detection, are tailored to operate optimally,
balancing performance with resource conservation.

In this context, using KWS as an example, we can break each of the steps out as follows:

1. Identifying the Problem: At its core, KWS aims to detect specific keywords amidst a sea of
ambient sounds and other spoken words. The primary problem is to design a system that
can recognize these keywords with high accuracy, low latency, and minimal false positives
or negatives, especially when deployed on devices with limited computational resources.

2. Setting Clear Objectives: The objectives for a KWS system might include:

• Achieving a specific accuracy rate (e.g., 98% accuracy in keyword detection).
• Ensuring low latency (e.g., keyword detection and response within 200 milliseconds).
• Minimizing power consumption to extend battery life on embedded devices.
• Ensuring the model’s size is optimized for the available memory on the device.

3. Benchmarks for Success: Establish clear metrics to measure the success of the KWS system.
This could include:

• True Positive Rate: The percentage of correctly identified keywords.
• False Positive Rate: The percentage of non-keywords incorrectly identified as keywords.
• Response Time: The time taken from keyword utterance to system response.
• Power Consumption: Average power used during keyword detection.

4. Stakeholder Engagement and Understanding: Engage with stakeholders, which might in-
clude device manufacturers, hardware and software developers, and end-users. Understand
their needs, capabilities, and constraints. For instance:

• Device manufacturers might prioritize low power consumption.
• Software developers might emphasize ease of integration.
• End-users would prioritize accuracy and responsiveness.
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5. Understanding theConstraints and Limitations of EmbeddedSystems: Embedded devices
come with their own set of challenges:

• Memory Limitations: KWS models need to be lightweight to fit within the memory
constraints of embedded devices. Typically, KWS models might need to be as small
as 16KB to fit in the always-on island of the SoC. Moreover, this is just the model size.
Additional application code for pre-processing may also need to fit within the memory
constraints.

• Processing Power: The computational capabilities of embedded devices are limited (few
hundred MHz of clock speed), so the KWS model must be optimized for efÏciency.

• Power Consumption: Since many embedded devices are battery-powered, the KWS sys-
tem must be power-efÏcient.

• Environmental Challenges: Devices might be deployed in various environments, from
quiet bedrooms to noisy industrial settings. The KWS system must be robust enough to
function effectively across these scenarios.

6. Data Collection and Analysis: For a KWS system, the quality and diversity of data are
paramount. Considerations might include:

• Variety of Accents: Collect data from speakers with various accents to ensure wide-
ranging recognition.

• Background Noises: Include data samples with different ambient noises to train the
model for real-world scenarios.

• Keyword Variations: Peoplemight either pronounce keywords differently or have slight
variations in the wake word itself. Ensure the dataset captures these nuances.

7. Iterative Feedback and Refinement: Once a prototype KWS system is developed, it’s cru-
cial to test it in real-world scenarios, gather feedback, and iteratively refine the model. This
ensures that the system remains aligned with the defined problem and objectives. This is
important because the deployment scenarios change over time as things evolve.

18.3. Data Sourcing

The quality and diversity of data gathered is important for developing accurate and robust AI
systems. Sourcing high-quality training data requires careful consideration of the objectives, re-
sources, and ethical implications. Data can be obtained from various sources depending on the
needs of the project:

18.3.1. Pre-existing datasets

Platforms like Kaggle and UCI Machine Learning Repository provide a convenient starting point.
Pre-existing datasets are a valuable resource for researchers, developers, and businesses alike. One
of their primary advantages is cost-efÏciency. Creating a dataset from scratch can be both time-
consuming and expensive, so having access to ready-made data can save significant resources.
Moreover, many of these datasets, like ImageNet, have become standard benchmarks in the ma-
chine learning community, allowing for consistent performance comparisons across different mod-
els and algorithms. This availability of data means that experiments can be started immediately

https://www.kaggle.com/
https://archive.ics.uci.edu/
https://www.image-net.org/
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without any delays associated with data collection and preprocessing. In a fast moving field like
ML, this expediency is important.

The quality assurance that comes with popular pre-existing datasets is important to consider be-
cause several datasets have errors in them. For instance, the ImageNet dataset was found to have
over 6.4% errors. Given their widespread use, any errors or biases in these datasets are often iden-
tified and rectified by the community. This assurance is especially beneficial for students and new-
comers to the field, as they can focus on learning and experimentation without worrying about
data integrity. Supporting documentation that often accompanies existing datasets is invaluable,
though this generally applies only towidely used datasets. Good documentation provides insights
into the data collection process, variable definitions, and sometimes even offers baseline model
performances. This information not only aids understanding but also promotes reproducibility in
research, a cornerstone of scientific integrity; currently there is a crisis around improving repro-
ducibility in machine learning systems. When other researchers have access to the same data, they
can validate findings, test new hypotheses, or apply different methodologies, thus allowing us to
build on each other’s work more rapidly.

While platforms like Kaggle and UCI Machine Learning Repository are invaluable resources, it’s
essential to understand the context in which the data was collected. Researchers should be wary
of potential overfitting when using popular datasets, as multiple models might have been trained
on them, leading to inflated performance metrics. Sometimes these datasets do not reflect the
real-world data.

In addition, bias, validity, and reproducibility issues may exist in these datasets and in recent years
there is a growing awareness of these issues. Furthermore, using the same dataset to train different
models as shown in the figure below can sometimes create misalignment, where themodels do not
accurately reflect the real world (see Figure 18.4).

18.3.2. Web Scraping

Web scraping refers to automated techniques for extracting data fromwebsites. It typically involves
sending HTTP requests to web servers, retrieving HTML content, and parsing that content to ex-
tract relevant information. Popular tools and frameworks for web scraping include Beautiful Soup,
Scrapy, and Selenium. These tools offer different functionalities, from parsing HTML content to
automating web browser interactions, especially for websites that load content dynamically using
JavaScript.

Web scraping can be an effective way to gather large datasets for training machine learning mod-
els, particularly when human-labeled data is scarce. For computer vision research, web scraping
enables the collection of massive volumes of images and videos. Researchers have used this tech-
nique to build influential datasets like ImageNet and OpenImages. For example, one could scrape
e-commerce sites to amass product photos for object recognition, or social media platforms to col-
lect user uploads for facial analysis. Even before ImageNet, Stanford’s LabelMe project scraped
Flickr for over 63,000 annotated images covering hundreds of object categories.

Beyond computer vision, web scraping supports the gathering of textual data for natural language
tasks. Researchers can scrape news sites for sentiment analysis data, forums, and review sites for
dialogue systems research, or social media for topic modeling. For example, the training data for

https://arxiv.org/abs/2103.14749
https://arxiv.org/abs/2103.14749
https://arxiv.org/abs/2003.12206
https://arxiv.org/abs/2003.12206
https://venturebeat.com/uncategorized/3-big-problems-with-datasets-in-ai-and-machine-learning/
https://venturebeat.com/uncategorized/3-big-problems-with-datasets-in-ai-and-machine-learning/
https://www.image-net.org/
https://storage.googleapis.com/openimages/web/index.html
https://people.csail.mit.edu/torralba/publications/labelmeApplications.pdf
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Figure 18.4. Training different models from the same dataset. Neural network icons (from left to right, by:
Becris; Freepik; Freepik; Paul J; SBTS2018)

chatbot ChatGPT was obtained by scraping much of the public internet. GitHub repositories were
scraped to train GitHub’s Copilot AI coding assistant.

Web scraping can also collect structured data like stock prices, weather data, or product informa-
tion for analytical applications. Once data is scraped, it is essential to store it in a structuredmanner,
often using databases or data warehouses. Proper data management ensures the usability of the
scraped data for future analysis and applications.

However, while web scraping offers numerous advantages, there are significant limitations and
ethical considerations to bear in mind. Not all websites permit scraping, and violating these re-
strictions can lead to legal repercussions. It is also unethical and potentially illegal to scrape copy-
righted material or private communications. Ethical web scraping mandates adherence to a web-
site’s ‘robots.txt’ file, which outlines the sections of the site that can be accessed and scraped by
automated bots.

To deter automated scraping, many websites implement rate limits. If a bot sends too many re-
quests in a short period, it might be temporarily blocked, restricting the speed of data access. Ad-
ditionally, the dynamic nature of web content means that data scraped at different intervals might
lack consistency, posing challenges for longitudinal studies. Though there are emerging trends
like Web Navigation where machine learning algorithms can automatically navigate the website
to access the dynamic content.

For niche subjects, the volume of pertinent data available for scraping might be limited. For ex-
ample, while scraping for common topics like images of cats and dogs might yield abundant data,
searching for raremedical conditionsmight not be as fruitful. Moreover, the data obtained through
scraping is often unstructured and noisy, necessitating thorough preprocessing and cleaning. It

https://arxiv.org/abs/1812.09195
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is crucial to understand that not all scraped data will be of high quality or accuracy. Employing
verification methods, such as cross-referencing with alternate data sources, can enhance data reli-
ability.

Privacy concerns arise when scraping personal data, emphasizing the need for anonymization.
Therefore, it is paramount to adhere to a website’s Terms of Service, confine data collection to
public domains, and ensure the anonymity of any personal data acquired.

While web scraping can be a scalable method to amass large training datasets for AI systems, its
applicability is confined to specific data types. For example, sourcing data for Inertial Measure-
ment Units (IMU) for gesture recognition is not straightforward through web scraping. At most,
one might be able to scrape an existing dataset.

Web scraping can yield inconsistent or inaccurate data. For example, the photo in Figure 18.5 shows
up when you search ‘trafÏc light’ on Google images. It is an image from 1914 that shows outdated
trafÏc lights, which are also barely discernible because of the image’s poor quality.

Figure 18.5. The first trafÏc lights were installed in 1914, and a Google search for the keywords ‘trafÏc light’
may yield results related to them. This can be problematic for web-scraped datasets, as it pollutes the dataset
with inapplicable data samples. Source: Vox

18.3.3. Crowdsourcing

Crowdsourcing for datasets is the practice of obtaining data by using the services of a large number
of people, either from a specific community or the general public, typically via the internet. Instead
of relying on a small team or specific organization to collect or label data, crowdsourcing leverages
the collective effort of a vast, distributed group of participants. Services like Amazon Mechanical
Turk enable the distribution of annotation tasks to a large, diverse workforce. This facilitates the

https://www.vox.com/2015/8/5/9097713/when-was-the-first-traffic-light-installed
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collection of labels for complex tasks like sentiment analysis or image recognition that specifically
require human judgment.

Crowdsourcing has emerged as an effective approach for many data collection and problem-
solving needs. One major advantage of crowdsourcing is scalability-by distributing tasks to a
large, global pool of contributors on digital platforms, projects can process huge volumes of data
in a short time frame. This makes crowdsourcing ideal for large-scale data labeling, collection,
and analysis.

In addition, crowdsourcing taps into a diverse group of participants, bringing a wide range of
perspectives, cultural insights, and language abilities that can enrich data and enhance creative
problem-solving in ways that a more homogenous group may not. Because crowdsourcing draws
from a large audience beyond traditional channels, it also tends to be more cost-effective than con-
ventional methods, especially for simpler microtasks.

Crowdsourcing platforms also allow for great flexibility, as task parameters can be adjusted in real-
time based on initial results. This creates a feedback loop for iterative improvements to the data
collection process. Complex jobs can be broken down into microtasks and distributed to multiple
people, with cross-validation of results by assigning redundant versions of the same task. Ulti-
mately, when thoughtfully managed, crowdsourcing enables community engagement around a
collaborative project, where participants find reward in contributing.

However, while crowdsourcing offers numerous advantages, it’s essential to approach it with a
clear strategy. While it provides access to a diverse set of annotators, it also introduces variability
in the quality of annotations. Additionally, platforms like Mechanical Turk might not always cap-
ture a complete demographic spectrum; often tech-savvy individuals are overrepresented, while
children and the elderly may be underrepresented. It’s crucial to provide clear instructions and
possibly even training for the annotators. Periodic checks and validations of the labeled data can
help maintain quality. This ties back to the topic of clear Problem Definition that we discussed
earlier. Crowdsourcing for datasets also requires careful attention to ethical considerations. It’s
crucial to ensure that participants are informed about how their data will be used and that their
privacy is protected. Quality control through detailed protocols, transparency in sourcing, and
auditing is essential to ensure reliable outcomes.

For TinyML, crowdsourcing can pose some unique challenges. TinyML devices are highly spe-
cialized for particular tasks within tight constraints. As a result, the data they require tends to be
very specific. It may be difÏcult to obtain such specialized data from a general audience through
crowdsourcing. For example, TinyML applications often rely on data collected from certain sen-
sors or hardware. Crowdsourcing would require participants to have access to very specific and
consistent devices - like microphones with the same sampling rates. Even for simple audio tasks
like keyword spotting, these hardware nuances present obstacles.

Beyond hardware, the data itself needs high granularity and quality given the limitations of
TinyML. It can be hard to ensure this when crowdsourcing from those unfamiliar with the
application’s context and requirements. There are also potential issues around privacy, real-time
collection, standardization, and technical expertise. Moreover, the narrow nature of many TinyML
tasks makes accurate data labeling difÏcult without the proper understanding. Participants may
struggle to provide reliable annotations without full context.

Thus, while crowdsourcing can work well in many cases, the specialized needs of TinyML intro-
duce unique data challenges. Careful planning is required for guidelines, targeting, and quality
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control. For some applications, crowdsourcing may be feasible, but others may require more fo-
cused data collection efforts to obtain relevant, high-quality training data.

18.3.4. Synthetic Data

Synthetic data generation can be useful for addressing some of the limitations of data collection.
It involves creating data that wasn’t originally captured or observed, but is generated using algo-
rithms, simulations, or other techniques to resemble real-world data (Figure 18.6). It has become a
valuable tool in various fields, particularly in scenarios where real-world data is scarce, expensive,
or ethically challenging to obtain (e.g., TinyML). Various techniques, such as Generative Adver-
sarial Networks (GANs), can produce high-quality synthetic data that is almost indistinguishable
from real data. These techniques have advanced significantly, making synthetic data generation
increasingly realistic and reliable.

In many domains, especially emerging ones, there may not be enough real-world data available for
analysis or training machine learning models. Synthetic data can fill this gap by producing large
volumes of data that mimic real-world scenarios. For instance, detecting the sound of breaking
glass might be challenging in security applications where a TinyML device is trying to identify
break-ins. Collecting real-world data would require breaking numerous windows, which is im-
practical and costly.

Moreover, in machine learning, especially in deep learning, having a diverse dataset is crucial.
Synthetic data can augment existing datasets by introducing variations, thereby enhancing the
robustness of models. For example, SpecAugment is an excellent data augmentation technique for
Automatic Speech Recognition (ASR) systems.

Privacy and confidentiality is also a big issue. Datasets containing sensitive or personal information
pose privacy concerns when shared or used. Synthetic data, being artificially generated, doesn’t
have these direct ties to real individuals, allowing for safer usewhile preserving essential statistical
properties.

Generating synthetic data, especially once the generation mechanisms have been established, can
be a more cost-effective alternative. In the aforementioned security application scenario, synthetic
data eliminates the need for breaking multiple windows to gather relevant data.

Many embedded use-cases deal with unique situations, such as manufacturing plants, that are
difÏcult to simulate. Synthetic data allows researchers complete control over the data generation
process, enabling the creation of specific scenarios or conditions that are challenging to capture in
real life.

While synthetic data offers numerous advantages, it is essential to use it judiciously. Care must be
taken to ensure that the generated data accurately represents the underlying real-world distribu-
tions and does not introduce unintended biases.
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Figure 18.6. Enhancing real-world data with additional synthetic data for training data-hungry ML models
(Source: AnyLogic)

18.4. Data Storage

Data sourcing and data storage go hand-in-hand and it is necessary to store data in a format that
facilitates easy access and processing. Depending on the use case, there are various kinds of data
storage systems that can be used to store your datasets. Some examples are shown in Table 18.1.

Table 18.1. Comparative overview of database, data warehouse, and data lake.
Database Data Warehouse Data Lake

Purpose Operational and
transactional

Analytical Analytical

Data type Structured Structured Structured,
semi-structured and/or
unstructured

Scale Small to large
volumes of data

Large volumes of
integrated data

Large volumes of
diverse data

Examples** My SQL Go ogle BigQuery, Go
Amazon Redshift,
Microsoft Azure
Synapse.

ogle Cloud Storage,
AWS S3, Azure Data
Lake Storage

The stored data is often accompanied by metadata, which is defined as ‘data about data’. It pro-
vides detailed contextual information about the data, such as means of data creation, time of cre-
ation, attached data use license etc. For example, Hugging Face has Dataset Cards. To promote

https://www.anylogic.com/features/artificial-intelligence/synthetic-data/
https://huggingface.co/
https://huggingface.co/docs/hub/datasets-cards
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responsible data use, dataset creators should disclose potential biases through the dataset cards.
These cards can educate users about a dataset's contents and limitations. The cards also give vital
context on appropriate dataset usage by highlighting biases and other important details. Having
this type of metadata can also allow fast retrieval if structured properly. Once the model is de-
veloped and deployed to edge devices, the storage systems can continue to store incoming data,
model updates or analytical results.

Data Governance: With a large amount of data storage, it is also imperative to have policies and
practices (i.e., data governance) that helps manage data during its life cycle, from acquisition to
disposal. Data governance frames the way data is managed and includes making pivotal decisions
about data access and control (Figure 18.7). It involves exercising authority and making decisions
concerning data, with the aim to uphold its quality, ensure compliance, maintain security, and
derive value. Data governance is operationalized through the development of policies, incentives,
and penalties, cultivating a culture that perceives data as a valuable asset. Specific procedures and
assigned authorities are implemented to safeguard data quality andmonitor its utilization and the
related risks.

Data governance utilizes three integrative approaches: planning and control, organizational, and
risk-based.

• The planning and control approach, common in IT, aligns business and technology through
annual cycles and continuous adjustments, focusing on policy-driven, auditable governance.

• The organizational approach emphasizes structure, establishing authoritative roles like
Chief Data OfÏcers, ensuring responsibility and accountability in governance.

• The risk-based approach, intensified by AI advancements, focuses on identifying and man-
aging inherent risks in data and algorithms, especially addressing AI-specific issues through
regular assessments and proactive risk management strategies, allowing for incidental and
preventive actions to mitigate undesired algorithm impacts.

Some examples of data governance across different sectors include:

• Medicine: Health Information Exchanges(HIEs) enable the sharing of health information
across different healthcare providers to improve patient care. They implement strict data
governance practices to maintain data accuracy, integrity, privacy, and security, complying
with regulations such as the Health Insurance Portability and Accountability Act (HIPAA).
Governance policies ensure that patient data is only shared with authorized entities and that
patients can control access to their information.

• Finance: Basel III Framework is an international regulatory framework for banks. It ensures
that banks establish clear policies, practices, and responsibilities for datamanagement, ensur-
ing data accuracy, completeness, and timeliness. Not only does it enable banks to meet reg-
ulatory compliance, it also prevents financial crises by more effective management of risks.

• Government: Governments agencies managing citizen data, public records, and adminis-
trative information implement data governance to manage data transparently and securely.
Social Security System in the US, and Aadhar system in India are good examples of such
governance systems.

https://www.healthit.gov/topic/health-it-and-health-information-exchange-basics/what-hie
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://www.bis.org/bcbs/basel3.htm
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Figure 18.7. An overview of the data governance framework (Source: StarCIO)

Special data storage considerations for TinyML

EfÏcient Audio Storage Formats: Keyword spotting systems need specialized audio storage for-
mats to enable quick keyword searching in audio data. Traditional formats like WAV and MP3
store full audio waveforms, which require extensive processing to search through. Keyword spot-
ting uses compressed storage optimized for snippet-based search. One approach is to store com-
pact acoustic features instead of raw audio. Such a workflow would involve:

• Extracting acoustic features: Mel-frequency cepstral coefÏcients (MFCCs) are commonly
used to represent important audio characteristics.

• Creating Embeddings: Embeddings transform extracted acoustic features into continuous
vector spaces, enabling more compact and representative data storage. This representation
is essential in converting high-dimensional data, like audio, into a format that’s more man-
ageable and efÏcient for computation and storage.

• Vector quantization: This technique is used to represent high-dimensional data, like em-
beddings, with lower-dimensional vectors, reducing storage needs. Initially, a codebook is
generated from the training data to define a set of code vectors representing the original data
vectors. Subsequently, each data vector is matched to the nearest codeword according to the
codebook, ensuring minimal loss of information.

• Sequential storage: The audio is fragmented into short frames, and the quantized features
(or embeddings) for each frame are stored sequentially to maintain the temporal order, pre-
serving the coherence and context of the audio data.

https://www.groundwatergovernance.org/the-importance-of-governance-for-all-stakeholders/
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This format enables decoding the features frame-by-frame for keyword matching. Searching the
features is faster than decompressing the full audio.

Selective Network Output Storage: Another technique for reducing storage is to discard the inter-
mediate audio features stored during training, but not required during inference. The network is
run on the full audio during training, however, only the final outputs are stored during inference.
In a recent study (Rybakov et al. 2018), the authors discuss adaptation of the model’s intermediate
data storage structure to incorporate the nature of streaming models that are prevalent in TinyML
applications.

18.5. Data Processing

Data processing refers to the steps involved in transforming raw data into a format that is suitable
for feeding into machine learning algorithms. It is a crucial stage in any ML workflow, yet often
overlooked. Without proper data processing, ML models are unlikely to achieve optimal perfor-
mance. “Data preparation accounts for about 60-80% of the work of a data scientist.” Figure 18.8
shows a breakdown of a data scientist’s time allocation, highlighting the significant portion spent
on data cleaning and organizing.

Figure 18.8. A breakdown of tasks that data scientists allocate their time to, highlighting the significant
portion spent on data cleaning and organizing.

Proper data cleaning is a crucial step that directly impacts model performance. Real-world data is
often dirty - it contains errors, missing values, noise, anomalies, and inconsistencies. Data cleaning
involves detecting and fixing these issues to prepare high-quality data for modeling. By carefully
selecting appropriate techniques, data scientists can improve model accuracy, reduce overfitting,
and enable algorithms to learn more robust patterns. Overall, thoughtful data processing allows
machine learning systems to better uncover insights and make predictions from real-world data.

Data often comes from diverse sources and can be unstructured or semi-structured. Thus, it’s es-
sential to process and standardize it, ensuring it adheres to a uniform format. Such transformations
may include:
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• Normalizing numerical variables
• Encoding categorical variables
• Using techniques like dimensionality reduction

Data validation serves a broader role than just ensuring adherence to certain standards like pre-
venting temperature values from falling below absolute zero. These types of issues arise in TinyML
because sensors may malfunction or temporarily produce incorrect readings, such transients are
not uncommon. Therefore, it is imperative to catch data errors early before they propagate through
the data pipeline. Rigorous validation processes, including verifying the initial annotation prac-
tices, detecting outliers, and handling missing values through techniques like mean imputation,
contribute directly to the quality of datasets. This, in turn, impacts the performance, fairness, and
safety of the models trained on them.

Figure 18.9. A detailed overview of the Multilingual Spoken Words Corpus (MSWC) data processing
pipeline: from raw audio and text data input, through forced alignment for word boundary estimation, to
keyword extraction and model training.

Let’s take a look at an example of a data processing pipeline (see Figure 18.9). In the context
of TinyML, the Multilingual Spoken Words Corpus (MSWC) is an example of data processing
pipelines-systematic and automated workflows for data transformation, storage, and processing.
By streamlining the data flow, from raw data to usable datasets, data pipelines enhance productiv-
ity and facilitate the rapid development of machine learning models. The MSWC is an expansive
and expanding collection of audio recordings of spoken words in 50 different languages, which
are collectively used by over 5 billion people. This dataset is intended for academic study and busi-
ness uses in areas like keyword identification and speech-based search. It is openly licensed under
Creative Commons Attribution 4.0 for broad usage.

The MSWC used a forced alignment method to automatically extract individual word recordings
to train keyword-spotting models from the Common Voice project, which features crowdsourced
sentence-level recordings. Forced alignment refers to a group of long-standing methods in speech
processing that are used to predictwhen speech phenomena like syllables, words, or sentences start
and end within an audio recording. In the MSWC data, crowd-sourced recordings often feature

https://montreal-forced-aligner.readthedocs.io/en/latest/
https://commonvoice.mozilla.org/
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background noises, such as static and wind. Depending on the model’s requirements, these noises
can be removed or intentionally retained.

Maintaining the integrity of the data infrastructure is a continuous endeavor. This encompasses
data storage, security, error handling, and stringent version control. Periodic updates are crucial,
especially in dynamic realms like keyword spotting, to adjust to evolving linguistic trends and
device integrations.

There is a boom of data processing pipelines, these are commonly found in ML operations
toolchains, which we will discuss in the MLOps chapter. Briefly, these include frameworks like
MLOps by Google Cloud. It provides methods for automation and monitoring at all steps of
ML system construction, including integration, testing, releasing, deployment, and infrastructure
management, and there are several mechanisms that specifically focus on data processing which
is an integral part of these systems.

18.6. Data Labeling

Data labeling is an important step in creating high-quality training datasets for machine learning
models. Labels provide the ground truth information that allows models to learn relationships
between inputs and desired outputs. This section covers key considerations around selecting label
types, formats, and content to capture the necessary information for given tasks. It discusses com-
mon annotation approaches, from manual labeling to crowdsourcing to AI-assisted methods, and
best practices for ensuring label quality through training, guidelines, and quality checks. Ethical
treatment of human annotators is also something we emphasize. The integration of AI to acceler-
ate and augment human annotation is also explored. Understanding labeling needs, challenges,
and strategies is essential for constructing reliable, useful datasets that can train performant, trust-
worthy machine learning systems.

18.6.1. Label Types

Labels capture information about key tasks or concepts. Common label types (see Figure 18.10)
include binary classification, bounding boxes, segmentation masks, transcripts, captions, etc. The
choice of label format depends on the use case and resource constraints, as more detailed labels
require greater effort to collect (Johnson-Roberson et al. (2017)).

Unless focused on self-supervised learning, a dataset will likely provide labels addressing one or
more tasks of interest. Dataset creators must consider what information labels should capture
and how they can practically obtain the necessary labels, given their unique resource constraints.
Creators must first decide what type(s) of content labels should capture. For example, a creator
interested in car detection would want to label cars in their dataset. Still, they might also consider
whether to simultaneously collect labels for other tasks that the dataset could potentially be used
for in the future, such as pedestrian detection.

Additionally, annotators can potentially provide metadata that provides insight into how the
dataset represents different characteristics of interest (see: Data Transparency). The Common
Voice dataset, for example, includes various types of metadata that provide information about
the speakers, recordings, and dataset quality for each language represented (Ardila et al. (2020)).
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Figure 18.10. An overview of common label types.
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They include demographic splits showing the number of recordings by speaker age range and
gender. This allows us to see the breakdown of who contributed recordings for each language.
They also include statistics like average recording duration and total hours of validated recordings.
These give insights into the nature and size of the datasets for each language. Additionally, quality
control metrics like the percentage of recordings that have been validated are useful to know
how complete and clean the datasets are. The metadata also includes normalized demographic
splits scaled to 100% for comparison across languages. This highlights representation differences
between higher and lower resource languages.

Next, creators must determine the format of those labels. For example, a creator interested in
car detection might choose between binary classification labels that say whether a car is present,
bounding boxes that show the general locations of any cars, or pixel-wise segmentation labels that
show the exact location of each car. Their choice of label format may depend both on their use
case and their resource constraints, as finer-grained labels are typically more expensive and time-
consuming to acquire.

18.6.2. Annotation Methods

Common annotation approaches include manual labeling, crowdsourcing, and semi-automated
techniques. Manual labeling by experts yields high quality but lacks scalability. Crowdsourc-
ing enables distributed annotation by non-experts, often through dedicated platforms (Sheng and
Zhang (2019)). Weakly supervised and programmaticmethods can reducemanual effort by heuris-
tically or automatically generating labels (Ratner et al. (2018))

After deciding on their labels’ desired content and format, creators begin the annotation process.
To collect large numbers of labels from human annotators, creators frequently rely on dedicated
annotation platforms, which can connect them to teams of human annotators. When using these
platforms, creators may have little insight to annotators’ backgrounds and levels of experience
with topics of interest. However, some platforms offer access to annotators with specific expertise
(e.g. doctors).

18.6.3. Ensuring Label Quality

There is no guarantee that the data labels are actually correct. Figure 18.11 shows some examples
of hard labeling cases. It is possible that despite the best instructions being given to labelers, they
still mislabel some images (Northcutt, Athalye, and Mueller (2021)). Strategies like quality checks,
training annotators, and collecting multiple labels per datapoint can help ensure label quality. For
ambiguous tasks, multiple annotators can help identify controversial datapoints and quantify dis-
agreement levels.

When working with human annotators, it is important to offer fair compensation and otherwise
prioritize ethical treatment, as annotators can be exploited or otherwise harmedduring the labeling
process (Perrigo, 2023). For example, if a dataset is likely to contain disturbing content, annotators
may benefit from having the option to view images in grayscale (Google (n.d.)).
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Figure 18.11. Some examples of hard labeling cases.

18.6.4. AI-Assisted Annotation

ML has an insatiable demand for data. Therefore, no amount of data is sufÏcient data. This raises
the question of how we can get more labeled data. Rather than always generating and curating
data manually, we can rely on existing AI models to help label datasets more quickly and cheaply,
though often with lower quality than human annotation. This can be done in various ways (see
Figure 18.12 for examples), such as the following:

• Pre-annotation: AImodels can generate preliminary labels for a dataset usingmethods such
as semi-supervised learning (Chapelle, Scholkopf, and Zien (2009)), which humans can then
review and correct. This can save a significant amount of time, especially for large datasets.

• Active learning: AImodels can identify the most informative data points in a dataset, which
can then be prioritized for human annotation. This can help improve the labeled dataset’s
quality while reducing the overall annotation time.

• Quality control: AI models can be used to identify and flag potential errors in human anno-
tations. This can help to ensure the accuracy and consistency of the labeled dataset.

Here are some examples of how AI-assisted annotation has been proposed to be useful:

• Medical imaging: AI-assisted annotation is being used to label medical images, such as MRI
scans and X-rays (R. Krishnan, Rajpurkar, and Topol (2022)). Carefully annotating medical
datasets is extremely challenging, especially at scale, since domain experts are both scarce
and it becomes a costly effort. This can help to train AI models to diagnose diseases and
other medical conditions more accurately and efÏciently.

• Self-driving cars: AI-assisted annotation is being used to label images and videos from self-
driving cars. This can help to train AI models to identify objects on the road, such as other
vehicles, pedestrians, and trafÏc signs.

• Socialmedia: AI-assisted annotation is being used to label socialmedia posts, such as images
and videos. This can help to trainAImodels to identify and classify different types of content,
such as news, advertising, and personal posts.

18.7. Data Version Control

Production systems are perpetually inundated with fluctuating and escalating volumes of data,
prompting the rapid emergence of numerous data replicas. This proliferating data serves as the
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Figure 18.12. Strategies for acquiring additional labeled training data in machine learning.

foundation for training machine learning models. For instance, a global sales company engaged
in sales forecasting continuously receives consumer behavior data. Similarly, healthcare systems
formulating predictive models for disease diagnosis are consistently acquiring new patient data.
TinyML applications, such as keyword spotting, are highly data hungry in terms of the amount of
data generated. Consequently, meticulous tracking of data versions and the corresponding model
performance is imperative.

Data Version Control offers a structured methodology to handle alterations and versions of
datasets efÏciently. It facilitates the monitoring of modifications, preserves multiple versions, and
guarantees reproducibility and traceability in data-centric projects. Furthermore, data version
control provides the versatility to review and utilize specific versions as needed, ensuring that
each stage of the data processing and model development can be revisited and audited with
precision and ease. It has a variety of practical uses -

Risk Management: Data version control allows transparency and accountability by tracking ver-
sions of the dataset.

Collaboration and EfÏciency: Easy access to different versions of the dataset in one place can
improve data sharing of specific checkpoints, and enable efÏcient collaboration.

Reproducibility: Data version control allows for tracking the performance of models with respect
to different versions of the data, and therefore enabling reproducibility.

Key Concepts

• Commits: It is an immutable snapshot of the data at a specific point in time, representing a
unique version. Every commit is associated with a unique identifier to allow

• Branches: Branching allows developers and data scientists to diverge from the main line of
development and continue to work independently without affecting other branches. This is
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especially useful when experimenting with new features or models, enabling parallel devel-
opment and experimentation without the risk of corrupting the stable, main branch.

• Merges: Merges help to integrate changes from different branches while maintaining the
integrity of the data.

With data version control in place, we are able to track the changes as shown in Figure 18.13, repro-
duce previous results by reverting to older versions, and collaborate safely by branching off and
isolating the changes.

Figure 18.13. Similar to code versioning, data versioning can help us track changes and roll back dataset
updates.

Popular Data Version Control Systems

DVC: It stands for Data Version Control in short, and is an open-source, lightweight tool that
works on top of github and supports all kinds of data format. It can seamlessly integrate into the
Git workflow, if Git is being used for managing code. It captures the versions of data and models
in the Git commits, while storing them on premises or on cloud (e.g. AWS, Google Cloud, Azure).
These data and models (e.g. ML artifacts) are defined in the metadata files, which get updated in
every commit. It can allow metrics tracking of models on different versions of the data.

lakeFS: It is an open-source tool that supports the data version control on data lakes. It supports
many git-like operations such as branching and merging of data, as well as reverting to previous
versions of the data. It also has a unique UI feature which allows exploration and management of
data much easier.

Git LFS: It is useful for data version control on smaller sizeddatasets. It usesGit’s inbuilt branching
and merging features, but is limited in terms of tracking metrics, reverting to previous versions or
integration with data lakes.

https://dvc.org/doc
https://docs.lakefs.io/
https://git-lfs.com/
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18.8. Optimizing Data for Embedded AI

Creators working on embedded systemsmay have unusual priorities when cleaning their datasets.
On the one hand, models may be developed for unusually specific use cases, requiring heavy fil-
tering of datasets. While other natural language models may be capable of turning any speech to
text, a model for an embedded system may be focused on a single limited task, such as detecting
a keyword. As a result, creators may aggressively filter out large amounts of data because they
do not address the task of interest. Additionally, an embedded AI system may be tied to specific
hardware devices or environments. For example, a video model may need to process images from
a single type of camera, which will only be mounted on doorbells in residential neighborhoods. In
this scenario, creators may discard images if they came from a different kind of camera, show the
wrong type of scenery, or were taken from the wrong height or angle.

On the other hand, embedded AI systems are often expected to provide especially accurate perfor-
mance in unpredictable real-world settings. This may lead creators to design datasets specifically
to represent variations in potential inputs and promote model robustness. As a result, they may
define a narrow scope for their project but then aim for deep coverage within those bounds. For
example, creators of the doorbell model mentioned above might try to cover variations in data
arising from:

• Geographically, socially and architecturally diverse neighborhoods
• Different types of artificial and natural lighting
• Different seasons and weather conditions
• Obstructions (e.g. raindrops or delivery boxes obscuring the camera’s view)

As described above, creators may consider crowdsourcing or synthetically generating data to in-
clude these different kinds of variations.

18.9. Data Transparency

By providing clear, detailed documentation, creators can help developers understand how best
to use their datasets. Several groups have suggested standardized documentation formats for
datasets, such as Data Cards (Pushkarna, Zaldivar, and Kjartansson (2022)), datasheets (Gebru
et al. (2021)), data statements (Bender and Friedman (2018)), or Data Nutrition Labels (Holland et
al. (2020)). When releasing a dataset, creators may describe what kinds of data they collected, how
they collected and labeled it, and what kinds of use cases may be a good or poor fit for the dataset.
Quantitatively, it may be appropriate to provide a breakdown of how well the dataset represents
different groups (e.g. different gender groups, different cameras).

Figure 18.14 shows an example of a data card for a computer vision (CV) dataset. It includes some
basic information about the dataset and instructions on how to use or not to use the dataset, in-
cluding known biases.

Keeping track of data provenance-essentially the origins and the journey of each data point through
the data pipeline-is not merely a good practice but an essential requirement for data quality. Data
provenance contributes significantly to the transparency ofmachine learning systems. Transparent
systems make it easier to scrutinize data points, enabling better identification and rectification of
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Figure 18.14. Data card describing a CV dataset. Source: (Pushkarna, Zaldivar, and Kjartansson (2022))
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errors, biases, or inconsistencies. For instance, if a ML model trained on medical data is underper-
forming in particular areas, tracing back the data provenance can help identify whether the issue is
with the data collectionmethods, the demographic groups represented in the data, or other factors.
This level of transparency doesn’t just help in debugging the system but also plays a crucial role in
enhancing the overall data quality. By improving the reliability and credibility of the dataset, data
provenance also enhances the model’s performance and its acceptability among end-users.

When producing documentation, creators should also clearly specify how users can access the
dataset and how the dataset will be maintained over time. For example, users may need to un-
dergo training or receive special permission from the creators before accessing a dataset contain-
ing protected information, as is the case with manymedical datasets. In some cases, users may not
be permitted to directly access the data and must instead submit their model to be trained on the
dataset creators’ hardware, following a federated learning setup (Aledhari et al. (2020)). Creators
may also describe how long the dataset will remain accessible, how the users can submit feedback
on any errors that they discover, and whether there are plans to update the dataset.

Some laws and regulations promote also data transparency through new requirements for organi-
zations:

• General Data Protection Regulation (GDPR) in European Union: It establishes strict require-
ments for processing and protecting personal data of EU citizens. It mandates plain language
privacy policies that clearly explainwhat data is collected, why it is used, how long it is stored,
and with whom it is shared. GDPR also mandates that privacy notices must include details
on legal basis for processing, data transfers, retention periods, rights to access and deletion,
and contact info for data controllers.

• California’s Consumer Privacy Act (CCPA): CCPA requires clear privacy policies and opt-out
rights for the sale of personal data. Significantly, it also establishes rights for consumers to
request their specific data be disclosed. Businesses must provide copies of collected personal
information along with details on what it is used for, what categories are collected, and what
third parties receive it. Consumers can identify data points they believe are inaccurate. The
law represents a major step forward in empowering personal data access.

There are several current challenges in ensuring data transparency, especially because it requires
significant time and financial resources. Data systems are also quite complex, and full transparency
can be difÏcult to achieve in these cases. Full transparency may also overwhelm the consumers
with too much detail. And finally, it is also important to balance the tradeoff between transparency
and privacy.

18.10. Licensing

Many high-quality datasets either come from proprietary sources or contain copyrighted infor-
mation. This introduces licensing as a challenging legal domain. Companies eager to train ML
systems must engage in negotiations to obtain licenses that grant legal access to these datasets.
Furthermore, licensing terms can impose restrictions on data applications and sharing methods.
Failure to comply with these licenses can have severe consequences.
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For instance, ImageNet, one of the most extensively utilized datasets for computer vision research,
is a case in point. A majority of its images were procured from public online sources without ob-
taining explicit permissions, sparking ethical concerns (Prabhu and Birhane, 2020). Accessing the
ImageNet dataset for corporations requires registration and adherence to its terms of use, which
restricts commercial usage (ImageNet, 2021). Major players like Google andMicrosoft invest signif-
icantly in licensing datasets to enhance their ML vision systems. However, the cost factor restricts
accessibility for researchers from smaller companies with constrained budgets.

The legal domain of data licensing has seen major cases that help define parameters of fair use. A
prominent example is Authors Guild, Inc. v. Google, Inc. This 2005 lawsuit alleged that Google's book
scanning project infringed copyrights by displaying snippets without permission. However, the
courts ultimately ruled in Google's favor, upholding fair use based on the transformative nature
of creating a searchable index and showing limited text excerpts. This precedent provides some
legal grounds for arguing fair use protections apply to indexing datasets and generating represen-
tative samples for machine learning. However, restrictions specified in licenses remain binding,
so comprehensive analysis of licensing terms is critical. The case demonstrates why negotiations
with data providers are important to enable legal usage within acceptable bounds.

New Data Regulations and Their Implications

New data regulations also impact licensing practices. The legislative landscape is evolving with
regulations like the EU’s Artificial Intelligence Act, which is poised to regulate AI system develop-
ment and use within the European Union (EU). This legislation:

1. Classifies AI systems by risk.

2. Mandates development and usage prerequisites.

3. Emphasizes data quality, transparency, human oversight, and accountability.

Additionally, the EU Act addresses the ethical dimensions and operational challenges in sectors
such as healthcare and finance. Key elements include the prohibition of AI systems posing ”un-
acceptable” risks, stringent conditions for high-risk systems, and minimal obligations for ”limited
risk” AI systems. The proposed European AI Board will oversee and ensure efÏcient regulation
implementation.

Challenges in Assembling ML Training Datasets

Complex licensing issues around proprietary data, copyright law, and privacy regulations all con-
strain options for assemblingML training datasets. But expanding accessibility throughmore open
licensing or public-private data collaborations could greatly accelerate industry progress and eth-
ical standards.

In some cases, certain portions of a dataset may need to be removed or obscured in order to com-
ply with data usage agreements or protect sensitive information. For example, a dataset of user
information may have names, contact details, and other identifying data that may need to be re-
moved from the dataset, this is well after the dataset has already been actively sourced and used
for training models. Similarly, a dataset that includes copyrighted content or trade secrets may
need to have those portions filtered out before being distributed. Laws such as the General Data
Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), and the Amended
Act on the Protection of Personal Information (APPI) have been passed to guarantee the right to be
forgotten. These regulations legally require model providers to erase user data upon request.

https://www.image-net.org/
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://www.ppc.go.jp/files/pdf/280222_amendedlaw.pdf
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Data collectors and providers need to be able to take appropriate measures to de-identify or filter
out any proprietary, licensed, confidential, or regulated information as needed. In some cases, the
users may explicitly request that their data be removed.

Having the ability to update the dataset by removing data from the dataset will enable the dataset
creators to uphold legal and ethical obligations around data usage and privacy. However, the
ability to remove data has some important limitations. We need to think about the fact that some
models may have already been trained on the dataset and there is no clear or known way to elimi-
nate a particular data sample's effect from the trained network. There is no erasemechanism. Thus,
this begs the question, should themodel be re-trained from scratch each time a sample is removed?
That's a costly option. Once data has been used to train a model, simply removing it from the orig-
inal dataset may not fully eliminate its impact on the model's behavior. New research is needed
around the effects of data removal on already-trained models and whether full retraining is nec-
essary to avoid retaining artifacts of deleted data. This presents an important consideration when
balancing data licensing obligations with efÏciency and practicality in an evolving, deployed ML
system.

Dataset licensing is a multifaceted domain intersecting technology, ethics, and law. As the world
around us evolves, understanding these intricacies becomes paramount for anyone building
datasets during data engineering.

18.11. Conclusion

Data is the fundamental building block of AI systems. Without quality data, even the most ad-
vanced machine learning algorithms will fail. Data engineering encompasses the end-to-end pro-
cess of collecting, storing, processing andmanaging data to fuel the development ofmachine learn-
ing models. It begins with clearly defining the core problem and objectives, which guides effective
data collection. Data can be sourced from diverse means including existing datasets, web scraping,
crowdsourcing and synthetic data generation. Each approach involves tradeoffs between factors
like cost, speed, privacy and specificity. Once data is collected, thoughtful labeling through man-
ual or AI-assisted annotation enables the creation of high-quality training datasets. Proper storage
in databases, warehouses or lakes facilitates easy access and analysis. Metadata provides contex-
tual details about the data. Data processing transforms raw data into a clean, consistent format
ready for machine learning model development. Throughout this pipeline, transparency through
documentation and provenance tracking is crucial for ethics, auditability and reproducibility. Data
licensing protocols also govern legal data access and use. Key challenges in data engineering in-
clude privacy risks, representation gaps, legal restrictions around proprietary data, and the need to
balance competing constraints like speed versus quality. By thoughtfully engineering high-quality
training data, machine learning practitioners can develop accurate, robust and responsible AI sys-
tems, including for embedded and TinyML applications.

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.
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19. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• Data engineering overview.

• Feature engineering.

• Data Standards: Speech Commands.

• Crowdsourcing Data for the Long Tail.

• Reusing and Adapting Existing Datasets.

• Responsible Data Collection.

https://docs.google.com/presentation/d/1nuNFjB99ccE6hqFeAmRRbhoEoSjBgJXGr9u6cvwnXgM/edit#slide=id.p19
https://docs.google.com/presentation/d/1otnrLjtBOGmrT-FBzAGajRwXJTC65OQCpGCxjxCzn_k/edit#slide=id.p1
https://docs.google.com/presentation/d/1qDoHc7yzZ2lEha9NTMZ07Ls4tkIz-1f7kUYRlvjzsI4/edit?usp=drive_link&resourcekey=0-ol4Oqk_y706P_zIB5mbu7Q
https://docs.google.com/presentation/d/1d3KUit64L-4dXecCNBpikCxx7VO0xIJ13r9v1Ad22S4/edit#slide=id.ga4ca29c69e_0_179
https://docs.google.com/presentation/d/1mHecDoCYHQD9nWSRYCrXXG0IOp9wYQk-fbxhoNIsGMY/edit#slide=id.ga4ca29c69e_0_206
https://docs.google.com/presentation/d/1vcmuhLVNFT2asKSCSGh_Ix9ht0mJZxMii8MufEMQhFA/edit?resourcekey=0-_pYLcW5aF3p3Bvud0PPQNg#slide=id.ga4ca29c69e_0_195
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20. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.
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21. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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22. AI Frameworks

Figure 22.1. DALL·E 3 Prompt: Illustration in a rectangular format, designed for a professional
textbook, where the content spans the entire width. The vibrant chart represents training and
inference frameworks for ML. Icons for TensorFlow, Keras, PyTorch, ONNX, and TensorRT are
spread out, filling the entire horizontal space, and aligned vertically. Each icon is accompanied by
brief annotations detailing their features. The lively colors like blues, greens, and oranges highlight
the icons and sections against a soft gradient background. The distinction between training and
inference frameworks is accentuated through color-coded sections, with clean lines and modern
typography maintaining clarity and focus.

In this chapter, we explore the landscape of AI frameworks that serve as the foundation for de-
veloping machine learning systems. AI frameworks provide the essential tools, libraries, and en-
vironments necessary to design, train, and deploy machine learning models. We delve into the
evolutionary trajectory of these frameworks, dissect the workings of TensorFlow, and provide in-
sights into the core components and advanced features that define these frameworks.

Furthermore, we investigate the specialization of frameworks tailored to specific needs, the emer-
gence of frameworks specifically designed for embedded AI, and the criteria for selecting the most
suitable framework for your project. This exploration will be rounded off by a glimpse into the
future trends that are expected to shape the landscape of ML frameworks in the coming years.
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Learning Objectives

• Understand the evolution and capabilities of major machine learning frameworks. This
includes graph executionmodels, programming paradigms, hardware acceleration sup-
port, and how they have expanded over time.

• Learn the core components and functionality of frameworks like computational graphs,
data pipelines, optimization algorithms, training loops, etc. that enable efÏcient model
building.

• Compare frameworks across different environments like cloud, edge, and TinyML.
Learn how frameworks specialize based on computational constraints and hardware.

• Dive deeper into embedded and TinyML focused frameworks like TensorFlow Lite Mi-
cro, CMSIS-NN, TinyEngine etc. and how they optimize for microcontrollers.

• Exploremodel conversion and deployment considerationswhen choosing a framework,
including aspects like latency, memory usage, and hardware support.

• Evaluate key factors in selecting the right framework like performance, hardware com-
patibility, community support, ease of use, etc. based on the specific project needs and
constraints.

• Understand the limitations of current frameworks and potential future trends like using
ML to improve frameworks, decomposed ML systems, and high performance compil-
ers.

22.1. Introduction

Machine learning frameworks provide the tools and infrastructure to efÏciently build, train, and
deploymachine learningmodels. In this chapter, wewill explore the evolution and key capabilities
of major frameworks like TensorFlow (TF), PyTorch, and specialized frameworks for embedded
devices. We will dive into the components like computational graphs, optimization algorithms,
hardware acceleration, and more that enable developers to quickly construct performant models.
Understanding these frameworks is essential to leverage the power of deep learning across the
spectrum from cloud to edge devices.

ML frameworks handle much of the complexity of model development through high-level APIs
and domain-specific languages that allow practitioners to quickly construct models by combining
pre-made components and abstractions. For example, frameworks like TensorFlow and PyTorch
provide Python APIs to define neural network architectures using layers, optimizers, datasets, and
more. This enables rapid iteration compared to coding every model detail from scratch.

A key capability offered by frameworks is distributed training engines that can scalemodel training
across clusters of GPUs and TPUs. This makes it feasible to train state-of-the-art models with
billions or trillions of parameters on vast datasets. Frameworks also integrate with specialized
hardware like NVIDIA GPUs to further accelerate training via optimizations like parallelization
and efÏcient matrix operations.

https://www.tensorflow.org/
https://pytorch.org/
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In addition, frameworks simplify deploying finished models into production through tools like
TensorFlow Serving for scalable model serving and TensorFlow Lite for optimization on mobile
and edge devices. Other valuable capabilities include visualization, model optimization tech-
niques like quantization and pruning, and monitoring metrics during training.

Leading open source frameworks like TensorFlow, PyTorch, and MXNet power much of AI re-
search and development today. Commercial offerings like Amazon SageMaker and Microsoft
Azure Machine Learning integrate these open source frameworks with proprietary capabilities
and enterprise tools.

Machine learning engineers and practitioners leverage these robust frameworks to focus on high-
value tasks like model architecture, feature engineering, and hyperparameter tuning instead of
infrastructure. The goal is to efÏciently build and deploy performant models that solve real-world
problems.

In this chapter, we will explore today's leading cloud frameworks and how they have adapted
models and tools specifically for embedded and edge deployment. We will compare program-
ming models, supported hardware, optimization capabilities, and more to fully understand how
frameworks enable scalable machine learning from the cloud to the edge.

22.2. Framework Evolution

Machine learning frameworks have evolved significantly over time to meet the diverse needs of
machine learning practitioners and advancements in AI techniques. A few decades ago, building
and trainingmachine learning models required extensive low-level coding and infrastructure. Ma-
chine learning frameworks have evolved considerably over the past decade to meet the expanding
needs of practitioners and rapid advances in deep learning techniques. Early neural network re-
search was constrained by insufÏcient data and compute power. Building and training machine
learning models required extensive low-level coding and infrastructure. But the release of large
datasets like ImageNet (Deng et al. 2009) and advancements in parallel GPU computing unlocked
the potential for far deeper neural networks.

The first ML frameworks, Theano by Team et al. (2016) and Caffe by Y. Jia et al. (2014), were devel-
oped by academic institutions (Montreal Institute for Learning Algorithms, Berkeley Vision and
Learning Center). Amid a growing interest in deep learning due to state-of-the-art performance
of AlexNet Krizhevsky, Sutskever, and Hinton (2012) on the ImageNet dataset, private compa-
nies and individuals began developing ML frameworks, resulting in frameworks such as Keras by
Chollet (2018), Chainer by Tokui et al. (2019), TensorFlow from Google (Yu et al. 2018), CNTK by
Microsoft (Seide and Agarwal 2016), and PyTorch by Facebook (Paszke et al. 2019).

Many of these ML frameworks can be divided into categories, namely high-level vs. low-level
frameworks and static vs. dynamic computational graph frameworks. High-level frameworks pro-
vide a higher level of abstraction than low-level frameworks. That is, high-level frameworks have
pre-built functions and modules for common ML tasks, such as creating, training, and evaluat-
ing common ML models as well as preprocessing data, engineering features, and visualizing data,
which low-level frameworks do not have. Thus, high-level frameworksmay be easier to use, but are
not as customizable as low-level frameworks (i.e. users of low-level frameworks can define custom
layers, loss functions, optimization algorithms, etc.). Examples of high-level frameworks include

https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/lite
https://mxnet.apache.org/versions/1.9.1/
https://aws.amazon.com/pm/sagemaker/
https://azure.microsoft.com/en-us/free/machine-learning/search/?ef_id=_k_CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE_k_&OCID=AIDcmm5edswduu_SEM__k_CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE_k_&gad=1&gclid=CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE
https://azure.microsoft.com/en-us/free/machine-learning/search/?ef_id=_k_CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE_k_&OCID=AIDcmm5edswduu_SEM__k_CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE_k_&gad=1&gclid=CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE
https://www.image-net.org/
https://pypi.org/project/Theano/#:~:text=Theano%20is%20a%20Python%20library,a%20similar%20interface%20to%20NumPy's.
https://caffe.berkeleyvision.org/
https://keras.io/
https://chainer.org/
https://learn.microsoft.com/en-us/cognitive-toolkit/
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TensorFlow/Keras and PyTorch. Examples of low-level ML frameworks include TensorFlow with
low-level APIs, Theano, Caffe, Chainer, and CNTK.

Frameworks like Theano and Caffe used static computational graphs which required rigidly defin-
ing the full model architecture upfront. Static graphs require upfront declaration and limit flex-
ibility. Dynamic graphs construct on-the-fly for more iterative development. But around 2016,
frameworks began adopting dynamic graphs like PyTorch and TensorFlow 2.0 which can construct
graphs on-the-fly. This provides greater flexibility for model development. We will discuss these
concepts and details later on in the AI Training section.

The development of these frameworks facilitated an explosion in model size and complexity over
time—from earlymultilayer perceptrons and convolutional networks tomodern transformerswith
billions or trillions of parameters. In 2016, ResNet models by He et al. (2016) achieved record Ima-
geNet accuracy with over 150 layers and 25 million parameters. Then in 2020, the GPT-3 language
model from OpenAI (Brown et al. 2020) pushed parameters to an astonishing 175 billion using
model parallelism in frameworks to train across thousands of GPUs and TPUs.

Each generation of frameworks unlocked new capabilities that powered advancement:

• Theano and TensorFlow (2015) introduced computational graphs and automatic differentia-
tion to simplify model building.

• CNTK (2016) pioneered efÏcient distributed training by combining model and data paral-
lelism.

• PyTorch (2016) provided imperative programming and dynamic graphs for flexible experi-
mentation.

• TensorFlow 2.0 (2019) made eager execution default for intuitiveness and debugging.

• TensorFlow Graphics (2020) added 3D data structures to handle point clouds and meshes.

In recent years, there has been a convergence on the frameworks. Figure 22.2 shows that Tensor-
Flow andPyTorch have become the overwhelmingly dominantML frameworks, representingmore
than 95% of ML frameworks used in research and production. Keras was integrated into Tensor-
Flow in 2019; Preferred Networks transitioned Chainer to PyTorch in 2019; and Microsoft stopped
actively developing CNTK in 2022 in favor of supporting PyTorch on Windows.

However, a one-size-fits-all approach does not work well across the spectrum from cloud to tiny
edge devices. Different frameworks represent various philosophies around graph execution,
declarative versus imperative APIs, and more. Declarative defines what the program should do
while imperative focuses on how it should do it step-by-step. For instance, TensorFlow uses graph
execution and declarative-style modeling while PyTorch adopts eager execution and imperative
modeling for more Pythonic flexibility. Each approach carries tradeoffs that we will discuss later
in the Basic Components section.

Today's advanced frameworks enable practitioners to develop and deploy increasingly complex
models - a key driver of innovation in the AI field. But they continue to evolve and expand their
capabilities for the next generation of machine learning. To understand how these systems con-
tinue to evolve, we will dive deeper into TensorFlow as an example of how the framework grew in
complexity over time.
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Figure 22.2. Popularity of ML frameworks in the United States as measured by Google web searches
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22.3. DeepDive into TensorFlow

TensorFlowwas developed by the Google Brain team andwas released as an open-source software
library on November 9, 2015. It was designed for numerical computation using data flow graphs
and has since become popular for a wide range of machine learning and deep learning applica-
tions.

TensorFlow is both a training and inference framework and provides built-in functionality to han-
dle everything from model creation and training, to deployment (Figure 22.3). Since its initial
development, the TensorFlow ecosystem has grown to include many different “varieties” of Ten-
sorFlow that are each intended to allow users to support ML on different platforms. In this section,
we will mainly discuss only the core package.

22.3.1. TF Ecosystem

1. TensorFlow Core: primary package that most developers engage with. It provides a compre-
hensive, flexible platform for defining, training, and deploying machine learning models. It
includes tf.keras as its high-level API.

2. TensorFlowLite: designed for deploying lightweightmodels onmobile, embedded, and edge
devices. It offers tools to convert TensorFlow models to a more compact format suitable for
limited-resource devices and provides optimized pre-trained models for mobile.

3. TensorFlow.js: JavaScript library that allows training and deployment of machine learning
models directly in the browser or on Node.js. It also provides tools for porting pre-trained
TensorFlow models to the browser-friendly format.

4. TensorFlow on Edge Devices (Coral): platform of hardware components and software tools
from Google that allows the execution of TensorFlow models on edge devices, leveraging
Edge TPUs for acceleration.

5. TensorFlow Federated (TFF): framework for machine learning and other computations on
decentralized data. TFF facilitates federated learning, allowing model training across many
devices without centralizing the data.

6. TensorFlow Graphics: library for using TensorFlow to carry out graphics-related tasks, in-
cluding 3D shapes and point clouds processing, using deep learning.

7. TensorFlow Hub: repository of reusable machine learning model components to allow de-
velopers to reuse pre-trained model components, facilitating transfer learning and model
composition

8. TensorFlow Serving: framework designed for serving and deploying machine learning mod-
els for inference in production environments. It provides tools for versioning and dynami-
cally updating deployed models without service interruption.

9. TensorFlow Extended (TFX): end-to-end platform designed to deploy and manage machine
learning pipelines in production settings. TFX encompasses components for data validation,
preprocessing, model training, validation, and serving.

https://www.tensorflow.org/tutorials
https://www.tensorflow.org/lite
https://www.tensorflow.org/js
https://developers.googleblog.com/2019/03/introducing-coral-our-platform-for.html
https://www.tensorflow.org/federated
https://www.tensorflow.org/graphics
https://www.tensorflow.org/hub
https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx


Chapter 22. AI Frameworks 151

Figure 22.3. Architecture overview of TensorFlow 2.0 (Source: Tensorflow)

TensorFlowwas developed to address the limitations of DistBelief (Yu et al. 2018)—the framework
in use at Google from 2011 to 2015—by providing flexibility along three axes: 1) defining new lay-
ers, 2) refining training algorithms, and 3) defining new training algorithms. To understand what
limitations in DistBelief led to the development of TensorFlow, we will first give a brief overview
of the Parameter Server Architecture that DistBelief employed (Dean et al. 2012).

The Parameter Server (PS) architecture is a popular design for distributing the training of machine
learning models, especially deep neural networks, across multiple machines. The fundamental
idea is to separate the storage and management of model parameters from the computation used
to update these parameters:

Storage: The storage and management of model parameters were handled by the stateful parame-
ter server processes. Given the large scale of models and the distributed nature of the system, these
parameters were sharded across multiple parameter servers. Each server maintained a portion of
the model parameters, making it ”stateful” as it had to maintain and manage this state across the
training process.

Computation: The worker processes, which could be run in parallel, were stateless and purely
computational, processing data and computing gradients without maintaining any state or long-
term memory (M. Li et al. 2014).

DistBelief and its architecture defined above were crucial in enabling distributed deep learning at
Google but also introduced limitations that motivated the development of TensorFlow:

https://blog.tensorflow.org/2019/01/whats-coming-in-tensorflow-2-0.html


152 Chapter 22. AI Frameworks

22.3.2. Static Computation Graph

In the parameter server architecture, model parameters are distributed across various parameter
servers. Since DistBelief was primarily designed for the neural network paradigm, parameters
corresponded to a fixed structure of the neural network. If the computation graph were dynamic,
the distribution and coordination of parameterswould become significantlymore complicated. For
example, a change in the graph might require the initialization of new parameters or the removal
of existing ones, complicating themanagement and synchronization tasks of the parameter servers.
This made it harder to implement models outside the neural framework or models that required
dynamic computation graphs.

TensorFlow was designed to be a more general computation framework where the computation is
expressed as a data flow graph. This allows for a wider variety of machine learning models and
algorithms outside of just neural networks, and provides flexibility in refining models.

22.3.3. Usability & Deployment

The parameter server model involves a clear delineation of roles (worker nodes and parameter
servers), and is optimized for data center deployments whichmight not be optimal for all use cases.
For instance, on edge devices or in other non-data center environments, this division introduces
overheads or complexities.

TensorFlowwas built to run onmultiple platforms, frommobile devices and edge devices, to cloud
infrastructure. It also aimed to provide ease of use between local and distributed training, and to
be more lightweight, and developer friendly.

22.3.4. Architecture Design

Rather than using the parameter server architecture, TensorFlow instead deploys tasks across a
cluster. These tasks are named processes that can communicate over a network, and each can
execute TensorFlow's core construct: the dataflow graph, and interface with various computing
devices (like CPUs or GPUs). This graph is a directed representation where nodes symbolize com-
putational operations, and edges depict the tensors (data) flowing between these operations.

Despite the absence of traditional parameter servers, some tasks, called “PS tasks”, still perform the
role of storing and managing parameters, reminiscent of parameter servers in other systems. The
remaining tasks, which usually handle computation, data processing, and gradient calculations,
are referred to as ”worker tasks.” TensorFlow's PS tasks can execute any computation representable
by the dataflow graph, meaning they aren't just limited to parameter storage, and the computation
can be distributed. This capability makes them significantly more versatile and gives users the
power to program the PS tasks using the standard TensorFlow interface, the same one they'd use
to define their models. As mentioned above, dataflow graphs’ structure also makes it inherently
good for parallelism allowing for processing of large datasets.
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22.3.5. Built-in Functionality & Keras

TensorFlow includes libraries to help users develop and deploymore use-case specificmodels, and
since this framework is open-source, this list continues to grow. These libraries address the entire
ML development life-cycle: data preparation, model building, deployment, as well as responsible
AI.

Additionally, one of TensorFlow’s biggest advantages is its integration with Keras, though as we
will cover in the next section, Pytorch recently also added a Keras integration. Keras is another ML
framework thatwas built to be extremely user-friendly and as a result has a high level of abstraction.
We will cover Keras in more depth later in this chapter, but when discussing its integration with
TensorFlow, the most important thing to note is that it was originally built to be backend agnostic.
This means users could abstract away these complexities, offering a cleaner, more intuitive way
to define and train models without worrying about compatibility issues with different backends.
TensorFlow users had some complaints about the usability and readability of TensorFlow’s API, so
as TF gained prominence it integrated Keras as its high-level API. This integration offered major
benefits to TensorFlow users since it introduced more intuitive readability, and portability of mod-
els while still taking advantage of powerful backend features, Google support, and infrastructure
to deploy models on various platforms.

22.3.6. Limitations and Challenges

TensorFlow is one of the most popular deep learning frameworks but does have criticisms and
weaknesses– mostly focusing on usability, and resource usage. The rapid pace of updates through
its support from Google, while advantageous, has sometimes led to issues of backward compati-
bility, deprecated functions, and shifting documentation. Additionally, even with the Keras imple-
mentation, the syntax and learning curve of TensorFlow can be difÏcult for new users. One major
critique of TensorFlow is its high overhead and memory consumption due to the range of built in
libraries and support. Some of these concerns can be addressed by using pared down versions, but
can still be limiting in resource-constrained environments.

22.3.7. PyTorch vs. TensorFlow

PyTorch and TensorFlow have established themselves as frontrunners in the industry. Both frame-
works offer robust functionalities, but they differ in terms of their design philosophies, ease of use,
ecosystem, and deployment capabilities.

Design Philosophy and Programming Paradigm: PyTorch uses a dynamic computational graph,
termed as eager execution. Thismakes it intuitive and facilitates debugging since operations are ex-
ecuted immediately and can be inspected on-the-fly. In comparison, earlier versions of TensorFlow
were centered around a static computational graph, which required the graph's complete defini-
tion before execution. However, TensorFlow 2.0 introduced eager execution by default, making it
more aligned with PyTorch in this regard. PyTorch's dynamic nature and Python based approach
has enabled its simplicity and flexibility, particularly for rapid prototyping. TensorFlow's static
graph approach in its earlier versions had a steeper learning curve; the introduction of TensorFlow
2.0, with its Keras integration as the high-level API, has significantly simplified the development
process.
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Deployment: PyTorch is heavily favored in research environments, deploying PyTorch models in
production settings was traditionally challenging. However, with the introduction of TorchScript
and the TorchServe tool, deployment has becomemore feasible. One of TensorFlow's strengths lies
in its scalability and deployment capabilities, especially on embedded and mobile platforms with
TensorFlow Lite. TensorFlow Serving and TensorFlow.js further facilitate deployment in various
environments, thus giving it a broader reach in the ecosystem.

Performance: Both frameworks offer efÏcient hardware acceleration for their operations. However,
TensorFlow has a slightlymore robust optimizationworkflow, such as the XLA (Accelerated Linear
Algebra) compiler, which can further boost performance. Its static computational graph, in the
early versions, was also advantageous for certain optimizations.

Ecosystem: PyTorch has a growing ecosystem with tools like TorchServe for serving models and
libraries like TorchVision, TorchText, and TorchAudio for specific domains. As we mentioned ear-
lier, TensorFlow has a broad and mature ecosystem. TensorFlow Extended (TFX) provides an end-
to-end platform for deploying production machine learning pipelines. Other tools and libraries
include TensorFlow Lite, TensorFlow.js, TensorFlow Hub, and TensorFlow Serving.

Here’s a summarizing comparative analysis:

Feature/AspectPyTorch TensorFlow

Design
Philosophy

Dynamic computational graph (eager
execution)

Static computational graph (early
versions); Eager execution in TensorFlow
2.0

Deployment Traditionally challenging; Improved
with TorchScript & TorchServe

Scalable, especially on embedded
platforms with TensorFlow Lite

Performance
& Optimiza-
tion

EfÏcient GPU acceleration Robust optimization with XLA compiler

Ecosystem TorchServe, TorchVision, TorchText,
TorchAudio

TensorFlow Extended (TFX), TensorFlow
Lite, TensorFlow.js, TensorFlow Hub,
TensorFlow Serving

Ease of Use Preferred for its Pythonic approach
and rapid prototyping

Initially steep learning curve; Simplified
with Keras in TensorFlow 2.0

22.4. Basic Framework Components

22.4.1. Tensor data structures

To understand tensors, let us start from the familiar concepts in linear algebra. As demonstrated
in Figure 22.4, vectors can be represented as a stack of numbers in a 1-dimensional array. Matrices
follow the same idea, and one can think of them as many vectors being stacked on each other,
making it 2 dimensional. Higher dimensional tensors work the same way. A 3-dimensional tensor
is simply a set of matrices stacked on top of each other in another direction. Therefore, vectors and
matrices can be considered special cases of tensors, with 1D and 2D dimensions respectively.
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Figure 22.4. Visualization of Tensor Data Structure

Defining formally, in machine learning, tensors are a multi-dimensional array of numbers. The
number of dimensions defines the rank of the tensor. As a generalization of linear algebra, the
study of tensors is called multilinear algebra. There are noticeable similarities between matrices
and higher ranked tensors. First, it is possible to extend the definitions given in linear algebra to
tensors, such as with eigenvalues, eigenvectors, and rank (in the linear algebra sense) . Further-
more, with the way that we have defined tensors, it is possible to turn higher dimensional tensors
into matrices. This turns out to be very critical in practice, as multiplication of abstract representa-
tions of higher dimensional tensors are often completed by first converting them into matrices for
multiplication.

Tensors offer a flexible data structure with its ability to represent data in higher dimensions. For
example, to represent color image data, for each of the pixel values (in 2 dimensions), one needs
the color values for red, green and blue. With tensors, it is easy to contain image data in a single
3-dimensional tensor with each of the numbers within it representing a certain color value in the
certain location of the image. Extending even further, if we wanted to store a series of images,
we can simply extend the dimensions such that the new dimension (to create a 4-dimensional ten-
sor) represents the different images that we have. This is exactly what the famous MNIST dataset
does, loading a single 4-dimensional tensor when one calls to load the dataset, allowing a compact
representation of all the data in one place.

22.4.2. Computational graphs

22.4.2.1. Graph Definition

Computational graphs are a key component of deep learning frameworks like TensorFlow and
PyTorch. They allow us to express complex neural network architectures in a way that can be ef-
ficiently executed and differentiated. A computational graph consists of a directed acyclic graph

https://www.tensorflow.org/datasets/catalog/mnist
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(DAG) where each node represents an operation or variable, and edges represent data dependen-
cies between them.

For example, a node might represent a matrix multiplication operation, taking two input matrices
(or tensors) and producing an output matrix (or tensor). To visualize this, consider the simple
example in Figure 22.5. The directed acyclic graph above computes 𝑧 = 𝑥 × 𝑦, where each of the
variables are just numbers.

Figure 22.5. Basic Example of Computational Graph

Underneath the hood, the computational graphs represent abstractions for common layers like con-
volutional, pooling, recurrent, and dense layers, with data including activations, weights, biases,
are represented in tensors. Convolutional layers form the backbone of CNN models for computer
vision. They detect spatial patterns in input data through learned filters. Recurrent layers like
LSTMs and GRUs enable processing sequential data for tasks like language translation. Attention
layers are used in transformers to draw global context from the entire input.

Broadly speaking, layers are higher level abstractions that define computations on top of those
tensors. For example, a Dense layer performs a matrix multiplication and addition between in-
put/weight/bias tensors. Note that a layer operates on tensors as inputs and outputs and the layer
itself is not a tensor. Some key differences:

• Layers contain states like weights and biases. Tensors are stateless, just holding data.

• Layers can modify internal state during training. Tensors are immutable/read-only.
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• Layers are higher level abstractions. Tensors are lower level, directly representing data and
math operations.

• Layers define fixed computation patterns. Tensors flow between layers during execution.

• Layers are used indirectly when building models. Tensors flow between layers during exe-
cution.

So while tensors are a core data structure that layers consume and produce, layers have additional
functionality for defining parameterized operations and training. While a layer configures ten-
sor operations under the hood, the layer itself remains distinct from the tensor objects. The layer
abstraction makes building and training neural networks much more intuitive. This sort of ab-
straction enables developers to build models by stacking these layers together, without having to
implement the layer logic themselves. For example, calling tf.keras.layers.Conv2D in Tensor-
Flow creates a convolutional layer. The framework handles computing the convolutions, managing
parameters, etc. This simplifies model development, allowing developers to focus on architecture
rather than low-level implementations. Layer abstractions utilize highly optimized implementa-
tions for performance. They also enable portability, as the same architecture can run on different
hardware backends like GPUs and TPUs.

In addition, computational graphs include activation functions like ReLU, sigmoid, and tanh that
are essential to neural networks and many frameworks provide these as standard abstractions.
These functions introduce non-linearities that enable models to approximate complex functions.
Frameworks provide these as simple, pre-defined operations that can be used when constructing
models. For example, tf.nn.relu in TensorFlow. This abstraction enables flexibility, as develop-
ers can easily swap activation functions for tuning performance. Pre-defined activations are also
optimized by the framework for faster execution.

In recent years, models like ResNets and MobileNets have emerged as popular architectures, with
current frameworks pre-packaging these as computational graphs. Rather thanworrying about the
fine details, developers can utilize them as a starting point, customizing as needed by substituting
layers. This simplifies and speeds upmodel development, avoiding reinventing architectures from
scratch. Pre-definedmodels include well-tested, optimized implementations that ensure good per-
formance. Theirmodular design also enables transferring learned features to new tasks via transfer
learning. In essence, these pre-defined architectures provide high-performance building blocks to
quickly create robust models.

These layer abstractions, activation functions, and predefined architectures provided by the frame-
works are what constitute a computational graph. When a user defines a layer in a framework
(e.g. tf.keras.layers.Dense()), the framework is configuring computational graph nodes and edges
to represent that layer. The layer parameters like weights and biases become variables in the graph.
The layer computations become operation nodes (such as the x and y in the figure above). When
you call an activation function like tf.nn.relu(), the framework adds a ReLU operation node to the
graph. Predefined architectures are just pre-configured subgraphs that can be inserted into your
model's graph. Thus, model definition via high-level abstractions creates a computational graph.
The layers, activations, and architectures we use become graph nodes and edges.

When we define a neural network architecture in a framework, we are implicitly constructing a
computational graph. The framework uses this graph to determine operations to run during train-
ing and inference. Computational graphs bring several advantages over raw code and that’s one
of the core functionalities that is offered by a good ML framework:
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• Explicit representation of data flow and operations

• Ability to optimize graph before execution

• Automatic differentiation for training

• Language agnosticism - graph can be translated to run on GPUs, TPUs, etc.

• Portability - graph can be serialized, saved, and restored later

Computational graphs are the fundamental building blocks of ML frameworks. Model definition
via high-level abstractions creates a computational graph. The layers, activations, and architectures
we use become graph nodes and edges. The framework compilers and optimizers operate on this
graph to generate executable code. Essentially, the abstractions provide a developer-friendly API
for building computational graphs. Under the hood, it's still graphs all the way down! So while
you may not directly manipulate graphs as a framework user, they enable your high-level model
specifications to be efÏciently executed. The abstractions simplify model-building while computa-
tional graphs make it possible.

22.4.2.2. Static vs. Dynamic Graphs

Deep learning frameworks have traditionally followed one of two approaches for expressing com-
putational graphs.

Static graphs (declare-then-execute): With this model, the entire computational graph must be
defined upfront before it can be run. All operations and data dependencies must be specified
during the declaration phase. TensorFlow originally followed this static approach - models were
defined in a separate context, then a session was created to run them. The benefit of static graphs
is they allow more aggressive optimization, since the framework can see the full graph. But it also
tends to be less flexible for research and interactivity. Changes to the graph require re-declaring
the full model.

For example:

x = tf.placeholder(tf.float32)
y = tf.matmul(x, weights) + biases

The model is defined separately from execution, like building a blueprint. For TensorFlow 1.x, this
is done using tf.Graph(). All ops and variables must be declared upfront. Subsequently, the graph
is compiled and optimized before running. Execution is done later by feeding in tensor values.

Dynamic graphs (define-by-run): In contrast to declare (all) first and then execute, the graph is
built dynamically as execution happens. There is no separate declaration phase - operations exe-
cute immediately as they are defined. This style is more imperative and flexible, facilitating exper-
imentation.

PyTorch uses dynamic graphs, building the graph on-the-fly as execution happens. For example,
consider the following code snippet, where the graph is built as the execution is taking place:
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x = torch.randn(4,784)
y = torch.matmul(x, weights) + biases

In the above example, there are no separate compile/build/run phases. Ops define and execute
immediately. With dynamic graphs, definition is intertwined with execution. This provides a
more intuitive, interactive workflow. But the downside is less potential for optimizations, since the
framework only sees the graph as it is built.

Recently, however, the distinction has blurred as frameworks adopt both modes. TensorFlow 2.0
defaults to dynamic graph mode, while still letting users work with static graphs when needed.
Dynamic declaration makes frameworks easier to use, while static models provide optimization
benefits. The ideal framework offers both options.

Static graph declaration provides optimization opportunities but less interactivity. While dynamic
execution offers flexibility and ease of use, it may have performance overhead. Here is a table
comparing the pros and cons of static vs dynamic execution graphs:

Execution Graph Pros Cons

Static (Declare-then-execute) Enable graph optimizations by
seeing full model ahead of
timeCan export and deploy
frozen graphsGraph is
packaged independently of
code

Less flexible for research and
iterationChanges require
rebuilding graphExecution
has separate compile and run
phases

Dynamic (Define-by-run) Intuitive imperative style like
Python codeInterleave graph
build with executionEasy to
modify graphsDebugging
seamlessly fits workflow

Harder to optimize without
full graphPossible slowdowns
from graph building during
executionCan require more
memory

22.4.3. Data Pipeline Tools

Computational graphs can only be as good as the data they learn from and work on. There-
fore, feeding training data efÏciently is crucial for optimizing deep neural networks performance,
though it is often overlooked as one of the core functionalities. Many modern AI frameworks pro-
vide specialized pipelines to ingest, process, and augment datasets for model training.

22.4.3.1. Data Loaders

At the core of these pipelines are data loaders, which handle reading examples from storage for-
mats like CSV files or image folders. Reading training examples from sources like files, databases,
object storage, etc. is the job of the data loaders. Deep learningmodels require diverse data formats
depending on the application. Among the popular formats are CSV: A versatile, simple format of-
ten used for tabular data. TFRecord: TensorFlow's proprietary format, optimized for performance.
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Parquet: Columnar storage, offering efÏcient data compression and retrieval. JPEG/PNG: Com-
monly used for image data. WAV/MP3: Prevalent formats for audio data. For instance, tf.data
is TensorFlows’s dataloading pipeline: https://www.tensorflow.org/guide/data.

Data loaders batch examples to leverage vectorization support in hardware. Batching refers to
grouping multiple data points for simultaneous processing, leveraging the vectorized computa-
tion capabilities of hardware like GPUs. While typical batch sizes range from 32-512 examples, the
optimal size often depends on the memory footprint of the data and the specific hardware con-
straints. Advanced loaders can stream virtually unlimited datasets from disk and cloud storage.
Streaming large datasets from disk or networks instead of loading fully into memory. This enables
virtually unlimited dataset sizes.

Data loaders can also shufÒe data across epochs for randomization, and preprocess features in
parallel with model training to expedite the training process. Randomly shufÒing the order of
examples between training epochs reduces bias and improves generalization.

Data loaders also support caching and prefetching strategies to optimize data delivery for fast,
smoothmodel training. Caching preprocessed batches in memory so they can be reused efÏciently
duringmultiple training steps. Caching these batches inmemory eliminates redundant processing.
Prefetching, on the other hand, involves preloading subsequent batches, ensuring that the model
never idles waiting for data.

22.4.4. Data Augmentation

Besides loading, data augmentation expands datasets synthetically. Augmentations apply ran-
dom transformations like flipping, cropping, rotating, altering color, adding noise etc. for images.
For audio, common augmentations involve mixing clips with background noise, or modulating
speed/pitch/volume.

Augmentations increase variation in the training data. Frameworks like TensorFlow and PyTorch
simplify applying random augmentations each epoch by integrating into the data pipeline.By pro-
grammatically increasing variation in the training data distribution, augmentations reduce overfit-
ting and improve model generalization.

Many frameworks make it easy to integrate augmentations into the data pipeline so they are ap-
plied on-the-fly each epoch. Together, performant data loaders and extensive augmentations en-
able practitioners to feed massive, varied datasets to neural networks efÏciently. Hands-off data
pipelines represent a significant improvement in usability and productivity. They allow develop-
ers to focus more on model architecture and less on data wrangling when training deep learning
models.

22.4.5. Optimization Algorithms

Training a neural network is fundamentally an iterative process that seeks to minimize a loss func-
tion. At its core, the goal is to fine-tune the model weights and parameters to produce predictions
as close as possible to the true target labels. Machine learning frameworks have greatly stream-
lined this process by offering extensive support in three critical areas: loss functions, optimization
algorithms, and regularization techniques.

https://www.tensorflow.org/guide/data
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Loss Functions are useful to quantify the difference between the model's predictions and the true
values. Different datasets require a different loss function to perform properly, as the loss function
tells the computer the “objective” for it to aim to. Commonly used loss functions areMean Squared
Error (MSE) for regression tasks and Cross-Entropy Loss for classification tasks.

To demonstrate some of the loss functions, imagine that you have a set of inputs and the corre-
sponding outputs, 𝑌𝑛 that denotes the output of 𝑛’th value. The inputs are fed into the model, and
the model outputs a prediction, which we can call ̂𝑌𝑛. With the predicted value and the real value,
we can for example use the MSE to calculate the loss function:

𝑀𝑆𝐸 = 1𝑁 𝑁∑𝑛=1(𝑌𝑛 − ̂𝑌𝑛)2
If the problem is a classification problem,wedonotwant to use theMSE, since the distance between
the predicted value and the real value does not have significantmeaning. For example, if onewants
to recognize handwritten models, while 9 is further away from 2, it does not mean that the model
is more wrong by making the prediction. Therefore, we use the cross-entropy loss function, which
is defined as:

𝐶𝑟𝑜𝑠𝑠−𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − 𝑁∑𝑛=1𝑌𝑛 log( ̂𝑌𝑛)
Once the loss like above is computed, we needmethods to adjust the model's parameters to reduce
this loss or error during the training process. To do so, current frameworks use a gradient based
approach, where it computes how much changes tuning the weights in a certain way changes the
value of the loss function. Knowing this gradient, the model moves in the direction that reduces
the gradient. There are many challenges associated with this, however, primarily stemming from
the fact that the optimization problem is not convex, making it very easy to solve, andmore details
about this will come in the AI Training section. Modern frameworks come equipped with efÏ-
cient implementations of several optimization algorithms, many of which are variants of gradient
descent algorithms with stochastic methods and adaptive learning rates. More information with
clear examples can be found in the AI Training section.

Last but not least, overly complexmodels tend to overfit, meaning they performwell on the training
data but fail to generalize to new, unseen data (see Overfitting). To counteract this, regularization
methods are employed to penalize model complexity and encourage it to learn simpler patterns.
Dropout for instance randomly sets a fraction of input units to 0 at each update during training,
which helps prevent overfitting.

However, there are cases where the problem is more complex than what the model can represent,
and this may result in underfitting. Therefore, choosing the right model architecture is also a criti-
cal step in the training process. Further heuristics and techniques are discussed in the AI Training
section.

Frameworks also provide efÏcient implementations of gradient descent, Adagrad, Adadelta, and
Adam. Adding regularization like dropout and L1/L2 penalties prevents overfitting during train-
ing. Batch normalization accelerates training by normalizing inputs to layers.
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22.4.6. Model Training Support

Before training a defined neural network model, a compilation step is required. During this step,
the high-level architecture of the neural network is transformed into an optimized, executable for-
mat. This process comprises several steps. The construction of the computational graph is the first
step. It represents all the mathematical operations and data flow within the model. We discussed
this earlier.

During training, the focus is on executing the computational graph. Every parameter within the
graph, such as weights and biases, is assigned an initial value. This value might be random or
based on a predefined logic, depending on the chosen initialization method.

The next critical step is memory allocation. Essential memory is reserved for the model's opera-
tions on both CPUs and GPUs, ensuring efÏcient data processing. The model's operations are then
mapped to the available hardware resources, particularly GPUs or TPUs, to expedite computation.
Once compilation is finalized, the model is prepared for training.

The training process employs various tools to enhance efÏciency. Batch processing is commonly
used to maximize computational throughput. Techniques like vectorization enable operations on
entire data arrays, rather than proceeding element-wise, which bolsters speed. Optimizations such
as kernel fusion (refer to the Optimizations chapter) amalgamate multiple operations into a single
action, minimizing computational overhead. Operations can also be segmented into phases, facil-
itating the concurrent processing of different mini-batches at various stages.

Frameworks consistently checkpoint the state, preserving intermediate model versions during
training. This ensures that if an interruption occurs, the progress isn't wholly lost, and training can
recommence from the last checkpoint. Additionally, the system vigilantly monitors the model's
performance against a validation data set. Should the model begin to overfit (that is, if its perfor-
mance on the validation set declines), training is automatically halted, conserving computational
resources and time.

ML frameworks incorporate a blend of model compilation, enhanced batch processing methods,
and utilities such as checkpointing and early stopping. These resources manage the complex as-
pects of performance, enabling practitioners to zero in on model development and training. As
a result, developers experience both speed and ease when utilizing the capabilities of neural net-
works.

22.4.7. Validation and Analysis

After training deep learning models, frameworks provide utilities to evaluate performance and
gain insights into the models' workings. These tools enable disciplined experimentation and de-
bugging.

22.4.7.1. Evaluation Metrics

Frameworks include implementations of common evaluation metrics for validation:

• Accuracy - Fraction of correct predictions overall. Widely used for classification.
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• Precision - Of positive predictions, how many were actually positive. Useful for imbalanced
datasets.

• Recall - Of actual positives, how many did we predict correctly. Measures completeness.

• F1-score - Harmonic mean of precision and recall. Combines both metrics.

• AUC-ROC - Area under ROC curve. Used for classification threshold analysis.

• MAP - Mean Average Precision. Evaluates ranked predictions in retrieval/detection.

• Confusion Matrix - Matrix that shows the true positives, true negatives, false positives, and
false negatives. Provides a more detailed view of classification performance.

These metrics quantify model performance on validation data for comparison.

22.4.7.2. Visualization

Visualization tools provide insight into models:

• Loss curves - Plot training and validation loss over time to spot overfitting.

• Activation grids - Illustrate features learned by convolutional filters.

• Projection - Reduce dimensionality for intuitive visualization.

• Precision-recall curves - Assess classification tradeoffs.

Tools like TensorBoard for TensorFlow and TensorWatch for PyTorch enable real-time metrics and
visualization during training.

22.4.8. Differentiable programming

With the machine learning training methods such as backpropagation relying on the change in the
loss function with respect to the change in weights (which essentially is the definition of deriva-
tives), the ability to quickly and efÏciently train large machine learning models rely on the com-
puter’s ability to take derivatives. This makes differentiable programming one of the most impor-
tant elements of a machine learning framework.

There are primarily fourmethods that we can use tomake computers take derivatives. First, we can
manually figure out the derivatives by hand and input them to the computer. One can see that this
would quickly become a nightmare with many layers of neural networks, if we had to compute all
the derivatives in the backpropagation steps by hand. Another method is symbolic differentiation
using computer algebra systems such asMathematica, but this can introduce a layer of inefÏciency,
as there needs to be a level of abstraction to take derivatives. Numerical derivatives, the practice
of approximating gradients using finite difference methods, suffer from many problems including
high computational costs, and larger grid size can lead to a significant amount of errors. This leads
to automatic differentiation, which exploits the primitive functions that computers use to represent
operations to obtain an exact derivative. With automatic differentiation, computational complexity
of computing the gradient is proportional to computing the function itself. Intricacies of automatic
differentiation are not dealtwith by endusers now, but resources to learnmore can be foundwidely,

https://www.tensorflow.org/tensorboard/scalars_and_keras
https://github.com/microsoft/tensorwatch
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such as from here. Automatic differentiation and differentiable programming today is ubiquitous
and is done efÏciently and automatically by modern machine learning frameworks.

22.4.9. Hardware Acceleration

The trend to continuously train and deploy larger machine learning models has essentially made
hardware acceleration support a necessity for machine learning platforms (Figure 22.6). Deep lay-
ers of neural networks require manymatrix multiplications, which attracts hardware that can com-
pute matrix operations fast and in parallel. In this landscape, two types of hardware architectures,
the GPU and TPU, have emerged as leading choices for training machine learning models.

The use of hardware accelerators began with AlexNet, which paved the way for future works to
utilize GPUs as hardware accelerators for training computer vision models. GPUs, or Graphics
Processing Units, excel in handling a large number of computations at once, making them ideal
for the matrix operations that are central to neural network training. Their architecture, designed
for rendering graphics, turns out to be perfect for the kind of mathematical operations required
in machine learning. While they are very useful for machine learning tasks and have been imple-
mented in many hardware platforms, GPU’s are still general purpose in that they can be used for
other applications.

On the other hand, Tensor Processing Units (TPU) are hardware units designed specifically for
neural networks. They focus on themultiply and accumulate (MAC) operation, and their hardware
essentially consists of a large hardware matrix that contains elements efÏciently computing the
MACoperation. This concept called the systolic array architecture, was pioneered byHsiang Tsung
Kung and Leiserson (1979), but has proven to be a useful structure to efÏciently compute matrix
products and other operations within neural networks (such as convolutions).

While TPU’s can drastically reduce training times, it also has disadvantages. For example, many
operations within the machine learning frameworks (primarily TensorFlow here since the TPU
directly integrates with it) are not supportedwith the TPU’s. It also cannot support custom custom
operations from the machine learning frameworks, and the network design must closely align to
the hardware capabilities.

Today, NVIDIA GPUs dominate training, aided by software libraries like CUDA, cuDNN, and Ten-
sorRT. Frameworks also tend to include optimizations tomaximize performance on these hardware
types, like pruning unimportant connections and fusing layers. Combining these techniques with
hardware acceleration provides greater efÏciency. For inference, hardware is increasingly mov-
ing towards optimized ASICs and SoCs. Google's TPUs accelerate models in data centers. Apple,
Qualcomm, and others now produce AI-focused mobile chips. The NVIDIA Jetson family targets
autonomous robots.

22.5. Advanced Features

22.5.1. Distributed training

As machine learning models have become larger over the years, it has become essential for large
models to utilizemultiple computing nodes in the training process. This process, called distributed

https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://cloud.google.com/tpu/docs/intro-to-tpu
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://cloud.google.com/tpu/docs/intro-to-tpu
https://www.eecs.harvard.edu/~htk/publication/1982-kung-why-systolic-architecture.pdf
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/tensorrt#:~:text=NVIDIA%20TensorRT-LLM%20is%20an,knowledge%20of%20C++%20or%20CUDA.
https://developer.nvidia.com/tensorrt#:~:text=NVIDIA%20TensorRT-LLM%20is%20an,knowledge%20of%20C++%20or%20CUDA.
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Figure 22.6. Examples of machine learning hardware accelerators (Source: 365)

learning, has allowed for higher training capabilities, but has also imposed challenges in implemen-
tation.

We can consider three different ways to spread the work of training machine learning models to
multiple computing nodes. Input data partitioning, referring to multiple processors running the
same model on different input partitions. This is the easiest to implement that is available for
manymachine learning frameworks. Themore challenging distribution ofwork comeswithmodel
parallelism, which refers tomultiple computing nodesworking on different parts of themodel, and
pipelinedmodel parallelism, which refers tomultiple computing nodesworking on different layers
of the model on the same input. The latter two mentioned here are active research areas.

ML frameworks that support distributed learning include TensorFlow (through its tf.distribute
module), PyTorch (through its torch.nn.DataParallel and torch.nn.DistributedDataParallel mod-
ules), and MXNet (through its gluon API).

22.5.2. Model Conversion

Machine learning models have various methods to be represented in order to be used within dif-
ferent frameworks and for different device types. For example, a model can be converted to be
compatible with inference frameworks within the mobile device. The default format for Tensor-
Flowmodels is checkpoint files containing weights and architectures, which are needed in case we
have to retrain the models. But for mobile deployment, models are typically converted to Tensor-
Flow Lite format. TensorFlow Lite uses a compact flatbuffer representation and optimizations for
fast inference onmobile hardware, discarding all the unnecessary baggage associatedwith training
metadata such as checkpoint file structures.

https://www.info-assas-in.top/ProductDetail.aspx?iid=148457818&pr=40.88
https://www.tensorflow.org/api_docs/python/tf/distribute
https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
https://mxnet.apache.org/versions/1.9.1/api/python/docs/api/gluon/index.html
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The default format for TensorFlowmodels is checkpoint files containing weights and architectures.
For mobile deployment, models are typically converted to TensorFlow Lite format. TensorFlow
Lite uses a compact flatbuffer representation and optimizations for fast inference on mobile hard-
ware.

Model optimizations like quantization (see Optimizations chapter) can further optimize models
for target architectures like mobile. This reduces precision of weights and activations to uint8 or
int8 for a smaller footprint and faster execution with supported hardware accelerators. For post-
training quantization, TensorFlow's converter handles analysis and conversion automatically.

Frameworks like TensorFlow simplify deploying trained models to mobile and embedded IoT de-
vices through easy conversion APIs for TFLite format and quantization. Ready-to-use conver-
sion enables high performance inference on mobile without manual optimization burden. Besides
TFLite, other common targets include TensorFlow.js for web deployment, TensorFlow Serving for
cloud services, and TensorFlowHub for transfer learning. TensorFlow's conversion utilities handle
these scenarios to streamline end-to-end workflows.

More information about model conversion in TensorFlow is linked here.

22.5.3. AutoML, No-Code/Low-Code ML

Inmany cases, machine learning can have a relatively high barrier of entry compared to other fields.
To successfully train and deploy models, one needs to have a critical understanding of a variety of
disciplines, from data science (data processing, data cleaning), model structures (hyperparameter
tuning, neural network architecture), hardware (acceleration, parallel processing), and more de-
pending on the problem at hand. The complexity of these problems have led to the introduction to
frameworks such as AutoML, which aims to make “Machine learning available for non-Machine
Learning exports” and to “automate research in machine learning”. They have constructed Au-
toWEKA, which aids in the complex process of hyperparameter selection, as well as Auto-sklearn
and Auto-pytorch, an extension of AutoWEKA into the popular sklearn and PyTorch Libraries.

While these works of automating parts of machine learning tasks are underway, others have fo-
cused on constructing machine learning models easier by deploying no-code/low code machine
learning, utilizing a drag and drop interface with an easy to navigate user interface. Companies
such as Apple, Google, and Amazon have already created these easy to use platforms to allow
users to construct machine learning models that can integrate to their ecosystem.

These steps to remove barrier to entry continue to democratizemachine learning andmake it easier
to access for beginners and simplify workflow for experts.

22.5.4. Advanced Learning Methods

22.5.4.1. Transfer Learning

Transfer learning is the practice of using knowledge gained from a pretrained model to train and
improve performance of a model that is for a different task. For example, datasets that have been
trained on ImageNet datasets such asMobileNet and ResNet can help classify other image datasets.
To do so, one may freeze the pretrained model, utilizing it as a feature extractor to train a much

../optimizations/optimizations.qmd
https://www.tensorflow.org/lite/models/convert
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smaller model that is built on top of the feature extraction. One can also fine tune the entire model
to fit the new task.

Transfer learning has a series of challenges, in that the modified model may not be able to conduct
its original tasks after transfer learning. Papers such as “Learningwithout Forgetting” by Z. Li and
Hoiem (2018) aims to address these challenges and have been implemented in modern machine
learning platforms.

22.5.4.2. Federated Learning

Consider the problem of labeling items that are present in a photo from personal devices. One
may consider moving the image data from the devices to a central server, where a single model
will train Using these image data provided by the devices. However, this presents many potential
challenges. First, withmany devices one needs amassive network infrastructure to move and store
data from these devices to a central location. With the number of devices that are present today
this is often not feasible, and very costly. Furthermore, there are privacy challenges associatedwith
moving personal data, such as Photos central servers.

Federated learning by McMahan et al. (2017) is a form of distributed computing that resolves
these issues by distributing the models into personal devices for them to be trained on device
(Figure 22.7). At the beginning, a base global model is trained on a central server to be distributed
to all devices. Using this base model, the devices individually compute the gradients and send
them back to the central hub. Intuitively this is the transfer of model parameters instead of the
data itself. This innovative approach allows the model to be trained with many different datasets
(which, in our example, would be the set of images that are on personal devices), without the need
to transfer a large amount of potentially sensitive data. However, federated learning also comes
with a series of challenges.

In many real-world situations, data collected from devices may not come with suitable labels. This
issue is compounded by the fact that users, who are often the primary source of data, can be unre-
liable. This unreliability means that even when data is labeled, there’s no guarantee of its accuracy
or relevance. Furthermore, each user’s data is unique, resulting in a significant variance in the data
generated by different users. This non-IID nature of data, coupled with the unbalanced data pro-
duction where some users generate more data than others, can adversely impact the performance
of the global model. Researchers have worked to compensate for this, such as by adding a prox-
imal term to achieve a balance between the local and global model, and adding a frozen global
hypersphere classifier.

There are additional challenges associated with federated learning. The number of mobile device
owners can far exceed the average number of training samples on each device, leading to sub-
stantial communication overhead. This issue is particularly pronounced in the context of mobile
networks, which are often used for such communication and can be unstable. This instability can
result in delayed or failed transmission of model updates, thereby affecting the overall training
process.

The heterogeneity of device resources is another hurdle. Devices participating in Federated Learn-
ing can have varying computational powers and memory capacities. This diversity makes it chal-
lenging to design algorithms that are efÏcient across all devices. Privacy and security issues are not
a guarantee for federated learning. Techniques such as inversion gradient attacks can be used to

https://browse.arxiv.org/pdf/1606.09282.pdf
https://arxiv.org/abs/2207.09413
https://arxiv.org/abs/2207.09413
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extract information about the training data from the model parameters. Despite these challenges,
the large amount of potential benefits continue to make it a popular research area. Open source
programs such as Flower have been developed to make it simpler to implement federated learning
with a variety of machine learning frameworks.

Figure 22.7. A centralized-server approach to federated learning (Source: NVIDIA)

22.6. Framework Specialization

Thus far, we have talked about ML frameworks generally. However, typically frameworks are
optimized based on the target environment's computational capabilities and application require-
ments, ranging from the cloud to the edge to tiny devices. Choosing the right framework is crucial
based on the target environment for deployment. This section provides an overview of the major
types of AI frameworks tailored for cloud, edge, and TinyML environments to help understand
the similarities and differences between these different ecosystems.

22.6.1. Cloud

Cloud-based AI frameworks assume access to ample computational power, memory, and storage
resources in the cloud. They generally support both training and inference. Cloud-based AI frame-
works are suited for applications where data can be sent to the cloud for processing, such as cloud-
based AI services, large-scale data analytics, and web applications. Popular cloud AI frameworks
include the ones we mentioned earlier such as TensorFlow, PyTorch, MXNet, Keras, and others.
These frameworks utilize technologies like GPUs, TPUs, distributed training, and AutoML to de-
liver scalable AI. Concepts like model serving, MLOps, and AIOps relate to the operationalization

https://flower.dev/
https://blogs.nvidia.com/blog/what-is-federated-learning/
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of AI in the cloud. Cloud AI powers services like Google Cloud AI and enables transfer learning
using pre-trained models.

22.6.2. Edge

Edge AI frameworks are tailored for deploying AI models on edge devices, such as IoT devices,
smartphones, and edge servers. Edge AI frameworks are optimized for devices with moderate
computational resources, offering a balance between power andperformance. EdgeAI frameworks
are ideal for applications requiring real-time or near-real-time processing, including robotics, au-
tonomous vehicles, and smart devices. Key edge AI frameworks include TensorFlow Lite, PyTorch
Mobile, CoreML, and others. They employ optimizations like model compression, quantization,
and efÏcient neural network architectures. Hardware support includes CPUs, GPUs, NPUs and
accelerators like the Edge TPU. Edge AI enables use cases like mobile vision, speech recognition,
and real-time anomaly detection.

22.6.3. Embedded

TinyML frameworks are specialized for deploying AI models on extremely resource-constrained
devices, specifically microcontrollers and sensors within the IoT ecosystem. TinyML frameworks
are designed for devices with severely limited resources, emphasizing minimal memory and
power consumption. TinyML frameworks are specialized for use cases on resource-constrained
IoT devices for applications such as predictive maintenance, gesture recognition, and environ-
mental monitoring. Major TinyML frameworks include TensorFlow Lite Micro, uTensor, and
ARM NN. They optimize complex models to fit within kilobytes of memory through techniques
like quantization-aware training and reduced precision. TinyML allows intelligent sensing across
battery-powered devices, enabling collaborative learning via federated learning. The choice of
framework involves balancing model performance and computational constraints of the target
platform, whether cloud, edge or TinyML. Here is a summary table comparing the major AI
frameworks across cloud, edge, and TinyML environments:

Framework
Type Examples Key Technologies Use Cases

Cloud
AI

TensorFlow,
PyTorch, MXNet,
Keras

GPUs, TPUs, distributed training,
AutoML, MLOps

Cloud services, web apps,
big data analytics

Edge
AI

TensorFlow Lite,
PyTorch Mobile,
Core ML

Model optimization, compression,
quantization, efÏcient NN
architectures

Mobile apps, robots,
autonomous systems,
real-time processing

TinyML TensorFlow Lite
Micro, uTensor,
ARM NN

Quantization-aware training,
reduced precision, neural
architecture search

IoT sensors, wearables,
predictive maintenance,
gesture recognition

Key differences:
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• Cloud AI leverages massive computational power for complex models using GPUs/TPUs
and distributed training

• Edge AI optimizes models to run locally on resource-constrained edge devices.

• TinyML fits models into extremely low memory and compute environments like microcon-
trollers

22.7. Embedded AI Frameworks

22.7.1. Resource Constraints

Embedded systems face severe resource constraints that pose unique challenges for deploying ma-
chine learningmodels compared to traditional computing platforms. For example, microcontroller
units (MCUs) commonly used in IoT devices often have:

• RAM in the range of tens of kilobytes to a few megabytes. The popular ESP8266 MCU has
around 80KB RAM available to developers. This contrasts with 8GB or more on typical lap-
tops and desktops today.

• Flash storage ranging from hundreds of kilobytes to a few megabytes. The Arduino Uno
microcontroller provides just 32KB of storage for code. Standard computers today have disk
storage in the order of terabytes.

• Processing power from just a few MHz to approximately 200MHz. The ESP8266 operates
at 80MHz. This is several orders of magnitude slower than multi-GHz multi-core CPUs in
servers and high-end laptops.

These tight constraints make training machine learning models directly on microcontrollers infea-
sible in most cases. The limited RAM precludes handling large datasets for training. Energy usage
for training would also quickly deplete battery-powered devices. Instead, models are trained on
resource-rich systems and deployed on microcontrollers for optimized inference. But even infer-
ence poses challenges:

1. Model Size: AI models are too large to fit on embedded and IoT devices. This necessitates
the need for model compression techniques, such as quantization, pruning, and knowledge
distillation. Additionally, as we will see, many of the frameworks used by developers for AI
development have large amounts of overhead, and built in libraries that embedded systems
can’t support.

2. Complexity of Tasks: With only tens of KBs to a few MBs of RAM, IoT devices and embed-
ded systems are constrained in the complexity of tasks they can handle. Tasks that require
large datasets or sophisticated algorithms– for example LLMs– which would run smoothly
on traditional computing platforms, might be infeasible on embedded systems without com-
pression or other optimization techniques due to memory limitations.

3. Data Storage and Processing: Embedded systems often process data in real-time and might
not store large amounts of data locally. Conversely, traditional computing systems can hold
and process large datasets in memory, enabling faster data operations and analysis as well as
real-time updates.

https://www.espressif.com/en/products/socs/esp8266
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4. Security and Privacy: Limited memory also restricts the complexity of security algorithms
and protocols, data encryption, reverse engineering protections, and more that can be im-
plemented on the device. This can potentially make some IoT devices more vulnerable to
attacks.

Consequently, specialized software optimizations and ML frameworks tailored for microcon-
trollers are necessary to work within these tight resource bounds. Clever optimization techniques
like quantization, pruning and knowledge distillation compress models to fit within limited
memory (see Optimizations section). Learnings from neural architecture search help guide model
designs.

Hardware improvements like dedicated ML accelerators on microcontrollers also help alleviate
constraints. For instance, Qualcomm’s Hexagon DSP provides acceleration for TensorFlow Lite
models on Snapdragon mobile chips. Google’s Edge TPU packs ML performance into a tiny ASIC
for edge devices. ARM Ethos-U55 offers efÏcient inference on Cortex-M class microcontrollers.
These customized ML chips unlock advanced capabilities for resource-constrained applications.

Generally, due to the limited processing power, it’s almost always infeasible to train AI models on
IoT or embedded systems. Instead, models are trained on powerful traditional computers (often
with GPUs) and then deployed on the embedded device for inference. TinyML specifically deals
with this, ensuring models are lightweight enough for real-time inference on these constrained
devices.

22.7.2. Frameworks & Libraries

Embedded AI frameworks are software tools and libraries designed to enable AI and ML capa-
bilities on embedded systems. These frameworks are essential for bringing AI to IoT devices,
robotics, and other edge computing platforms and they are designed toworkwhere computational
resources, memory, and power consumption are limited.

22.7.3. Challenges

While embedded systems present an enormous opportunity for deploying machine learning to en-
able intelligent capabilities at the edge, these resource-constrained environments also pose signifi-
cant challenges. Unlike typical cloud or desktop environments rich with computational resources,
embedded devices introduce severe constraints around memory, processing power, energy efÏ-
ciency, and specialized hardware. As a result, existing machine learning techniques and frame-
works designed for server clusters with abundant resources do not directly translate to embedded
systems. This section uncovers some of the challenges and opportunities for embedded systems
and ML frameworks.

22.7.3.1. Fragmented Ecosystem

The lack of a unifiedML framework led to a highly fragmented ecosystem. Engineers at companies
like STMicroelectronics, NXP Semiconductors, and Renesas had to develop custom solutions tai-
lored to their specific microcontroller and DSP architectures. These ad-hoc frameworks required

https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor
https://cloud.google.com/edge-tpu
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55
https://www.st.com/
https://www.nxp.com/
https://www.renesas.com/
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extensive manual optimization for each low-level hardware platform. This made porting models
extremely difÏcult, requiring redevelopment for new Arm, RISC-V or proprietary architectures.

22.7.3.2. Disparate Hardware Needs

Without a shared framework, there was no standard way to assess hardware’s capabilities. Ven-
dors like Intel, QualcommandNVIDIA created integrated solutions blendingmodel, software and
hardware improvements. This made it hard to discern the sources of performance gains - whether
new chip designs like Intel’s low-power x86 cores or software optimizations were responsible. A
standard framework was needed so vendors could evaluate their hardware’s capabilities in a fair,
reproducible way.

22.7.3.3. Lack of Portability

Adapting models trained in common frameworks like TensorFlow or PyTorch to run efÏciently on
microcontrollers was very challenging without standardized tools. It required time-consuming
manual translation of models to run on specialized DSPs from companies like CEVA or low-power
Arm M-series cores. There were no turnkey tools enabling portable deployment across different
architectures.

22.7.3.4. Incomplete Infrastructure

The infrastructure to support key model development workflows was lacking. There was mini-
mal support for compression techniques to fit large models within constrained memory budgets.
Tools for quantization to lower precision for faster inference were missing. Standardized APIs for
integration into applications were incomplete. Essential functionality like on-device debugging,
metrics, and performance profiling was absent. These gaps increased the cost and difÏculty of
embedded ML development.

22.7.3.5. No Standard Benchmark

Without unified benchmarks, there was no standard way to assess and compare the capabilities of
different hardware platforms from vendors like NVIDIA, Arm and Ambiq Micro. Existing evalu-
ations relied on proprietary benchmarks tailored to showcased strengths of particular chips. This
made it impossible to objectively measure hardware improvements in a fair, neutral manner. This
topic is discussed in more detail in the Benchmarking AI chapter.

22.7.3.6. Minimal Real-World Testing

Much of the benchmarks relied on synthetic data. Rigorously testingmodels on real-world embed-
ded applications was difÏcult without standardized datasets and benchmarks. This raised ques-
tions on how performance claims would translate to real-world usage. More extensive testing was
needed to validate chips in actual use cases.

../benchmarking/benchmarking.qmd
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The lack of shared frameworks and infrastructure slowed TinyML adoption, hampering the inte-
gration of ML into embedded products. Recent standardized frameworks have begun addressing
these issues through improved portability, performance profiling, and benchmarking support. But
ongoing innovation is still needed to enable seamless, cost-effective deployment of AI to edge de-
vices.

22.7.3.7. Summary

The absence of standardized frameworks, benchmarks, and infrastructure for embedded ML has
traditionally hampered adoption. However, recent progress has been made in developing shared
frameworks like TensorFlow Lite Micro and benchmark suites like MLPerf Tiny that aim to accel-
erate the proliferation of TinyML solutions. But overcoming the fragmentation and difÏculty of
embedded deployment remains an ongoing process.

22.8. Examples

Machine learning deployment onmicrocontrollers and other embedded devices often requires spe-
cially optimized software libraries and frameworks to work within the tight constraints of memory,
compute, and power. Several options exist for performing inference on such resource-limited hard-
ware, each with their own approach to optimizing model execution. This section will explore the
key characteristics and design principles behind TFLite Micro, TinyEngine, and CMSIS-NN, pro-
viding insight into how each framework tackles the complex problem of high-accuracy yet efÏcient
neural network execution onmicrocontrollers. They showcase different approaches for implement-
ing efÏcient TinyML frameworks.

The table summarizes the key differences and similarities between these three specializedmachine
learning inference frameworks for embedded systems and microcontrollers.

Framework
TensorFlow Lite

Micro TinyEngine CMSIS-NN

Approach Interpreter-based Static compilation Optimized neural network
kernels

Hardware
Focus

General embedded
devices

Microcontrollers ARM Cortex-M processors

Arithmetic
Support

Floating point Floating point, fixed point Floating point, fixed point

Model Support General neural
network models

Models co-designed with
TinyNAS

Common neural network
layer types

Code Footprint Larger due to
inclusion of

interpreter and ops

Small, includes only ops
needed for model

Lightweight by design

Latency Higher due to
interpretation

overhead

Very low due to compiled
model

Low latency focus
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Framework
TensorFlow Lite

Micro TinyEngine CMSIS-NN

Memory
Management

Dynamically
managed by
interpreter

Model-level optimization Tools for efÏcient
allocation

Optimization
Approach

Some code
generation features

Specialized kernels,
operator fusion

Architecture-specific
assembly optimizations

Key Benefits Flexibility,
portability, ease of
updating models

Maximizes performance,
optimized memory usage

Hardware acceleration,
standardized API,

portability

In the following sections, we will dive into understanding each of these in greater detail.

22.8.1. Interpreter

TensorFlow Lite Micro (TFLM) is a machine learning inference framework designed for embedded
devices with limited resources. It uses an interpreter to load and executemachine learningmodels,
which provides flexibility and ease of updating models in the field (David et al. 2021).

Traditional interpreters often have significant branching overhead, which can reduce performance.
However, machine learning model interpretation benefits from the efÏciency of long-running ker-
nels, where each kernel runtime is relatively large and helps mitigate interpreter overhead.

An alternative to an interpreter-based inference engine is to generate native code from amodel dur-
ing export. This can improve performance, but it sacrifices portability and flexibility, as the gener-
ated code needs recompilation for each target platform and must be replaced entirely to modify a
model.

TFLM strikes a balance between the simplicity of code compilation and the flexibility of an
interpreter-based approach by incorporating certain code-generation features. For example, the
library can be constructed solely from source files, offering much of the compilation simplicity
associated with code generation while retaining the benefits of an interpreter-based model
execution framework.

An interpreter-based approach offers several benefits over code generation for machine learning
inference on embedded devices:

• Flexibility: Models can be updated in the field without recompiling the entire application.

• Portability: The interpreter can be used to execute models on different target platforms with-
out porting the code.

• Memory efÏciency: The interpreter can share code across multiple models, reducing mem-
ory usage.

• Ease of development: Interpreters are easier to develop and maintain than code generators.

TensorFlow Lite Micro is a powerful and flexible framework for machine learning inference on
embedded devices. Its interpreter-based approach offers several benefits over code generation,
including flexibility, portability, memory efÏciency, and ease of development.

https://www.tensorflow.org/lite/microcontrollers
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22.8.2. Compiler-based

TinyEngine by is an ML inference framework designed specifically for resource-constrained mi-
crocontrollers. It employs several optimizations to enable high-accuracy neural network execu-
tion within the tight constraints of memory, compute, and storage on microcontrollers (J. Lin et al.
2020).

While inference frameworks like TFLiteMicro use interpreters to execute the neural network graph
dynamically at runtime, this adds significant overhead in terms of memory usage to store meta-
data, interpretation latency, and lack of optimizations, although TFLite argues that the overhead
is small. TinyEngine eliminates this overhead by employing a code generation approach. Dur-
ing compilation, it analyzes the network graph and generates specialized code to execute just that
model. This code is natively compiled into the application binary, avoiding runtime interpretation
costs.

Conventional ML frameworks schedule memory per layer, trying to minimize usage for each layer
separately. TinyEngine does model-level scheduling instead, analyzing memory usage across lay-
ers. It allocates a common buffer size based on the max memory needs of all layers. This buffer is
then shared efÏciently across layers to increase data reuse.

TinyEngine also specializes the kernels for each layer through techniques like tiling, unrolling, and
fusing operators. For example, it will generate unrolled compute kernels with the exact number
of loops needed for a 3x3 or 5x5 convolution. These specialized kernels extract maximum perfor-
mance from the microcontroller hardware. It uses depthwise convolutions that are optimized to
minimize memory allocations by computing each channel's output in-place over the input channel
data. This technique exploits the channel-separable nature of depthwise convolutions to reduce
peak memory size.

Similar to TFLite Micro, the compiled TinyEngine binary only includes ops needed for a specific
model rather than all possible operations. This results in a very small binary footprint, keeping
code size low for memory-constrained devices.

One difference between TFLite Micro and TinyEngine is that the latter is co-designed with “Tiny-
NAS,” an architecture search method for microcontroller models, similar to differential NAS for
microcontrollers. The efÏciency of TinyEngine allows exploring larger and more accurate models
through NAS. It also provides feedback to TinyNAS on which models can fit within the hardware
constraints.

Through all these various custom techniques like static compilation, model-based scheduling, spe-
cialized kernels, and co-design with NAS, TinyEngine enables high-accuracy deep learning infer-
ence within the tight resource constraints of microcontrollers.

22.8.3. Library

CMSIS-NN, standing for CortexMicrocontroller Software Interface Standard for Neural Networks,
is a software library devised by ARM. It offers a standardized interface for deploying neural net-
work inference onmicrocontrollers and embedded systems, with a particular focus on optimization
for ARM Cortex-M processors (Lai, Suda, and Chandra 2018a).

https://github.com/mit-han-lab/tinyengine
https://www.keil.com/pack/doc/CMSIS/NN/html/index.html
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Neural Network Kernels: CMSIS-NN is equipped with highly efÏcient kernels that handle funda-
mental neural network operations such as convolution, pooling, fully connected layers, and acti-
vation functions. It caters to a broad range of neural network models by supporting both floating-
point and fixed-point arithmetic. The latter is especially beneficial for resource-constrained devices
as it curtails memory and computational requirements (Quantization).

Hardware Acceleration: CMSIS-NN harnesses the power of Single Instruction, Multiple Data
(SIMD) instructions available on many Cortex-M processors. This allows for parallel processing
of multiple data elements within a single instruction, thereby boosting computational efÏciency.
Certain Cortex-M processors feature Digital Signal Processing (DSP) extensions that CMSIS-NN
can exploit for accelerated neural network execution. The library also incorporates assembly-level
optimizations tailored to specific microcontroller architectures to further enhance performance.

StandardizedAPI:CMSIS-NNoffers a consistent and abstractedAPI that protects developers from
the complexities of low-level hardware details. This makes the integration of neural network mod-
els into applications simpler. It may also encompass tools or utilities for converting popular neural
network model formats into a format that is compatible with CMSIS-NN.

Memory Management: CMSIS-NN provides functions for efÏcient memory allocation and man-
agement, which is vital in embedded systems where memory resources are scarce. It ensures op-
timal memory usage during inference and in some instances, allows for in-place operations to
further decrease memory overhead.

Portability: CMSIS-NN is designed with portability in mind across various Cortex-M processors.
This enables developers to write code that can operate on different microcontrollers without sig-
nificant modifications.

Low Latency: CMSIS-NN minimizes inference latency, making it an ideal choice for real-time ap-
plications where swift decision-making is paramount.

Energy EfÏciency: The library is designed with a focus on energy efÏciency, making it suitable for
battery-powered and energy-constrained devices.

22.9. Choosing the Right Framework

Choosing the right machine learning framework for a given application requires carefully evalu-
ating models, hardware, and software considerations. By analyzing these three aspects - models,
hardware, and software -ML engineers can select the optimal framework and customize as needed
for efÏcient and performant on-device ML applications. The goal is to balance model complexity,
hardware limitations, and software integration to design a tailoredML pipeline for embedded and
edge devices.

22.9.1. Model

TensorFlow supports significantly more ops than TensorFlow Lite and TensorFlow Lite Micro as
it is typically used for research or cloud deployment, which require a large number of and more
flexibility with operators (ops) (Figure 22.8). TensorFlow Lite supports select ops for on-device
training, whereas TensorFlow Micro does not. TensorFlow Lite also supports dynamic shapes and
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Figure 22.8. TensorFlow Framework Comparison - General

quantization aware training, but TensorFlow Micro does not. In contrast, TensorFlow Lite and
TensorFlow Micro offer native quantization tooling and support, where quantization refers to the
process of transforming anML program into an approximated representation with available lower
precision operations.

22.9.2. Software

Figure 22.9. TensorFlow Framework Comparison - Software

TensorFlow Lite Micro does not have OS support, while TensorFlow and TensorFlow Lite do, in or-
der to reduce memory overhead, make startup times faster, and consume less energy (Figure 22.9).
TensorFlow Lite Micro can be used in conjunction with real-time operating systems (RTOS) like
FreeRTOS, Zephyr, and Mbed OS. TensorFlow Lite and TensorFlow Lite Micro support model
memory mapping, allowing models to be directly accessed from flash storage rather than loaded
into RAM, whereas TensorFlow does not. TensorFlow and TensorFlow Lite support accelerator
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delegation to schedule code to different accelerators, whereas TensorFlow Lite Micro does not, as
embedded systems tend not to have a rich array of specialized accelerators.

22.9.3. Hardware

Figure 22.10. TensorFlow Framework Comparison - Hardware

TensorFlow Lite and TensorFlow Lite Micro have significantly smaller base binary sizes and base
memory footprints compared to TensorFlow (Figure 22.10). For example, a typical TensorFlow Lite
Micro binary is less than 200KB, whereas TensorFlow is much larger. This is due to the resource-
constrained environments of embedded systems. TensorFlow provides support for x86, TPUs, and
GPUs like NVIDIA, AMD, and Intel. TensorFlow Lite provides support for Arm Cortex A and
x86 processors commonly used in mobile and tablets. The latter is stripped out of all the train-
ing logic that is not necessary for ondevice deployment. TensorFlow Lite Micro provides support
for microcontroller-focused Arm Cortex M cores like M0, M3, M4, and M7, as well as DSPs like
Hexagon and SHARC and MCUs like STM32, NXP Kinetis, Microchip AVR.

Selecting the appropriateAI framework is essential to ensure that embedded systems can efÏciently
execute AI models. There are key factors to consider when choosing a machine learning frame-
work, with a focus on ease of use, community support, performance, scalability, integration with
data engineering tools, and integration with model optimization tools. By understanding these
factors, you can make informed decisions and maximize the potential of your machine learning
initiatives.

22.9.4. Other Factors

When evaluating AI frameworks for embedded systems, several other key factors beyond models,
hardware, and software should be considered.

22.9.4.1. Performance

Performance is critical in embedded systems where computational resources are limited. Evalu-
ate the framework's ability to optimize model inference for embedded hardware. Factors such as
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model quantization and hardware acceleration support play a crucial role in achieving efÏcient
inference.

22.9.4.2. Scalability

Scalability is essential when considering the potential growth of an embedded AI project. The
framework should support the deployment of models on a variety of embedded devices, from
microcontrollers to more powerful processors. It should also handle both small-scale and large-
scale deployments seamlessly.

22.9.4.3. Integration with Data Engineering Tools

Data engineering tools are essential for data preprocessing and pipeline management. An ideal
AI framework for embedded systems should seamlessly integrate with these tools, allowing for
efÏcient data ingestion, transformation, and model training.

22.9.4.4. Integration with Model Optimization Tools

Model optimization is crucial to ensure that AI models are well-suited for embedded deployment.
Evaluate whether the framework integrates with model optimization tools, such as TensorFlow
Lite Converter or ONNX Runtime, to facilitate model quantization and size reduction.

22.9.4.5. Ease of Use

The ease of use of an AI framework significantly impacts development efÏciency. A framework
with a user-friendly interface and clear documentation reduces the learning curve for develop-
ers. Consideration should be given to whether the framework supports high-level APIs, allowing
developers to focus onmodel design rather than low-level implementation details. This factor is in-
credibly important for embedded systems, which have less features that typical developers might
be accustomed to.

22.9.4.6. Community Support

Community support plays another essential factor. Frameworks with active and engaged commu-
nities often havewell-maintained codebases, receive regular updates, and provide valuable forums
for problem-solving. As a result, community support plays into Ease of Use as well because it en-
sures that developers have access to awealth of resources, including tutorials and example projects.
Community support provides some assurance that the framework will continue to be supported
for future updates. There are only a handful of frameworks that cater to TinyML needs. Of that,
TensorFlow Lite Micro is the most popular and has the most community support.
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22.10. Future Trends in ML Frameworks

22.10.1. Decomposition

Currently, the ML system stack consists of four abstractions (Figure 22.11), namely (1) computa-
tional graphs, (2) tensor programs, (3) libraries and runtimes, and (4) hardware primitives.

This has led to vertical (i.e. between abstraction levels) and horizontal (i.e. library-driven
vs. compilation-driven approaches to tensor computation) boundaries, which hinder innovation
for ML. Future work in ML frameworks can look toward breaking these boundaries. In December
2021, Apache TVM Unity was proposed, which aimed to facilitate interactions between the dif-
ferent abstraction levels (as well as the people behind them, such as ML scientists, ML engineers,
and hardware engineers) and co-optimize decisions in all four abstraction levels.

22.10.2. High-Performance Compilers & Libraries

As ML frameworks further develop, high-performance compilers and libraries will continue to
emerge. Some current examples include TensorFlow XLA and Nvidia’s CUTLASS, which acceler-
ate linear algebra operations in computational graphs, and Nvidia’s TensorRT, which accelerates
and optimizes inference.

22.10.3. ML for ML Frameworks

We can also use ML to improve ML frameworks in the future. Some current uses of ML for ML
frameworks include:

• hyperparameter optimization using techniques such as Bayesian optimization, random
search, and grid search

• neural architecture search (NAS) to automatically search for optimal network architectures

• AutoML, which as described in Section 22.5, automates the ML pipeline.

22.11. Conclusion

In summary, selecting the optimal framework requires thoroughly evaluating options against cri-
teria like usability, community support, performance, hardware compatibility, and model conver-
sion abilities. There is no universal best solution, as the right framework depends on the specific
constraints and use case.

For extremely resource constrained microcontroller-based platforms, TensorFlow Lite Micro cur-
rently provides a strong starting point. Its comprehensive optimization tooling like quantization
mapping and kernel optimizations enables high performance on devices like Arm Cortex-M and
RISC-V processors. The active developer community ensures accessible technical support. Seam-
less integration with TensorFlow for training and converting models makes the workflow cohe-
sive.

https://tvm.apache.org/2021/12/15/tvm-unity
https://www.tensorflow.org/xla/architecture
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/tensorrt
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Figure 22.11. Four Abstractions in Current ML System Stack
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For platformswithmore capable CPUs like Cortex-A, TensorFlow Lite forMicrocontrollers expand
possibilities. They provide greater flexibility for custom and advanced models beyond the core
operators in TFLite Micro. However, this comes at the cost of a larger memory footprint. These
frameworks are ideal for automotive systems, drones, and more powerful edge devices that can
benefit from greater model sophistication.

Frameworks specifically built for specialized hardware like CMSIS-NN on Cortex-M processors
can furthermaximize performance, but sacrifice portability. Integrated frameworks fromprocessor
vendors tailor the stack to their architectures. This can unlock the full potential of their chips but
lock you into their ecosystem.

Ultimately, choosing the right framework involves finding the best match between its capabilities
and the requirements of the target platform. This requires balancing tradeoffs between perfor-
mance needs, hardware constraints, model complexity, and other factors. Thoroughly assessing
intended models, use cases, and evaluating options against key metrics will guide developers to-
wards picking the ideal framework for their embedded ML application.

22.12. Exercises

Now it is time to explore a TensorFlow Lite for Microcontrollers model:

TFLite-Micro Model

• Hello World (Open In Colab)

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.

https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/2_Applications_Deploy/Class_16/TFLite-Micro-Hello-World/train_TFL_Micro_hello_world_model.ipynb
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23. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• Why do we need frameworks?

• Frameworks overview.

• Embedded systems software.

• Inference engines: TF vs. TFLite.

• TF flavors: TF vs. TFLite vs. TFLite Micro.

• TFLite Micro:

– TFLite Micro Big Picture.

– TFLite Micro Interpreter.

– TFLite Micro Model Format.

– TFLite Micro Memory Allocation.

– TFLite Micro NN Operations.

https://docs.google.com/presentation/d/1zbnsihiO68oIUE04TVJEcDQ_Kyec4mhdQkIG6xoR0DY/edit#slide=id.p1
https://docs.google.com/presentation/d/1Ruibe1cvo0LhOM4GgFinR_z9IlJgZ7EX3snj8LriV-8/edit
https://docs.google.com/presentation/d/1-hpejUcj4PJ6Sm8dncBm6ngUwYsBevj9jmdonfy0f8g/edit#slide=id.p1
https://docs.google.com/presentation/d/12IlNZx75Z-NRK2rAO4xs5qmD7lU0h8eMibkpWPvZwHY/edit#slide=id.p1
https://docs.google.com/presentation/d/1Gt-mhBZueCUXq1_I7qFTY8s6udDHw0ncbkQ3ZsaXCjA/edit#slide=id.p1
https://docs.google.com/presentation/d/1XdwcZS0pz6kyuk6Vx90kE11hwUMAtS1cMoFQHZAxS20/edit?usp=drive_link
https://docs.google.com/presentation/d/10llaugp6EroGekFzB1pAH1OJ1dpJ4d7yxKglK1BsqlI/edit?usp=drive_link&resourcekey=0-C6_PHSaI6u4x0Mv2KxWKbg
https://docs.google.com/presentation/d/123kdwjRXvbukyaOBvdp0PJpIs2JSxQ7GoDjB8y0FgIE/edit?usp=drive_link
https://docs.google.com/presentation/d/1_sHuWa3DDTCB9mBzKA4ElPWaUFA8oOelqHCBOHmsvC4/edit?usp=drive_link
https://docs.google.com/presentation/d/1ZwLOLvYbKodNmyuKKGb_gD83NskrvNmnFC0rvGugJlY/edit?usp=drive_link
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24. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.
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25. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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26. AI Training

Figure 26.1. DALL·E 3 Prompt: An illustration for AI training, depicting a neural network with
neurons that are being repaired and firing. The scene includes a vast network of neurons, each
glowing and firing to represent activity and learning. Among these neurons, small figures resem-
bling engineers and scientists are actively working, repairing and tweaking the neurons. These
miniature workers symbolize the process of training the network, adjusting weights and biases to
achieve convergence. The entire scene is a visual metaphor for the intricate and collaborative effort
involved in AI training, with the workers representing the continuous optimization and learning
within a neural network. The background is a complex array of interconnected neurons, creating
a sense of depth and complexity.

The process of training is central to developing accurate and useful AI systems usingmachine learn-
ing techniques. At a high level, training involves feeding data into machine learning algorithms
so they can learn patterns and make predictions. However, effectively training models requires
tackling a variety of challenges around data, algorithms, optimization of model parameters, and
enabling generalization. In this chapter, we will dive into the nuances and considerations around
training machine learning models.
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Learning Objectives

• Understand the fundamental mathematics of neural networks, including linear trans-
formations, activation functions, loss functions, backpropagation, and optimization via
gradient descent.

• Learn how to effectively leverage data for model training through proper splitting into
train, validation, and test sets to enable generalization.

• Learn various optimization algorithms like stochastic gradient descent and adaptations
like momentum and Adam that accelerate training.

• Understand techniques for hyperparameter tuning and regularization to improve
model generalization through reducing overfitting.

• Learn proper weight initialization strategies matched to model architectures and acti-
vation choices that accelerate convergence.

• Identify the bottlenecks posed by key operations likematrixmultiplication during train-
ing and deployment.

• Learn how hardware improvements like GPUs, TPUs, and specialized accelerators
speed up critical math operations to accelerate training.

• Understand parallelization techniques, both data and model parallelism, to distribute
training across multiple devices and accelerate system throughput.

26.1. Introduction

Training is a critical process for developing accurate and useful AI systems using machine learn-
ing. The goal of training is to create a machine learning model that can generalize to new, unseen
data, rather than memorizing the training examples. This is done by feeding training data into
algorithms that learn patterns from these examples by adjusting internal parameters.

The algorithmsminimize a loss function, which compares their predictions on the training data to
the known labels or solutions, guiding the learning. Effective training often requires high-quality,
representative training data sets that are large enough to capture variability in the real-world use
cases.

It also requires choosing an algorithm suited to the task, whether that be a neural network for
computer vision, a reinforcement learning algorithm for robotic control, or a tree-based method
for categorical prediction. Careful tuning is needed for themodel structure, such as neural network
depth and width, and learning parameters like step size and regularization strength.

Techniques to prevent overfitting like regularization penalties and validation with held-out data
are also important. Overfitting can occur when a model fits the training data too closely, failing to
generalize to new data. This can happen if the model is too complex or trained for too long.

To avoid overfitting regularization techniques can help constrain the model. One regularization
method is adding a penalty term to the loss function that discourages complexity, like the L2 norm
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of the weights. This penalizes large parameter values. Another technique is dropout, where a
percentage of neurons are randomly set to zero during training. This reduces co-adaptation of
neurons.

Validation methods also help detect and avoid overfitting. Part of the training data is held out
from the training loop as a validation set. The model is evaluated on this data. If validation error
increases while training error decreases, overfitting is occurring. The training can then be stopped
early or regularized more strongly. Careful use of regularization and validation enables models to
train to maximum capability without overfitting the training data.

Training takes significant computing resources, especially for deep neural networks used in com-
puter vision, natural language processing, and other areas. These networks have millions of ad-
justable weights that must be tuned through extensive training. Hardware improvements and dis-
tributed training techniques have enabled training ever larger neural nets that can achieve human-
level performance on some tasks.

In summary, some key points about training:

• Data is crucial: Machine learning models learn from examples in training data. More high-
quality, representative data leads to better model performance. Data needs to be processed
and formatted for training.

• Algorithms learn fromdata: Different algorithms (neural networks, decision trees, etc.) have
different approaches to finding patterns in data. Choosing the right algorithm for the task is
important.

• Training refines model parameters: Model training adjusts internal parameters to find pat-
terns in data. Advancedmodels like neural networks havemany adjustableweights. Training
iteratively adjusts weights to minimize a loss function.

• Generalization is the goal: Amodel that overfits to the training data will not generalize well.
Regularization techniques (dropout, early stopping, etc.) reduce overfitting. Validation data
is used to evaluate generalization.

• Training takes compute resources: Training complexmodels requires significant processing
power and time. Hardware improvements and distributed training across GPUs/TPUs have
enabled advances.

Wewill walk you through these details in the rest of the sections. Understanding how to effectively
leverage data, algorithms, parameter optimization, and generalization through thorough training
is essential for developing capable, deployable AI systems that work robustly in the real world.

26.2. Mathematics of Neural Networks

Deep learning has revolutionized the fields ofmachine learning and artificial intelligence, enabling
computers to learn complex patterns andmake intelligent decisions. At the heart of the deep learn-
ing revolution is the neural network, which, as discussed in section 3 “Deep Learning Primer”, is
a cornerstone in some of these advancements.

Neural networks are made up of simple functions layered on top of each other. Each layer takes in
some data, performs some computation, and passes it to the next layer. These layers learn progres-
sively high level features that are useful for the task the network is trained to perform. For example,
in a network trained for image recognition, the input layer may take in pixel values, while the next
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layers may detect simple shapes like edges, then the layers after that may detect more complex
shapes like noses or eyes, and so on. The final output layer classifies the image as a whole.

The network in a neural network refers to how these layers are connected. Each layer’s output is
considered as a single neuron, and is connected to many other neurons in the layers preceding it,
forming a “network”. Theway these neurons interact with each other is determined by theweights
between them, which model synaptic strengths similar to that of a brain’s neuron. The neural
network is trained by adjusting these weights. Concretely, the weights are initially set randomly,
then an input is fed in and the output is compared to the desired result, and finally the weights
are then tweaked to make the network better. This process is repeated until the network reliably
minimizes the loss, indicating it has learned the patterns in the data.

How is this process defined mathematically? Formally, neural networks are mathematical models
that consist of alternating linear and nonlinear operations, parameterized by a set of learnable
weights that are trained to minimize some loss function. This loss function is a measure of how
good ourmodel is with respect to fitting our training data, and it produces a numerical valuewhen
evaluated on our model against the training data. Training neural networks involve repeatedly
evaluating the loss function on many different datapoints to get a measure of how good our model
is, then continuously tweaking the weights of our model using backpropagation so that the loss
decreases, which ultimately optimizes the model to fit our data.

26.2.1. Neural Network Notation

Diving into the details, the core of a neural network can be viewed as a sequence of alternating
linear and nonlinear operations:

𝐿𝑖 = 𝑊𝑖𝐴𝑖−1
𝐴𝑖 = 𝐹𝑖(𝐿𝑖)

Note

Why are the nonlinear operations necessary? If we only had linear layers the entire network is
equivalent to just a single linear layer consisting of the product of the linear operators. Hence,
the nonlinear functions play a key role in the power of neural networks as they enhance the
neural network’s ability to fit functions.

Note

Convolutions are also linear operators, and can be cast as a matrix multiplication.
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Figure 26.2. Neural Network Diagram: Neural networks consist of alternating linear and nonlinear layers.
Linear layers represent the interaction between the outputs of the prior layer and learned weights.

where 𝐴0 is a vector input to the neural network (i.e: an image that we want the neural network
to classify, or some other data that the neural network operates on), 𝐴𝑛 (where 𝑛 is the number
of layers of the network) is the vector output of the neural network (i.e: a vector of size 10 in the
case of classifying pictures of handwritten digits), 𝑊𝑖s are the weights of the neural network that
are tweaked at training time to fit our data, and 𝐹𝑖 is that layer’s nonlinear activation function
(i.e: ReLU, softmax, etc). As defined, the intermediate output of the neural network is a vector of
real-valued numbers with dimensions: 𝐿𝑖,𝐴𝑖 ∈ ℝ𝑑𝑖
where 𝑑𝑖 is the number of neurons at layer 𝑖; in the case of the first layer 𝑖 = 0, 𝑑𝑖 is the dimension
of the input data, and in the last layer 𝑖 = 𝑛, 𝑑𝑛 is the dimension of the output label, and anything
in between can be set arbitrarily and may be viewed as the architecture of the neural network (i.e:
dimensionality of the intermediate layers). The weights, which determine how each layer of the
neural network interacts with each other, therefore are matrices of real numbers with shape𝑊𝑖 ∈ ℝ𝑑𝑖×𝑑𝑖−1
Our neural network, as defined, performs a sequence of linear and nonlinear operations on the
input data (𝐿0), to optain predictions (𝐿𝑛) which hopefully is a good answer to what we want the
neural network to do on the input (i.e: classify if the input image is a cat or not). Our neural network
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may then be represented succinctly as a function 𝑁 which takes in an input 𝑥 ∈ ℝ𝑑0 parameterized
by 𝑊1, ...,𝑊𝑛: 𝑁(𝑥;𝑊1, ...𝑊𝑛) = Let 𝐴0 = 𝑥, then output 𝐴𝑛
Next we will see how to evaluate this neural network against training data by introducing a loss
function.

26.2.2. Loss Function as a Measure of Goodness of Fit against Training Data

After defining our neural network, we are given some training data, which is a set of points (𝑥𝑗,𝑦𝑗)
for 𝑗 = 1..𝑀 , and we want to evaluate how good our neural network is on fitting this data. To do
this, we introduce a loss function, which is a function that takes the output of the neural network
on a particular datapoint (𝑁(𝑥𝑗;𝑊1, ...,𝑊𝑛)), and compares it against the “label” of that particular
datapoint (the corresponding 𝑦𝑗), and outputs a single numerical scalar (i.e: one real number) that
represents how “good” the neural network fit that particular data point; the final measure of how
good the neural network is on the entire dataset is therefore just the average of the losses across all
datapoints.

There are many different types of loss functions, for example, in the case of image classification,
we might use the cross-entropy loss function, which tells us how good two vectors that represent
classification predictions compare (i.e: if our prediction predicts that an image is more likely a dog,
but the label says it is a cat, it will return a high “loss” indicating a bad fit).

Mathematically, this loss function is a function which takes in two real-valued vectors of the shape
of the label, and outputs a single numerical scalar𝐿 ∶ ℝ𝑑𝑛 ×ℝ𝑑𝑛 ⟶ ℝ
and the loss across the entire dataset can be written as the average loss across all datapoints in the
training data

Loss Function for Optimizing Neural Network Model on a Dataset𝐿𝑓𝑢𝑙𝑙 = 1𝑀 𝑀∑𝑗=1 𝐿(𝑁(𝑥𝑗;𝑊1, ...𝑊𝑛),𝑦𝑗)
26.2.3. Training Neural Networks with Gradient Descent

Now that we have a measure of how good our network fits the training data, we can optimize the
weights of the neural network tominimize this loss. At a high level, we tweak the parameters of the
real-valued matrices 𝑊𝑖s so that the loss function 𝐿𝑓𝑢𝑙𝑙 is minimized. Overall, our mathematical
objective is
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Neural Network Training Objective𝑚𝑖𝑛𝑊1,...,𝑊𝑛𝐿𝑓𝑢𝑙𝑙
= 𝑚𝑖𝑛𝑊1,...,𝑊𝑛 1𝑀 𝑀∑𝑗=1 𝐿(𝑁(𝑥𝑗;𝑊1, ...𝑊𝑛),𝑦𝑗)

So how do we optimize this objective? Recall from calculus that minimizing a function can be
done by taking the derivative of the function with respect to the input parameters and tweaking
the parameters in the direction of the gradient. This technique is called gradient descent and
concretely involves calculating the derivative of the loss function 𝐿𝑓𝑢𝑙𝑙 with respect to 𝑊1, ...,𝑊𝑛
to obtain a gradient for these parameters to take a step in, then updating these parameters in the
direction of the gradient. Thus, we can train our neural network using gradient descent which
repeatedly applies the update rule

Gradient Descent Update Rule

𝑊𝑖 ∶= 𝑊𝑖 −𝜆𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝑊𝑖 for 𝑖 = 1..𝑛
Note

In practice, the gradient is computed over a minibatch of datapoints, to improve computa-
tional efÏciency. This is called stochastic gradient descent or batch gradient descent.

where 𝜆 is the stepsize or learning rate of our tweaks. In training our neural network, we repeat-
edly perform the step above until convergence, or when the loss no longer decreases. This prior
approach is known as full gradient descent since we are computing the derivative with respect to
the entire training data, and only then taking a single gradient step; a more efÏcient approach is to
calculate the gradient with respect to just a random batch of datapoints and then taking a step, a
process known as batch gradient descent or stochastic gradient descent (Robbins andMonro 1951),
which is more efÏcient since now we are taking many more steps per pass of the entire training
data. Next we will cover the mathematics behind computing the gradient of the loss function with
respect to the 𝑊𝑖s, a process known as backpropagation.
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Figure 26.3. Optimizing a neural network involves repeated application of gradient descent. This involves
minimizing the loss function, which can be done by repeatedly taking steps in the direction of the gradient of
the network with respect the loss function.

26.2.4. Backpropagation

Training neural networks involve repeated applications of the gradient descent algorithm, which
involves computing the derivative of the loss function with respect to the 𝑊𝑖s. How do we com-
pute the derivative of the loss with respect to the 𝑊𝑖s given that the 𝑊𝑖s are nested functions of
each other in a deep neural network? The trick is to leverage the chain rule: we can compute the
derivative of the loss with respect to the 𝑊𝑖s by repeatedly applying the chain rule, in a complete
process known as backpropagation. Specifically, we can calculate the gradients by computing the
derivative of the loss with respect to the outputs of the last layer, then progressively use this to
compute the derivative of the loss with respect to each prior layer, all the way to the input layer.
This process starts from the end of the network (the layer closest to the output) and progresses
backwards, and hence gets its name backpropagation.

Let’s break this down. We can compute the derivative of the loss with respect to the the outputs of
each layer of the neural network by using repeated applications of the chain rule
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𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐿𝑛 = 𝜕𝐴𝑛𝜕𝐿𝑛 𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐴𝑛𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐿𝑛−1 = 𝜕𝐴𝑛−1𝜕𝐿𝑛−1 𝜕𝐿𝑛𝜕𝐴𝑛−1 𝜕𝐴𝑛𝜕𝐿𝑛 𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐴𝑛
or more generally 𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐿𝑖 = 𝜕𝐴𝑖𝜕𝐿𝑖 𝜕𝐿𝑖+1𝜕𝐴𝑖 ...𝜕𝐴𝑛𝜕𝐿𝑛 𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐴𝑛

Note

In what order should we perform this computation? It is preferrable from a computational
perspective to perform the calculations from the end to the front (i.e: first compute 𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐴𝑛 then
the prior terms, rather than start in themiddle) since this avoidsmaterializing and computing
large jacobians. This is because 𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐴𝑛 is a vector, hence any matrix operation that includes
this term has an output that is squished to be a vector. Thus performing the computation
from the end avoids large matrix-matrix multiplications by ensuring that the intermediate
products are vectors.

Note

In our notation, we assume the intermediate activations 𝐴𝑖 are column vectors, rather than
row vectors, hence the chain rule is 𝜕𝐿𝜕𝐿𝑖 = 𝜕𝐿𝑖+1𝜕𝐿𝑖 ... 𝜕𝐿𝜕𝐿𝑛 rather than 𝜕𝐿𝜕𝐿𝑖 = 𝜕𝐿𝜕𝐿𝑛 ...𝜕𝐿𝑖+1𝜕𝐿𝑖

After computing the derivative of the loss with respect to the output of each layer, we can easily
obtain the derivative of the loss with respect to the parameters, again using the chain rule:𝜕𝐿𝑓𝑢𝑙𝑙𝑊𝑖 = 𝜕𝐿𝑖𝜕𝑊𝑖 𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐿𝑖
And this is ultimately how the derivatives of the layers’ weights are computed using backpropaga-
tion! What does this concretely look like in a specific example? Below we walk through a specific
example on a simple 2 layer neural network, on a regression task using a MSE loss function, with
100-dimensional inputs and a 30-dimensional hidden layer:

Example of Backpropagation
Suppose we have a two-layer neural network𝐿1 = 𝑊1𝐴0𝐴1 = 𝑅𝑒𝐿𝑈(𝐿1)𝐿2 = 𝑊2𝐴1𝐴2 = 𝑅𝑒𝐿𝑈(𝐿2)
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where 𝑊1 ∈ ℝ30×100 and 𝑊2 ∈ ℝ1×30. Furthermore suppose we use the MSE loss func-
tion: 𝐿(𝑥,𝑦) = (𝑥−𝑦)2
We wish to compute 𝜕𝐿(𝑁𝑁(𝑥),𝑦)𝜕𝑊𝑖 for 𝑖 = 1,2
Note the following: 𝜕𝐿(𝑥,𝑦)𝜕𝑥 = 2×(𝑥−𝑦)𝜕𝑅𝑒𝐿𝑈(𝑥)𝜕𝑥 𝛿 = { 0 for 𝑥 ≤ 01 for 𝑥 ≥ 0 }⊙𝛿𝜕𝑊𝐴𝜕𝐴 𝛿 = 𝑊 𝑇 𝛿𝜕𝑊𝐴𝜕𝑊 𝛿 = 𝛿𝐴𝑇
Then we have 𝜕𝐿(𝑁𝑁(𝑥),𝑦)𝜕𝑊2 = 𝜕𝐿2𝜕𝑊2 𝜕𝐴2𝜕𝐿2 𝜕𝐿(𝑁𝑁(𝑥),𝑦)𝜕𝐴2= (2𝐿(𝑁𝑁(𝑥)−𝑦)⊙𝑅𝑒𝐿𝑈 ′(𝐿2))𝐴𝑇1
and 𝜕𝐿(𝑁𝑁(𝑥),𝑦)𝜕𝑊1 = 𝜕𝐿1𝜕𝑊1 𝜕𝐴1𝜕𝐿1 𝜕𝐿2𝜕𝐴1 𝜕𝐴2𝜕𝐿2 𝜕𝐿(𝑁𝑁(𝑥),𝑦)𝜕𝐴2= [𝑅𝑒𝐿𝑈 ′(𝐿1)⊙(𝑊 𝑇2 [2𝐿(𝑁𝑁(𝑥)−𝑦)⊙𝑅𝑒𝐿𝑈 ′(𝐿2)])]𝐴𝑇0
Tip

Double check your work by making sure that the shapes are correct!

• All hadamard products (⊙) should operate on tensors of the same shape
• All matrix multiplications should operate on matrices that share a common dimension

(i.e: m by n, n by k)
• All gradients with respect to the weights should have the same shape as the weight

matrices themselves

The entire backpropagation process can be complex, especially for networks that are very deep.
Fortunately, machine learning frameworks like PyTorch support automatic differentiation, which
performs backpropagation for us. In thesemachine learning frameworkswe simply need to specify
the forward pass, and the derivatives will be automatically computed for us. Nevertheless, it is
beneficial to understand the theoretical process that is happening under the hood in thesemachine-
learning frameworks.
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Note

As seen above, intermediate activations 𝐴𝑖 are re-used in backpropagation. To improve per-
formance, these activations are cached from the forward pass to avoid recomputing them.
However, this means that activations must be kept in memory between the forward and back-
ward passes, leading to higher memory usage. If the network and batchsize is large, this may
lead to memory issues. Similarly, the derivatives with respect to each layer’s outputs are
cached to avoid recomputation.

26.3. Differentiable Computation Graphs

In general, stochastic gradient descent using backpropagation can be performed on any computa-
tional graph that a user may define, provided that the operations of the computation are differen-
tiable. As such, generic deep learning libraries like PyTorch and Tensorflow allow users to specify
their computational process (i.e: neural networks) as a computational graph. Backpropagation is
automatically performed via automatic differentiation when performing stochast gradient descent
on these computational graphs. Framing AI training as an optimization problem on differentiable
computation graphs is a general way to understand what is happening under the hood with deep
learning systems.
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Figure 26.4. TensorFlow Computational Graph

26.4. Training Data

To enable effective training of neural networks, the available data must be split into training, val-
idation, and test sets. The training set is used to train the model parameters. The validation set
evaluates the model during training to tune hyperparameters and prevent overfitting. The test set
provides an unbiased final evaluation of the trained model’s performance.

Maintaining clear splits between train, validation, and test sets with representative data in each
is crucial to properly training, tuning, and evaluating models to achieve the best real-world per-
formance. To this end, we will learn about the common pitfalls or mistakes that people make in
creating these data splits.

Here is a summary table for training, validation, and test data splits:



Chapter 26. AI Training 201

Data Split Purpose Typical Size

Training Set Train the model parameters 60-80% of total data
Validation Set Evaluate model during

training to tune
hyperparameters and prevent
overfitting

�20% of total data

Test Set Provide unbiased evaluation
of final trained model

�20% of total data

26.4.1. Dataset Splits

26.4.1.1. Training Set

The training set is used to actually train the model. It is the largest subset consisting of typically 60-
80%of the total data. Themodel sees and learns from the training data in order tomake predictions.
A sufÏciently large and representative training set is required for the model to effectively learn the
underlying patterns.

26.4.1.2. Validation Set

The validation set is used to evaluate themodel during training, usually after each epoch. Typically
20%of the data is allocated for the validation set. Themodel does not learn or update its parameters
based on the validation data. It is used to tune hyperparameters andmake other tweaks to improve
training. Monitoring metrics like loss and accuracy on the validation set prevents overfitting on
just the training data.

26.4.1.3. Test Set

The test set acts as a completely unseen dataset that the model did not see during training. It is
used to provide an unbiased evaluation of the final trained model. Typically 20% of the data is
reserved for testing. Maintaining a hold-out test set is vital for obtaining an accurate estimate of
how the trained model would perform on real world unseen data. Data leakage from the test set
must be avoided at all costs.

The relative proportions of the training, validation and test sets can vary based on data size and
application. But following the general guideline of a 60/20/20 split is a good startingpoint. Careful
splitting of data ensures models are properly trained, tuned and evaluated to achieve the best
performance.
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26.4.2. Common Pitfalls and Mistakes

26.4.2.1. InsufÏcient Training Data

Allocating too little data to the training set is a common mistake when splitting data that can
severely impact model performance. If the training set is too small, themodel will not have enough
samples to effectively learn the true underlying patterns in the data. This leads to high variance
and causes the model to fail to generalize well to new data.

For example, if you are training an image classification model to recognize handwritten digits,
providing only 10 or 20 images per digit class would be completely inadequate. The model would
struggle to capture the wide variances in writing styles, rotations, stroke widths and other varia-
tions with so few examples.

As a rule of thumb, the training set size should be at least in the hundreds or thousands of exam-
ples formostmachine learning algorithms towork effectively. For deep neural networks, especially
those using convolutional layers, the training set often needs to be in the tens or hundreds of thou-
sands due to the large number of parameters.

InsufÏcient training data typically manifests in symptoms like high error rates on validation/test
sets, low model accuracy, high variance, and overfitting on the small training set samples. Col-
lecting more quality training data is the solution. Data augmentation techniques can also help
virtually increase training data size for images, audio etc.

Carefully factoring in the model complexity and problem difÏculty when allocating training sam-
ples is important to ensure sufÏcient data is available for themodel to learn successfully. Following
guidelines on minimum training set sizes for different algorithms is also recommended. InsufÏ-
cient training data is a fundamental issue that will undermine the overall success of any machine
learning application.
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Figure 26.5. Overfitting is one potential problem when training machine learning models, and occurs when
the model fits the training data well but fails to generalize to the test data.

On the flip side, if the model is not trained enough on the data, the model may underfit the data
fail to learn the salient aspsects of the task at hand.
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Figure 26.6. Training neural networks require striking the right balance between overfitting, and underfit-
ting, and is a key consideration in AI training.

26.4.2.2. Data Leakage Between Sets

Data leakage refers to the unintentional transfer of information between the training, validation,
and test sets. This violates the fundamental assumption that the splits are completely separated.
Data leakage leads to seriously compromised evaluation results and inflated performance met-
rics.

A common way data leakage can occur is if some samples from the test set inadvertently get in-
cluded in the training data. Nowwhen evaluating on the test set, the model has already seen some
of the data which gives overly optimistic scores. For example, if 2% of the test data leaks into the
training set of a binary classifier, it can result in a accuracy boost of up to 20%!

More subtle forms of leakage can happen if the data splits are not done carefully. If the splits are not
properly randomized and shufÒed, samples close to each other in the dataset may end up across
different splits. This creates information bleed through based on proximity in the dataset. Time
series data is especially vulnerable unless special cross validation techniques are used.

Preventing data leakage requires creating solid separation between splits - no sample should exist
in more than one split. ShufÒing and randomized splitting help create robust divisions. Cross
validation techniques can be used for more rigorous evaluation. Detecting leakage is difÏcult but-
telltale signs include models doing way better on test vs. validation data.

Data leakage severely compromises the validity of evaluation because the model has already par-
tially seen the test data. No amount of tuning or complex architectures can substitute for clean
data splits. It is better to be conservative and create complete separation between splits to avoid
this fundamental mistake in machine learning pipelines.

26.4.2.3. Small or Unrepresentative Validation Set

The validation set is used to evaluate models during training and for hyperparameter tuning. If
the validation set is too small or not representative of the real data distribution, it will not pro-
vide reliable or stable evaluations during training. This makes model selection and tuning more
difÏcult.
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For example, if the validation set only contains 100 samples, metrics calculated on it will have high
variance. The accuracy may fluctuate up to 5-10% between epochs just due to noise. This makes it
difÏcult to know if a drop in validation accuracy is due to overfitting or natural variance. With a
larger validation set of say 1000 samples, the metrics will be much more stable.

Additionally, if the validation set is not representative, perhaps missing certain subclasses, the
estimated skill of the model may be inflated. This could lead to poor choices of hyperparameters
or stopping training prematurely. Models selected based on such biased validation sets do not
generalize well to real data.

A good rule of thumb is the validation set size should be at least several hundred samples, and up
to 10-20% size of the training set. The splits should also be stratified, especially if working with
imbalanced datasets. A larger validation set that well represents the original data characteristics
is essential for proper model selection and tuning.

Care should be taken that the validation set is also not too large, leaving insufÏcient samples for
training. Overall, the validation set is a critical piece of the data splitting process and care should
be taken to avoid the pitfalls of small, inadequate samples that negatively impact model develop-
ment.

26.4.2.4. Reusing the Test Set Multiple Times

The test set is designed to provide an unbiased evaluation of the fully-trained model only once at
the end of themodel development process. Reusing the test setmultiple times during development
for model evaluation, hyperparameter tuning, model selection etc. can result in overfitting on the
test data.

If the test set is reused as part of the validation process, the model may start to see and learn
from the test samples. This coupled with intentionally or unintentionally optimizing model per-
formance on the test set can artificially inflate metrics like accuracy.

For example, if the test set is used repeatedly for model selection out of 5 architectures, the model
may achieve 99% test accuracy just by memorizing the samples rather than learning generalizable
patterns. However, deployed in the real world, the accuracy could drop to 60% on new data.

Best practice is to interact with the test set only once at the very end to report unbiased metrics on
how the final tuned model would perform in the real world. The validation set should be used for
all parameter tuning, model selection, early stopping etc. while developing the model.

Maintaining the complete separation of training/validation from the test set is essential to obtain
accurate estimates of model performance. Even minor deviations from single use of the test set
could positively bias results and metrics, providing an overly optimistic view of real world efÏ-
cacy.

26.4.2.5. Same Data Splits Across Experiments

When comparing different machine learning models or experimenting with various architectures
and hyperparameters, using the same data splits for training, validation and testing across the
different experiments can introduce bias and invalidate the comparisons.
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If the same splits are reused, the evaluation results may be overly correlated and not provide an
accurate measure of which model performs better. For example, a certain random split of the data
may happen to favor model A over model B irrespective of the algorithms. Reusing this split will
then be biased towards model A.

Instead, the data splits should be randomized or shufÒed for each experimental iteration. This
ensures that randomness in the sampling of the splits does not confer an unfair advantage to any
model.

With different splits per experiment, the evaluation becomes more robust. Each model is tested
on a wide range of test sets drawn randomly from the overall population. This smoothens out
variation and removes correlation between results.

Proper practice is to set a random seed before splitting the data for each experiment. Splitting
should be carried out after any shufÒing/resampling as part of the experimental pipeline. Carry-
ing out comparisons on the same splits violates the i.i.d (independent and identically distributed)
assumption required for statistical validity.

Unique splits are essential for fair model comparisons. Though more compute intensive, random-
ized allocation per experiment removes sampling bias and enables valid benchmarking. This high-
lights the true differences inmodel performance irrespective of a particular split’s characteristics.

26.4.2.6. Information Leakage Between Sets

Information leakage between the training, validation and test sets occurs when information from
one set inadvertently bleeds into another set. This could happen due to flaws in the data splitting
process and violates the assumption that the sets are mutually exclusive.

For example, consider a dataset sorted chronologically. If a simple random split is performed,
samples close to each other in the dataset may end up in different splits. Models could then learn
from ‘future’ data if test samples are leaked into the training set.

Similarly, if the splits are not properly shufÒed, distribution biases may persist across sets. The
training set may not contain certain outliers that end up in the test set only, compromising gener-
alization. Issues like class imbalance may also get amplified if splitting is not stratified.

Another case is when datasets have linked samples that are inherently connected, such as graphs,
networks or time series data. Naive splitting may isolate connected nodes or time steps into differ-
ent sets. Models can make invalid assumptions based on partial information.

Preventing information leakage requires awareness of the structure of the dataset and relationships
between samples. ShufÒing, stratification and grouped splitting of related samples can help mit-
igate leakage. Proper cross validation procedures should be followed, being mindful of temporal
or sample proximity.

Subtle leakage of information between sets undermines model evaluation and training. It creates
misleading results on model effectiveness. Data splitting procedures should account for sample
relationships and distribution differences to ensure mutual exclusivity between sets.
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26.4.2.7. Failing to Stratify Splits

When splitting data into training, validation and test sets, failing to stratify the splits can result in
uneven representation of the target classes across the splits and introduce sampling bias. This is
especially problematic for imbalanced datasets.

Stratified splitting involves sampling data points such that the proportion of output classes is ap-
proximately preserved in each split. For example, if performing a 70/30 train-test split on a dataset
with 60% negative and 40% positive samples, stratification ensures ~60% negative and ~40% posi-
tive examples in both training and test sets.

Without stratification, due to random chance, the training split could end up with 70% positive
while test has 30% positive samples. The model trained on this skewed training distribution will
not generalize well. Class imbalance also compromises model metrics like accuracy.

Stratification works best when done using the labels though proxies like clustering can be used
for unsupervised learning. It becomes essential for highly skewed datasets with rare classes that
could easily get omitted from splits.

Libraries like Scikit-Learn have stratified splitting methods inbuilt. Failing to use them could inad-
vertently introduce sampling bias and hurt model performance on minority groups. The overall
class balance should be examined after performing the splits to ensure even representation across
the splits.

Stratification provides a balanced dataset for both model training and evaluation. Though simple
random splitting is easy, beingmindful of stratification needs, especially for real-world imbalanced
data, results in more robust model development and evaluation.

26.4.2.8. Ignoring Time Series Dependencies

Time series data has an inherent temporal structure with observations depending on past context.
Naively splitting time series data into train and test sets without accounting for this dependency
leads to data leakage and lookahead bias.

For example, simply splitting a time series into the first 70% training and last 30% as test data
will contaminate the training data with future data points. The model can use this information to
“peek” ahead during training.

This results in overly optimistic evaluation of the model’s performance. The model may appear to
forecast the future accurately but has actually implicitly learned based on future data. This does
not translate to real world performance.

Proper time series cross validation techniques should be used to preserve order and dependency,
such as forward chaining. The test set should only contain data points from a future time window
that the model did not get exposed to for training.

Failing to account for temporal relationships leads to invalid assumptions of causality. The model
may also not learn how to extrapolate forecasts further into the future if the training data contains
future points.



208 Chapter 26. AI Training

Maintaining the temporal flow of events and avoiding lookahead bias is key for properly training
and testing time series models to ensure they can truly predict future patterns and not just memo-
rize past training data.

26.4.2.9. No Unseen Data for Final Evaluation

A common mistake when splitting data is failing to keep aside some portion of the data just for
final evaluation of the completed model. All of the data is used for training, validation and test
sets during development.

This leaves no unseen data to get an unbiased estimate of how the final tunedmodelwould perform
in the real world. The metrics on the test set used during development may not fully reflect actual
model skill.

For example, choices like early stopping and hyperparameter tuning are often optimized based on
performance on the test set. This couples the model to the test data. An unseen dataset is needed
to break this coupling and get true real-world metrics.

Best practice is to reserve a portion like 20-30% of the full dataset solely for final model evaluation.
This data should not be used for any validation, tuning or model selection during development.

Saving some unseen data allows evaluating the completely trained model as a black box on real-
world like data. This provides reliable metrics to decide if the model is truly ready for production
deployment.

Failing to keep an unseen hold-out set for final validation risks optimistically biasing results and
overlooking potential failures beforemodel release. Having some fresh data provides a final sanity
check on real-world efÏcacy.

26.4.2.10. Overoptimizing on the Validation Set

The validation set is meant to guide the model training process, not serve as additional training
data. Overoptimizing on the validation set to maximize performance metrics treats it more like a
secondary training set and leads to inflated metrics and poor generalization.

For example, techniques like extensively tuning hyperparameters or adding data augmentations
targeted to boost validation accuracy can cause the model to fit too closely to the validation data.
The model may achieve 99% validation accuracy but only 55% test accuracy.

Similarly, reusing the validation set for early stopping can also optimize the model specifically for
that data. Stopping at the best validation performance overfits to noise and fluctuations caused by
the small validation size.

The validation set serves as a proxy to tune and selectmodels. But the endgoal remainsmaximizing
performance on real-world data, not the validation set. Minimizing the loss or error on validation
data does not automatically translate to good generalization.

A good approach is to keep the validation set useminimal - hyperparameters can be tuned coarsely
first on training data for example. The validation set guides the training, but should not influence
or alter the model itself. It is a diagnostic, not an optimization tool.
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Care should be taken to not overfit when assessing performance on the validation set. Tradeoffs
are needed to build models that perform well on the overall population, not overly tuned to the
validation samples.

26.5. Optimization Algorithms

Stochastic gradient descent (SGD) is a simple yet powerful optimization algorithm commonly used
to train machine learning models. SGD works by estimating the gradient of the loss function with
respect to themodel parameters using a single training example, and then updating the parameters
in the direction that reduces the loss.

While conceptually straightforward, SGD suffers from a few shortcomings. First, choosing a proper
learning rate can be difÏcult - too small and progress is very slow, too large and parameters may
oscillate and fail to converge. Second, SGD treats all parameters equally and independently, which
may not be ideal in all cases. Finally, vanilla SGD uses only first order gradient information which
results in slow progress on ill-conditioned problems.

26.5.1. Optimizations

Over the years, various optimizations have been proposed to accelerate and improve upon vanilla
SGD. Ruder (2016) gives an excellent overview of the different optimizers. Briefly, several com-
monly used SGD optimization techniques include:

Momentum: Accumulates a velocity vector in directions of persistent gradient across iterations.
This helps accelerate progress by dampening oscillations and maintains progress in consistent di-
rections.

Nesterov Accelerated Gradient (NAG): A variant of momentum that computes gradients at the
“look ahead” position rather than the current parameter position. This anticipatory update pre-
vents overshooting while the momentum maintains the accelerated progress.

RMSProp: Divides the learning rate by an exponentially decaying average of squared gradients.
This has a similar normalizing effect as Adagrad but does not accumulate the gradients over time,
avoiding a rapid decay of learning rates (Hinton 2017).

Adagrad: An adaptive learning rate algorithm that maintains a per-parameter learning rate that
is scaled down proportionate to the historical sum of gradients on each parameter. This helps
eliminate the need to manually tune learning rates (Duchi, Hazan, and Singer 2010).

Adadelta: A modification to Adagrad which restricts the window of accumulated past gradients
thus reducing the aggressive decay of learning rates (Zeiler 2012).

Adam: - Combination ofmomentumand rmspropwhere rmspropmodifies the learning rate based
on average of recent magnitudes of gradients. Displays very fast initial progress and automatically
tunes step sizes (Kingma and Ba 2015).

Of these methods, Adam is widely considered the go-to optimization algorithm for many deep
learning tasks, consistently outperforming vanilla SGD in terms of both training speed and perfor-
mance. Other optimizers may be better suited in some cases, particularly for simpler models.
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26.5.2. Trade-offs

Here is a pros and cons table for some of the main optimization algorithms for neural network
training:

Algorithm Pros Cons

Momentum Faster convergence due to
acceleration along gradients
Less oscillation than vanilla
SGD

Requires tuning of
momentum parameter

Nesterov Accelerated Gradient
(NAG)

Faster than standard
momentum in some cases
Anticipatory updates prevent
overshooting

More complex to understand
intuitively

Adagrad Eliminates need to manually
tune learning rates Performs
well on sparse gradients

Learning rate may decay too
quickly on dense gradients

Adadelta Less aggressive learning rate
decay than Adagrad

Still sensitive to initial
learning rate value

RMSProp Automatically adjusts learning
rates Works well in practice

No major downsides

Adam Combination of momentum
and adaptive learning rates
EfÏcient and fast convergence

Slightly worse generalization
performance in some cases

AMSGrad Improvement to Adam
addressing generalization
issue

Not as extensively used/tested
as Adam

26.5.3. Benchmarking Algorithms

No single method is best for all problem types. This means we need a comprehensive benchmark-
ing to identify the most effective optimizer for specific datasets and models. The performance of
algorithms like Adam, RMSProp, andMomentum varies due to factors such as batch size, learning
rate schedules, model architecture, data distribution, and regularization. These variations under-
line the importance of evaluating each optimizer under diverse conditions.

Take Adam, for example, which often excels in computer vision tasks, in contrast to RMSProp
that may show better generalization in certain natural language processing tasks. Momentum’s
strength lies in its acceleration in scenarios with consistent gradient directions, whereas Adagrad’s
adaptive learning rates are more suited for sparse gradient problems.

This wide array of interactions among different optimizers demonstrates the challenge in declaring
a single, universally superior algorithm. Each optimizer has unique strengths, making it crucial to
empirically evaluate a range of methods to discover their optimal application conditions.

A comprehensive benchmarking approach should assess not just the speed of convergence but also
factors like generalization error, stability, hyperparameter sensitivity, and computational efÏciency,
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among others. This entailsmonitoring training and validation learning curves acrossmultiple runs
and comparing optimizers on a variety of datasets and models to understand their strengths and
weaknesses.

AlgoPerf, introduced by Dahl et al. (2021), addresses the need for a robust benchmarking system.
This platform evaluates optimizer performance using criteria such as training loss curves, general-
ization error, sensitivity to hyperparameters, and computational efÏciency. AlgoPerf tests various
optimization methods, including Adam, LAMB, and Adafactor, across different model types like
CNNs and RNNs/LSTMs on established datasets. It utilizes containerization and automatic met-
ric collection to minimize inconsistencies and allows for controlled experiments across thousands
of configurations, providing a reliable basis for comparing different optimizers.

The insights gained from AlgoPerf and similar benchmarks are invaluable for guiding the optimal
choice or tuning of optimizers. By enabling reproducible evaluations, these benchmarks contribute
to a deeper understanding of each optimizer’s performance, paving the way for future innovations
and accelerated progress in the field.

26.6. Hyperparameter Tuning

Hyperparameters are important settings in machine learning models that have a large impact on
howwell your models ultimately perform. Unlike other model parameters that are learned during
training, hyperparameters are specified by the data scientists or machine learning engineers prior
to training the model.

Choosing the right hyperparameter values is crucial for enabling your models to effectively learn
patterns from data. Some examples of key hyperparameters across ML algorithms include:

• Neural networks: Learning rate, batch size, number of hidden units, activation functions
• Support vector machines: Regularization strength, kernel type and parameters
• Random forests: Number of trees, tree depth
• K-means: Number of clusters

The problem is that there are no reliable rules-of-thumb for choosing optimal hyperparameter con-
figurations - you typically have to try out different values and evaluate performance. This process
is called hyperparameter tuning.

In the early years of modern deep learning, researchers were still grapplingwith unstable and slow
convergence issues. Common pain points included training losses fluctuating wildly, gradients ex-
ploding or vanishing, and extensive trial-and-error needed to train networks reliably. As a result,
an early focal point was using hyperparameters to control model optimization. For instance, semi-
nal techniques like batch normalization allowedmuch faster model convergence by tuning aspects
of internal covariate shift. Adaptive learning rate methods also mitigated the need for extensive
manual schedules. These addressed optimization issues during training like uncontrolled gradi-
ent divergence. Carefully adapted learning rates are also the primary control factor even today for
achieving rapid and stable convegence.

As computational capacity expanded exponentially in subsequent years, much largermodels could
be trained without falling prey to pure numerical optimization issues. The focus shifted towards
generalization - though efÏcient convergence was a core prerequisite. State-of-the-art techniques
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like Transformers brought in parameters in billions. At such sizes, hyperparameters around capac-
ity, regularization, ensembling etc. took center stage for tuning rather than only raw convergence
metrics.

The lesson is that understanding acceleration and stability of the optimization process itself con-
stitutes the groundwork. Even today initialization schemes, batch sizes, weight decays and other
training hyperparameters remain indispensable. Mastering fast and flawless convergence allows
practitioners to expand focus on emerging needs around tuning for metrics like accuracy, robust-
ness and efÏciency at scale.

26.6.1. Search Algorithms

When it comes to the critical process of hyperparameter tuning, there are several sophisticated
algorithms machine learning practitioners rely on to systematically search through the vast space
of possible model configurations. Some of the most prominent hyperparameter search algorithms
include:

• Grid Search: The most basic search method, where you manually define a grid of values
to check for each hyperparameter. For example, checking learning rates = [0.01, 0.1, 1] and
batch sizes = [32, 64, 128]. The key advantage is simplicity, but exploring all combinations
leads to exponential search space explosion. Best for fine-tuning a few params.

• Random Search: Instead of a grid, you define a random distribution per hyperparameter to
sample values from during search. It is more efÏcient at searching a vast hyperparameter
space. However, still somewhat arbitrary compared to more adaptive methods.

• BayesianOptimization: An advanced probabilistic approach for adaptive exploration based
on a surrogate function tomodel performance over iterations. It is very sample efÏcient - finds
highly optimized hyperparameters in fewer evaluation steps. Requires more investment in
setup (Snoek, Larochelle, and Adams 2012).

• Evolutionary Algorithms: Mimic natural selection principles - generate populations of hy-
perparameter combinations, evolve them over time based on performance. These algorithms
offer robust search capabilities better suited for complex response surfaces. But many itera-
tions required for reasonable convergence.

• Neural Architecture Search: An approach to designing well-performing architectures for
neural networks. Traditionally, NAS approaches use some form of reinforcement learning
to propose neural network architectures which are then repeatedly evaluated (Zoph and Le
2023).

26.6.2. System Implications

Hyperparameter tuning can significantly impact time to convergence during model training, di-
rectly affecting overall runtime. Selecting the right values for key training hyperparameters is
crucial for efÏcient model convergence. For example, the learning rate hyperparameter controls
the step size during gradient descent optimization. Setting a properly tuned learning rate sched-
ule ensures the optimization algorithm converges quickly towards a good minimum. Too small
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a learning rate leads to painfully slow convergence, while too large a value causes the losses to
fluctuate wildly. Proper tuning ensures rapid movement towards optimal weights and biases.

Similarly, batch size for stochastic gradient descent impacts convergence stability. The right batch
size smooths out fluctuations in parameter updates to approach the minimum faster. InsufÏcient
batch sizes cause noisy convergence, while large batch sizes fail to generalize and also slow down
convergence due to less frequent parameter updates. Tuning hyperparameters for faster conver-
gence and reduced training duration has direct implications on cost and resource requirements for
scaling machine learning systems:

• Lower computatioanal costs: Shorter time to convergence means lower computational costs
for training models. ML training often leverages large cloud compute instances like GPU
and TPU clusters that incur heavy charges per hour. Minimizing training time directly brings
down this resource rental cost that tends to dominateML budgets for organizations. Quicker
iteration also lets data scientists experiment more freely within the same budget.

• Reduced training time: Reduced training time unlocks opportunities to train more mod-
els using the same computational budget. Optimized hyperparameters stretch available re-
sources further allowing businesses to develop and experiment with more models under
resource constraints to maximize performance.

• Resource efÏciency: Quicker training allows allocating smaller compute instances in cloud
since models require access to the resources for a shorter duration. For example, a 1-hour
training job allows using less powerful GPU instances compared to multi-hour training re-
quiring sustained compute access over longer intervals. This achieves cost savings especially
for large workloads.

There are other benefits as well. For instance, faster convergence reduces pressure onML engineer-
ing teams around provisioning training resources. Simple model retraining routines can use lower
powered resources as opposed to requesting for access to high priority queues for constrained
production-grade GPU clusters. This frees up deployment resources for other applications.

26.6.3. Auto Tuners

There are a wide array of commercial offerings to help with hyperparameter tuning given how im-
portant it is. We will briefly touch on two examples focused on optimization for machine learning
models targeting microcontrollers and another focused on cloud-scale ML.

26.6.3.1. BigML

There are several commercial auto tuning platforms available to deal with this problem. One such
solution is Google’s Vertex AI Cloud, which has extensive integrated support for state-of-the-art
tuning techniques.

One of the most salient capabilities offered by Google’s Vertex AI managed machine learning plat-
form is efÏcient, integrated hyperparameter tuning for model development. Successfully training
performant ML models requires identifying optimal configurations for a set of external hyperpa-
rameters that dictate model behavior - which poses a challenging high-dimensional search prob-
lem. Vertex AI aims to simplify this through Automated Machine Learning (AutoML) tooling.
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Specifically, data scientists can leverage Vertex AI’s hyperparameter tuning engines by providing
a labeled dataset and choosing a model type such as Neural Network or Random Forest classi-
fier. Vertex launches a Hyperparameter Search job transparently on the backend, fully handling
resource provisioning, model training, metric tracking and result analysis automatically using ad-
vanced optimization algorithms.

Under the hood, Vertex AutoML employs a wide array of different search strategies to intelligently
explore the most promising hyperparameter configurations based on previous evaluation results.
Compared to standard Grid Search or Random Search methods, Bayesian Optimization offers su-
perior sample efÏciency requiring fewer training iterations to arrive at optimized model quality.
For more complex neural architecture search spaces, Vertex AutoML utilizes Population Based
Training approaches which evolve candidate solutions over time analogous to natural selection
principles.

Vertex AI aims to democratize state-of-the-art hyperparameter search techniques at cloud scale
for all ML developers, abstracting away the underlying orchestration and execution complexity.
Users focus solely on their dataset, model requirements and accuracy goals while Vertex manages
the tuning cycle, resource allocation, model training, accuracy tracking and artifact storage under
the hood. The end result is getting deployment-ready, optimized ML models faster for the target
problem.

26.6.3.2. TinyML

Edge Impulse’s EfÏcient On-device Neural Network Tuner (EON Tuner) is an automated hyper-
parameter optimization tool designed specifically for developing machine learning models for
microcontrollers. The EON Tuner streamlines the model development process by automatically
finding the best neural network configuration for efÏcient and accurate deployment on resource-
constrained devices.

The key functionality of the EON Tuner is as follows. First, developers define the model hyper-
parameters, such as number of layers, nodes per layer, activation functions, and learning rate an-
nealing schedule. These parameters constitute the search space that will be optimized. Next, the
target microcontroller platform is selected, providing embedded hardware constraints. The user
can also specify optimization objectives, such as minimizing memory footprint, lowering latency,
reducing power consumption or maximizing accuracy.

With the search space and optimization goals defined, the EON Tuner leverages Bayesian hyperpa-
rameter optimization to intelligently explore possible configurations. Each prospective configura-
tion is automatically implemented as a full model specification, trained and evaluated for quality
metrics. The continual process balances exploration and exploitation to arrive at optimized settings
tailored to the developer’s chosen chip architecture and performance requirements.

By automatically tuning models for embedded deployment, the EON Tuner frees machine learn-
ing engineers from the demandingly iterative process of hand-tuning models. The tool integrates
seamlessly into the Edge Impulseworkflow for takingmodels from concept to efÏciently optimized
implementations on microcontrollers. The expertise encapsulated in EON Tuner regarding ML
model optimization for microcontrollers ensures beginner and experienced developers alike can
rapidly iterate to models fitting their project needs.
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26.7. Regularization

Regularization is a critical technique for improving the performance and generalizability of ma-
chine learning models in applied settings. It refers to mathematically constraining or penalizing
model complexity to avoid overfitting the training data. Without regularization, complexMLmod-
els are prone to overfitting to the dataset and memorize peculiarities and noise in the training set,
rather than learning meaningful patterns. They may achieve high training accuracy, but perform
poorly when evaluating new unseen inputs.

Regularization helps address this problem by placing constraints that favor simpler, more general-
izable models that don’t latch onto sampling errors. Techniques like L1/L2 regularization directly
penalize large parameter values during training, forcing the model to use the smallest parame-
ters that can adequately explain the signal. Early stopping rules halt training when validation set
performance stops improving - before the model starts overfitting.

Appropriate regularization is crucial when deploying models to new user populations and envi-
ronments where distribution shifts are likely. For example, an irregularized fraud detection model
trained at a bank may work initially but accrue technical debt over time as new fraud patterns
emerge.

Regularizing complex neural networks also allows computational advantages - smaller models
require less data augmentation, compute power, and data storage. Regularization allows more
efÏcient AI systems, where accuracy, robustness, and resource management are balanced thought-
fully against training set limitations.

Several powerful regularization techniques are commonly used to improve model generalization.
Architecting the optimal strategy requires understanding how eachmethod affects model learning
and complexity.

26.7.1. L1 and L2

Two of the most widely used regularization forms are L1 and L2 regularization. Both penalize
model complexity by adding an extra term to the cost function optimized during training. This
term grows larger as model parameters increase.

L2 regularization, also known as ridge regression, adds the sum of squared magnitudes of all
parameters, multiplied by a coefÏcient α. This quadratic penalty curtails extreme parameter values
more aggressively than L1 techniques. Implementation requires only changing the cost function
and tuning α. 𝑅𝐿2(Θ) = 𝛼 𝑛∑𝑖=1 𝜃2𝑖
Where:

• 𝑅𝐿2(Θ) - The L2 regularization term that is added to the cost function

• 𝛼 - The L2 regularization hyperparameter that controls the strength of regularization
• 𝜃𝑖 - The ith model parameter
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• 𝑛 - The number of parameters in the model
• 𝜃2𝑖 - The square of each parameter

And the full L2 regularized cost function is:𝐽(𝜃) = 𝐿(𝜃)+𝑅𝐿2(Θ)
Where:

• 𝐿(𝜃) - The original unregularized cost function
• 𝐽(𝜃) - The new regularized cost function

Both L1 and L2 regularization penalize large weights in the neural network, however, the key dif-
ference between L1 and L2 regularization is that L2 regularization penalizes the squares of the
parameters rather than the absolute values. This key difference has considerable impact on the
resulting regularized weights. L1 regularization, also known as lasso regression, utilizes the abso-
lute sum of magnitudes, rather than the square, multiplied by α. Penalizing the absolute value of
weights induces sparsity, since the gradient of the errors extrapolates linearly as the weight terms
tend towards zero; this is unlike penalizing the squared value of the weights where the penalty
reduces as the weights tend towards 0. By inducing sparsity in the parameter vector, L1 regular-
ization automatically performs feature selection, setting the weights of irrelevant features to zero.
Unlike L2 regularization, L1 regularization leads to sparsity as weights are set to 0; in L2 regular-
ization weights are set to a value very close to 0 but generally never reach exact 0. The fact that L1
regularization encourages sparsity has been used in some works to train sparse networks that may
be more hardware efÏcient (Hoefler et al. 2021).𝑅𝐿1(Θ) = 𝛼 𝑛∑𝑖=1 ||𝜃𝑖||
Where:

• 𝑅𝐿1(Θ) - The L1 regularization term that is added to the cost function
• 𝛼 - The L1 regularization hyperparameter that controls the strength of regularization
• 𝜃𝑖 - The i-th model parameter
• 𝑛 - The number of parameters in the model
• ||𝜃𝑖|| - The L1 norm, which takes the absolute value of each parameter

And the full L1 regularized cost function is:𝐽(𝜃) = 𝐿(𝜃)+𝑅𝐿1(Θ)
Where:

• 𝐿(𝜃) - The original unregularized cost function
• 𝐽(𝜃) - The new regularized cost function

The choice between L1 and L2 depends on the expected model complexity and whether intrinsic
feature selection is needed. Both require iterative tuning across a validation set to select the optimal
α hyperparameter.
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26.7.2. Dropout

Anotherwidely adopted regularizationmethod is dropout (Srivastava et al. 2014). During training,
dropout randomly sets a fraction 𝑝 of node outputs or hidden activations to zero. This encourages
greater distribribution of information acrossmore nodes, rather than reliance on a small number of
nodes. Come prediction time, the full neural network is used, with intermediate activations scaled
by 𝑝 to maintain output magnitudes. GPU optimizations make implementing dropout efÏciently
straightforward via frameworks like PyTorch and TensorFlow.

Let’s be a bit more pendantic. During training with dropout, each node’s output 𝑎𝑖 is passed
through a dropout mask 𝑟𝑖 before being used by the next layer:

𝑖 = 𝑟𝑖 ⊙𝑎𝑖
Where:

• 𝑎𝑖 - output of node 𝑖
• 𝑖 - output of node 𝑖 after dropout
• 𝑟𝑖 - independent Bernoulli random variable with probability 𝑝 of being 1
• ⊙ - elementwise multiplication

This dropout mask 𝑟𝑖 randomly sets a fraction 1−𝑝 of activations to 0 during training, forcing the
network to redundant representations.

At test time, the dropoutmask is removed and the activations are rescaled by 𝑝 tomaintain expected
output magnitudes: 𝑎𝑡𝑒𝑠𝑡𝑖 = 𝑝𝑎𝑖
Where:

• 𝑎𝑡𝑒𝑠𝑡𝑖 - node output at test time
• 𝑝 - dropout probability hyperparameter

The key hyperparameter is 𝑝, the fraction of nodes dropped, often set between 0.2 and 0.5. Larger
networks tend to benefit from more dropout, while small networks risk underfitting if too many
nodes are cut out. Trial and error combined with monitoring validation performance helps tune
the dropout level.

26.7.3. Early Stopping

The intuition behind early stopping involves tracking model performance on a held-out validation
set across training epochs. At first, increases in training set fitness accompany gains in validation
accuracy as the model picks up generalizable patterns. After some point however, the model starts
overfitting - latching onto peculiarities and noise in the training data that don’t applymore broadly.
The validation performance peaks and then degrades if training continues. Early stopping rules
halt training at this peak to prevent overfitting. This technique demonstrates how ML pipelines
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must monitor system feedback, not just blindly maximize performance on a static training set. The
system’s state evolves, and the optimal endpoints change.

Formal early stopping methods therefore require monitoring a metric like validation accuracy or
loss after each epoch. Common curves exhibit rapid initial gains that taper off, eventually plateau-
ing and decreasing slightly as overfitting occurs. The optimal stopping point is often between 5-15
epochs past the peak depending on patience thresholds. Tracking multiple metrics can improve
signal since variance exists between measures.

Simple early stopping rules stop immediately at the first post-peak degradation. More robustmeth-
ods introduce a patience parameter - the number of degrading epochs permitted before stopping.
This avoids prematurely halting training due to transient fluctuations. Typical patience windows
range from 50-200 validation batches. Wider windows incur risk of overfit. Formal tuning strate-
gies can determine optimal patience.

26.8. Weight Initialization

Proper initialization of the weights in a neural network prior to training is a vital step that directly
impacts model performance. Randomly initializing weights to very large or small values can lead
to problems like vanishing/exploding gradients, slow convergence of training, or getting trapped
in poor local minima. Proper weight initialization not only accelerates model convergence dur-
ing training, but also carries implications for system performance at inference time in production
environments. Some key aspects include:

• Faster Time-to-Accuracy: Carefully tuned initialization leading to faster convergence results
in models reaching target accuracy milestones earlier in the training cycle. For instance,
Xavier init could reduce time-to-accuracy by 20% versus bad random init. As training is typ-
ically the most time and compute-intensive phase, this directly enhances ML system velocity
and productivity.

• Model Iteration Cycle EfÏciency: If models train faster, the overall turnaround time for ex-
perimentation, evaluation, and model design iterations also decreases significantly. Systems
have more flexibility to explore architectures, data pipelines etc within given timeframes.

• Impact on Necessary Training Epochs: The training process runs for multiple epochs - with
each full pass through the data being an epoch. Good initialization can reduce the epochs
required to converge the loss and accuracy curves on the training set by 10-30% in some cases.
This means tangible resource and infrastructure cost savings.

• Effect on Training Hyperparameters: Weight initialization parameters interacts strongly
with certain regularization hyperparameters that govern the training dynamics - like learn-
ing rate schedules and dropout probabilities. Finding the right combination of settings is
non-trivial. Appropriate initialization smoothens this search.

Weight initialization has cascading benefits for machine learning engineering efÏciency as well
as minimized system resource overhead. It is an easily overlooked tactic that every practitioner
should master. The choice of which weight initialization technique to use depends on factors like
model architecture (number of layers, connectivity pattern etc.), activation functions, and the spe-
cific problem being solved. Over the years, researchers have developed and empirically verified
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different initialization strategies targeted to common neural network architectures, which we will
discuss here.

26.8.1. Uniform and Normal Initialization

When randomly initializing weights, two standard probability distributions are commonly used
- uniform and Gaussian (normal). The uniform distribution sets equal probability of the initial
weight parameters falling anywhere within set minimum and maximum bounds. For example,
the bounds could be -1 and 1, leading to a uniform spread of weights between these limits. The
Gaussian distribution on the other hand concentrates probability around a mean value, following
the shape of a bell curve. Most of the weight values will cluster in the region of the specified mean,
with fewer samples towards the extreme ends. The standard deviation (std dev) parameter controls
the spread around the mean.

The choice between uniform or normal initialization depends on the network architecture and
activation functions. For shallow networks, a normal distribution with relatively small std dev
(e.g. 0.01) is recommended. The bell curve prevents very large weight values that could trigger
training instability in small networks. For deeper networks, a normal distribution with higher std
dev (say 0.5 or above) or uniform distribution may be preferred to account for vanishing gradient
issues over many layers. The larger spread drives greater differentiation between neuron behav-
iors. Fine-tuning the initialization distribution parameters is crucial for stable and speedy model
convergence. Monitoring training loss trends can diagnose issues for tweaking the parameters
iteratively.

26.8.2. Xavier/Glorot Initialization

Proposed by Glorot and Bengio (2010), this initialization technique is specially designed for sig-
moid and tanh activation functions. These saturated activations can cause vanishing or exploding
gradients during backpropagation over many layers.

The Xavier method cleverly sets the variance of the weight distribution based on the number of
inputs and outputs to each layer. The intuition is that this balances the flow of information and
gradients throughout the network. For example, consider a layer with 300 input units and 100
output units. Plugging this into the formula variance = 2/(#inputs + #outputs) gives a variance of
2/(300+100) = 0.01.

Sampling the initial weights from a uniform or normal distribution centered at 0 with this variance
providesmuch smoother training convergence for deep sigmoid/tanh networks. The gradients are
well-conditioned, preventing exponential vanishing or growth.

26.8.3. He Initialization

Proposed byHe et al. (2015) this initialization is tailored for ReLU (Rectified Linear Unit) activation
functions. ReLUs introduce the dying neuron problem where units get stuck outputting all 0s if
they receive strong negative inputs initially. This slows and hinders training.
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He init overcomes this by sampling weights from a distribution with variance set based only on
the number of inputs per layer, disregarding the outputs. This keeps the incoming signals small
enough to activate the ReLUs into their linear regime from the beginning, avoiding dead units. For
a layer with 1024 inputs, the formula variance = 2/1024 = 0.002 keeps most weights concentrated
closely around 0.

This specialized initialization allows ReLU networks to converge efÏciently right from the start.
The choice between Xavier and He init must match the intended network activation function.

26.9. Activation Functions

Activation functions play a crucial role in neural networks - they introduce non-linear behaviors
that allow neural nets tomodel complex patterns. Element-wise activation functions are applied to
the weighted sums coming into each neuron in the network. Without activation functions, neural
nets would be reduced to just linear regression models.

Ideally, activation functions possess certain desirable qualities:

• Non-linear: They enablemodeling complex relationships throughnonlinear transformations
of the input sum.

• Differentiable: Theymust havewell-defined first derivatives to enable backpropagation and
gradient-based optimization during training.

• Range-bounding: They constrain the output signal preventing explosion. For example, sig-
moid squashes inputs to (0,1).

Additionally, properties like computational efÏciency, monotonicity, and smoothness make some
activations better suited over others based on network architecture and problem complexity.

We will briefly survey some of the most widely adopted activation functions along with their
strengths and limitations. We also provide guidelines for selecting appropriate functions matched
to ML system constraints and use case needs.

26.9.1. Sigmoid

The sigmoid activation applies a squashingle S-shaped curve that tightly binds the output between
0 and 1. It has the mathematical form:𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 11+𝑒−𝑥
The exponentiation transform allows the function to smoothly transition from near 0 towards near
1 as the input moves from very negative to very positive. The monotonic rise covers the full (0,1)
range.

Pros:

Smooth gradient always available for backprop Output bounded preventing “exploding” Simple
formula Cons:
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Tendency to saturate at extremes killing gradients (“vanishing”) Not zero-centered - outputs not
symmetrically distributed

26.9.2. Tanh

Tanh or hyperbolic tangent also assumes an S-shape but is zero-centered meaning the output aver-
age value sits at 0. 𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥 −𝑒−𝑥𝑒𝑥 +𝑒−𝑥
The numerator/denominator transform shifts the range from (0,1) in sigmoid to (-1, 1) in tanh.

Most of the pros/cons are shared with sigmoid, but tanh avoids some output saturation issues by
being centered. However, it still suffers from vanishing gradients with many layers.

26.9.3. ReLU

The Rectified Linear Unit (ReLU) introduces a simple thresholding behavior with its mathematical
form: 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0,𝑥)
It leaves all positive inputs unchangedwhile clipping all negative values to 0. This sparse activation
and cheap computation make ReLU widely favored over sigmoid/tanh.

Figure 26.7. Common activation functions
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26.9.4. Softmax

The softmax activation function is generally used as the last layer for classification tasks to normal-
ize the activation value vector so that its elements sum to 1. This is useful for classification tasks
where we want to learn to predict class specific probabilities of a particular input, in which case
the cumulative probability across classes sum to 1. The softmax activation function is defined as

𝜎(𝑧𝑖) = 𝑒𝑧𝑖∑𝐾𝑗=1 𝑒𝑧𝑗 𝑓𝑜𝑟 𝑖 = 1,2,…,𝐾
26.9.5. Pros and Cons

Here are the summarizing pros and cons of these various standard activation functions:

Activation Function Pros Cons

Sigmoid Smooth gradient for backprop
Output bounded between 0
and 1

Saturation kills gradients Not
zero-centered

Tanh Smoother gradient than
sigmoid Zero-centered output
[-1, 1]

Still suffers vanishing gradient
issue

ReLU Computationally efÏcient
Introduces sparsity Avoids
vanishing gradients

“Dying ReLU” units Not
bounded

Softmax Used for last layer to
normalize vector outputs to be
a probability distribution;
typically used for
classification tasks

-

26.10. System Bottlenecks

As introduced earlier, neural networks are comprised of linear operations (matrix multiplications)
interleavedwith element-wise nonlinear activation functions. Themost computationally expensive
portion of neural networks is the linear transformations, specifically the matrix multiplications
between each layer. These linear layers map the activations from the previous layer to a higher
dimensional space that serves as inputs to the next layer’s activation function.
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26.10.1. Runtime Complexity of Matrix Multiplication

26.10.1.1. Layer Multiplications vs. Activations

The bulk of computation in neural networks arises from the matrix multiplications between layers.
Consider a neural network layer with an input dimension of 𝑀 = 500 and output dimension of 𝑁 =
1000, the matrix multiplication requires 𝑂(𝑁 ⋅𝑀) = 𝑂(1000⋅500) = 500,000 multiply-accumulate
(MAC) operations between those layers.

Contrast this with the preceding layer which had 𝑀 = 300 inputs, requiring 𝑂(500⋅300) = 150,000
ops. We can see how the computations scale exponentially as the layer widths increase, with the
total computations across 𝐿 layers being ∑𝐿−1𝑙=1 𝑂(𝑁 (𝑙) ⋅𝑀 (𝑙−1)).
Now comparing the matrix multiplication to the activation function which requires only 𝑂(𝑁) =1000 element-wise nonlinearities for 𝑁 = 1000 outputs, we can clearly see the linear transforma-
tions dominating the activations computationally.

These large matrix multiplications directly impact hardware choices, inference latency, and power
constraints for real-world neural network applications. For example, a typical DNN layer may
require 500,000 multiply-accumulates vs. only 1000 nonlinear activations, demonstrating a 500x
increase in mathematical operations.

When training neural networks, we typically use mini-batch gradient descent, operating on small
batches of data at a time. Considering a batch size of 𝐵 training examples, the input to the matrix
multiplication becomes a 𝑀 ×𝐵 matrix, while the output is an 𝑁 ×𝐵 matrix.

26.10.1.2. Mini-batch

In training neural networks, we need to repeatedly estimate the gradient of the loss function with
respect to the network parameters (i.e. weights and biases). This gradient indicates which direc-
tion the parameters should be updated in order to minimize the loss. As introduced previously,
use perform updates over a batch of datapoints every update, also known as stochastic gradient
descent, or mini-batch gradient descent.

The most straightforward approach is to estimate the gradient based on a single training exam-
ple, compute the parameter update, lather, rinse, and repeat for the next example. However, this
involves very small and frequent parameter updates that can be computationally inefÏcient, and
may additionally be inaccurate in terms of convergence due to the stochasticity of using just a single
datapoint for a model update.

Instead, mini-batch gradient descent strikes a balance between convergence stability and computa-
tional efÏciency. Rather than compute the gradient on single examples, we estimate the gradient
based on small “mini-batches” of data - usually between 8 to 256 examples in practice.

This provides a noisy but consistent gradient estimate that leads to more stable convergence. Ad-
ditionally, the parameter update only needs to be performed once per mini-batch rather than once
per example, reducing computational overhead.

By tuning the mini-batch size, we can control the tradeoff between the smoothness of the estimate
(larger batches are generally better) and the frequency of updates (smaller batches allow more
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frequent updates). Mini-batch sizes are usually powers of 2 so they can leverage parallelism across
GPU cores efÏciently.

So the total computation is performing an 𝑁 ×𝑀 by 𝑀 ×𝐵 matrix multiplication, yielding 𝑂(𝑁 ⋅𝑀 ⋅ 𝐵) floating point operations. As a numerical example, with 𝑁 = 1000 hidden units, 𝑀 =500 input units, and a batch size 𝐵 = 64, this equates to 1000 x 500 x 64 = 32 million multiply-
accumulates per training iteration!

In contrast, the activation functions are applied element-wise to the𝑁 ×𝐵 outputmatrix, requiring
only 𝑂(𝑁 ⋅𝐵) computations. For 𝑁 = 1000 and 𝐵 = 64, that is just 64,000 nonlinearities - 500X less
work than the matrix multiplication.

As we increase the batch size to fully leverage parallel hardware like GPUs, the discrepancy be-
tween matrix multiplication and activation function cost grows even larger. This reveals how opti-
mizing the linear algebra operations offers tremendous efÏciency gains.

Therefore, when analyzing where and how neural networks spend computation, matrix multipli-
cation clearly plays a central role. For example, matrix multiplications often account for over 90%
of both inference latency and training time in common convolutional and recurrent neural net-
works.

26.10.1.3. Optimizing Matrix Multiplication

A number of techniques enhance the efÏciency of general dense/sparse matrix-matrix and matrix-
vector operations to directly improve overall efÏciency. Some key methods include:

• Leveraging optimized math libraries like cuBLAS for GPU acceleration
• Enabling lower precision formats like FP16 or INT8 where accuracy permits
• Employing Tensor Processing Units with hardware matrix multiplication
• Sparsity-aware computations and data storage formats to exploit zero parameters
• Approximating matrix multiplications with algorithms like Fast Fourier Transforms
• Model architecture design to reduce layer widths and activations
• Quantization, pruning, distillation and other compression techniques
• Parallelization of computation across available hardware
• Caching/pre-computing results where possible to reduce redundant operations

The potential optimization techniques are vast given the outsized portion of time models spend in
matrix and vector math. Even incremental improvements would directly speed up runtimes and
lower energy usage. Finding new ways to enhance these linear algebra primitives continues to be
an active area of research aligned with the future demands of machine learning. We will discuss
these in detail in the Optimizations and AI Acceleration chapters.

26.10.2. Compute vs Memory Bottleneck

At this point, it should be clear that the coremathematical operation underpinning neural networks
is the matrix-matrix multiplication. Both training and inference for neural networks heavily utilize
these matrix multiply operations. Analysis shows that over 90% of computational requirements in
state-of-the-art neural networks arise frommatrix multiplications. Consequently, the performance
of matrix multiplication has an enormous influence on overall model training or inference time.

https://developer.nvidia.com/cublas
https://en.wikipedia.org/wiki/Tensor_Processing_Unit
../optimizations/optimizations.qmd
../hw_acceleration/hw_acceleration.qmd
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26.10.2.1. Training versus Inference

While both training and inference rely heavily on matrix multiplication performance, their precise
computational profiles differ. Specifically, neural network inference tends to be more compute-
bound compared to training for an equivalent batch size. The key difference lies in the backprop-
agation pass which is only required during training. Backpropagation involves a sequence matrix
multiply operations to calculate gradients with respect to activations across each network layer.
Critically though, no additional memory bandwidth is needed here - the inputs, outputs, and gra-
dients are read/written from cache or registers.

As a result, training exhibits lower arithmetic intensities, with gradient calculations bounded by
memory access instead of FLOPs. In contrast, neural network inference is dominated by the for-
ward propagation which corresponds to a series of matrix-matrix multiplies. With no memory-
intensive gradient retrospecting, larger batch sizes readily push inference into being extremely
compute-bound. This is exhibited by the high measured arithmetic intensities. Note that for
some inference applications, response times may be a critical requirement, which might force the
application-provider to use a smaller batch size to meet these response-time requirements, thereby
reducing hardware efÏciency; hence in these cases inference may see lower hardware utilization.

The implications are that hardware provisioning and bandwidth vs FLOP tradeoffs differ based on
whether a system targets training or inference. High-throughput low-latency servers for inference
should emphasize computational power instead of memory while training clusters require a more
balanced architecture.

However, matrix multiplication exhibits an interesting tension - it can either be bound by the mem-
ory bandwidth or arithmetic throughput capabilities of the underlying hardware. The system’s
ability to fetch and supply matrix data versus its ability to perform computational operations de-
termines this direction.

This phenomenon has profound impacts; hardware must be designed judiciously and software
optimizations need to keep this in mind. Optimizing and balancing compute versus memory to
alleviate this underlyingmatrixmultiplication bottleneck is crucial for both efÏcientmodel training
as well as deployment.

Finally, the batch size used may impact convergence rates during neural network training, which
is another important consideration. For example, there is generally diminishing returns in bene-
fits to convergence with extremely large batch sizes (i.e: > 16384), and hence while extremely large
batch sizes may be increasingly beneficial from a hardware/arithmetic intensity perspective, using
such large batches may not translate to faster convergence vs wall-clock time due to their dimin-
ishing benefits to convergence. These tradeoffs are part of the design decisions core to systems for
machine-learning type of research.

26.10.2.2. Batch Size

The batch size used during neural network training and inference has a significant impact on
whether matrix multiplication poses more of a computational or memory bottleneck. Concretely,
the batch size refers to the number of samples that are propagated through the network together
in one forward/backward pass. In terms of matrix multiplication, this equates to larger matrix
sizes.
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Specifically, let’s look at the arithmetic intensity of matrix multiplication during neural network
training. This measures the ratio between computational operations and memory transfers.
The matrix multiply of two matrices of size 𝑁 × 𝑀 and 𝑀 × 𝐵 requires 𝑁 × 𝑀 × 𝐵 multiply-
accumulate operations, but only transfers of 𝑁 ×𝑀 +𝑀 ×𝐵 matrix elements.

As we increase the batch size 𝐵, the number of arithmetic operations grows much faster than the
memory transfers. For example, with a batch size of 1, we need 𝑁 × 𝑀 operations and 𝑁 + 𝑀
transfers, giving an arithmetic intensity ratio of around 𝑁×𝑀𝑁+𝑀 . But with a large batch size of 128,
the intensity ratio becomes 128×𝑁×𝑀𝑁×𝑀+𝑀×128 ≈ 128. Using a larger batch size shifts the overall computa-
tion from being more memory-bounded to being more compute-bounded. In practice, AI training
uses large batch sizes and is generally limited by peak arithmetic computational performance, i.e:
Application 3 in Figure 26.8.

Therefore, batched matrix multiplication is far more computationally intensive than memory ac-
cess bound. This has implications on hardware design as well as software optimizations, which
we will cover next. The key insight is that by tuning the batch size, we can significantly alter the
computational profile and bottlenecks posed by neural network training and inference.

26.10.2.3. Hardware Characteristics

Modern hardware like CPUs and GPUs are highly optimized for computational throughput as op-
posed to memory bandwidth. For example, high-end H100 Tensor Core GPUs can deliver over 60
TFLOPS of double-precision performance but only provide up to 3 TB/s of memory bandwidth.
This means there is almost a 20x imbalance between arithmetic units and memory access. Conse-
quently, for hardware like GPU accelerators, neural network training workloads need to be made
as computationally intensive as possible in order to fully utilize the available resources.

This further motivates the need for using large batch sizes during training. When using a small
batch, the matrix multiplication is bounded by memory bandwidth, underutilizing the abundant
compute resources. However, with sufÏciently large batches, we can shift the bottleneck more to-
wards computation and attainmuch higher arithmetic intensity. For instance, batches of 256 or 512
samples may be needed to saturate a high-end GPU. The downside is that larger batches provide
less frequent parameter updates, which can impact convergence. Still, the parameter serves as an
important tuning knob to balance memory vs compute limitations.

Therefore, given the imbalanced compute-memory architectures of modern hardware, employing
large batch sizes is essential to alleviate bottlenecks and maximize throughput. The subsequent
software and algorithms also need to accommodate such batch sizes, as mentioned, since larger
batch sizes may have diminishing returns towards the convergence of the network. Using very
small batch sizes may lead to suboptimal hardware utilization, ultimately limiting training efÏ-
ciency. Scaling up to large batch sizes is a topic of research and has been explored in various
works that aim to do large scale training (Y. You et al. 2018).

26.10.2.4. Model Architectures

The underlying neural network architecture also affects whether matrix multiplication poses more
of a computational or memory bottleneck during execution. Transformers and MLPs tend to be
much more compute-bound compared to CNN convolutional neural networks. This stems from
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Figure 26.8. AI training is typically compute bound due to the high arithmetic intensity of matrix-
multiplication when batch size is large.
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the types of matrix multiplication operations involved in each model. Transformers rely on self-
attention - multiplying large activation matrices by massive parameter matrices to relate elements.
MLPs stack fully-connected layers also requiring large matrix multiplies.

In contrast, the convolutional layers in CNNs have a sliding window that reuses activations and
parameters across the input. This means fewer unique matrix operations are needed. However,
the convolutions require repeatedly accessing small parts of the input and moving partial sums
to populate each window. Even though the arithmetic operations in convolutions are intense, this
data movement and buffer manipulation imposes huge memory access overheads. Additionally,
CNNs comprise several layered stages so intermediate outputs need to be materialized to memory
frequently.

As a result, CNN training tends to bemorememory bandwidth bound relative to arithmetic bound
compared to Transformers and MLPs. Therefore, the matrix multiplication profile and in turn the
bottleneck posed varies significantly based on model choice. Hardware and systems need to be
designed with appropriate compute-memory bandwidth balance depending on target model de-
ployment. Models relyingmore on attention andMLP layers require higher arithmetic throughput
compared to CNNs which necessitate high memory bandwidth.

26.11. Training Parallelization

Training neural networks entails intensive computational and memory demands. The backpropa-
gation algorithm for calculating gradients and updating weights consists of repeated matrix mul-
tiplications and arithmetic operations over the entire dataset. For example, one pass of backprop-
agation scales in time complexity with 𝑂(𝑛𝑢𝑚_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠×𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒×𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ).
As model size increases in terms of parameters and layers, the computational requirements grow
rapidly. Moreover, the algorithm requires storing activation outputs andmodel parameters for the
backward pass, which also grows with model size.

The memory footprint becomes prohibitive for larger models to fit and train on a single accelerator
device like aGPU. Therefore, we need to parallelizemodel training acrossmultiple devices in order
to provide sufÏcient compute and memory to train state-of-the-art neural networks.

As shown in Figure 26.9, the two main approaches are data parallelism, which replicates the model
across devices while splitting the input data batch-wise, and model parallelism, which partitions the
model architecture itself across different devices. By training in parallel, we can leverage greater
aggregate compute and memory resources to overcome system limitations and accelerate deep
learning workloads.

26.11.1. Data Parallel

Data parallelization is a common approach to parallelize machine learning training across multi-
ple processing units, such as GPUs or distributed computing resources. In data parallelism, the
training dataset is divided into batches, and each batch is processed by a separate processing unit.
The model parameters are then updated based on the gradients computed from the processing of
each batch. Here’s a step-by-step description of data parallel parallelization for ML training:
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Figure 26.9. Data parallelism veresus model parallelism.

1. Dividing the Dataset: The entire training dataset is divided into smaller batches. Each batch
contains a subset of the training examples.

2. Replicating the Model: The neural network model is replicated across all processing units.
Each processing unit has its copy of the model.

3. Parallel Computation: Each processing unit takes a different batch and computes the for-
ward and backward passes independently. During the forward pass, the model makes pre-
dictions on the input data. During the backward pass, gradients are computed for the model
parameters using the loss function.

4. Gradient Aggregation: After processing their respective batches, the gradients from each
processing unit are aggregated. Common aggregation methods include summation or aver-
aging of the gradients.

5. Parameter Update: The aggregated gradients are used to update the model parameters. The
update can be performed using optimization algorithms like SGD or variants like Adam.

6. Synchronization: All processing units synchronize their model parameters after the update.
This ensures that each processing unit has the latest version of the model.

The prior steps are repeated for a certain number of iterations or until convergence.

Let’s take a specific example. Let’s say for instance we have 256 batch size and 8 GPUs, each GPU
will get a micro-batch of 32 samples. Their forward and backward passes compute losses and
gradients only based on the local 32 samples. The gradients get aggregated across devices either
with a parameter server or collective communications library to get the effective gradient for the
global batch. Weight updates happen independently on each GPU according to these gradients.
After a configured number of iterations, updated weights synchronize and equalize across devices
before continuing for the next iterations.
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Data parallelism is effective when the model is large, and the dataset is substantial, as it allows for
parallel processing of different parts of the data. It is widely used in deep learning frameworks
and libraries that support distributed training, such as TensorFlow and PyTorch. However, care
must be taken to handle issues like communication overhead, load balancing, and synchronization
to ensure efÏcient parallelization.

26.11.2. Model Parallel

Model parallelism refers to distributing the neural network model itself across multiple devices,
rather than replicating the full model like data parallelism. This is particularly useful when a
model is too large to fit into the memory of a single GPU or accelerator device. While this might
not be specifically applicable for embedded or TinyMLuse cases asmost of themodels are relatively
small(er), it is still useful to know.

In model parallel training, different parts or layers of the model are assigned to separate devices.
The input activations and intermediate outputs get partitioned and passed between these devices
during the forward and backward passes to coordinate gradient computations across model parti-
tions.

By splitting the model architecture across multiple devices, the memory footprint and computa-
tional operations distribute across the devices instead of concentrating on one. This enables train-
ing very large models with billions of parameters that otherwise exceed capacity of a single device.
There are several main ways in which we can do partitioning:

• Layer-wise parallelism: Consecutive layers are distributed onto different devices. For exam-
ple, device 1 contains layers 1-3, device 2 contains layers 4-6. The output activations from
layer 3 would be transferred to device 2 to start the next layers for the forward pass compu-
tations.

• Filter-wise parallelism: In convolutional layers, output filters can be split up among devices.
Each device computes activation outputs for a subset of filters, which get concatenated before
propagating further.

• Spatial parallelism: The input images get divided spatially, so each device processes over a
certain region like the top-left quarter of images. The output regions then combine to form
the full output.

Additionally, hybrid combinations can split model both layer-wise and data batch-wise. The ap-
propriate type of model parallelism to use depends on the specific neural architecture constraints
and hardware setup. Optimizing the partitioning and communication for the model topology is
key to minimizing overhead.

However, as the model parts run on physically separate devices, they must communicate and syn-
chronize their parameters during each training step. The backward pass needs to ensure gradient
updates propagate across the model partitions accurately. Hence, coordination and high-speed in-
terconnect between devices is crucial for optimizing performance of model parallel training. Care-
ful partitioning and communication protocols are required to minimize transfer overhead.
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26.11.3. Comparison

To summarize, here are somekey characteristics to compare data parallelismandmodel parallelism
in a summary table:

CharacteristicData Parallelism Model Parallelism

DefinitionDistribute data across devices with model
replicas

Distribute model across devices

ObjectiveAccelerate training through compute
scaling

Enable larger model training

Scaling
Method

Scale devices/workers Scale model size

Main
Con-
straint

Model size per device Device coordination overhead

Hardware
Re-
quire-
ments

Multiple GPU/TPUs Often specialized interconnect

Primary
Chal-
lenge

Parameter synchronization Complex partitioning + communication

TypesN/A Layer-wise, filter-wise, spatial
Code
Com-
plex-
ity

Minimal changes More significant model surgery

Popular
Li-
braries

Horovod, PyTorch Distributed Mesh TensorFlow

I included the high-level definition/objective, way it scales, main hardware assumptions and con-
straints, types of techniques (where applicable), overall implementation complexity, and some ex-
amples of associated libraries.

Let me know if you would like me to explain or expand on any part of this comparison summary!
Open to adding other characteristics as well.

26.12. Conclusion

In this chapter, we have covered the core foundations that enable effective training of artificial in-
telligence models. We explored the mathematical concepts like loss functions, backpropagation,
and gradient descent that make neural network optimization possible. We also discussed practical
techniques around leveraging training data, regularization, hyperparameter tuning, weight initial-
ization, and distributed parallelization strategies that improve convergence, generalization, and
scalability.
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These methodologies form the bedrock through which the success of deep learning has been at-
tained over the past decade. Mastering these fundamentals equips practitioners to architect sys-
tems and refine models tailored to their problem context. However, as models and datasets grow
exponentially in size, training systems will need to optimize across metrics like time, cost, and
carbon footprint. Hardware scaling through warehouse-scales enables massive computational
throughput - but optimizations around efÏciency and specialization will be key. Software tech-
niques like compression and sparsity exploitation can augment hardware gains. We will discuss
several of these in the coming chapters.

Overall, the fundamentals covered in this chapter equip practitioners to build, refine and deploy
models. However, interdisciplinary skills spanning theory, systems, and hardware will differenti-
ate experts who can lift AI to the next level in the sustainable and responsible manner that society
requires. Understanding efÏciency alongside accuracy constitutes the balanced engineering ap-
proach needed to train intelligent systems that integrate smoothly across a breadth of real-world
contexts.

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.
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27. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• Thinking About Loss.

• Minimizing Loss.

• Training, Validation, and Test Data.

• Continouos Training:

– Retraining Trigger.

– Data Processing Overview.

– Data Ingestion.

– Data Validation.

– Data Transformation.

– Training with AutoML.

– Continuous Training with Transfer Learning.

– Continuous Training Use Case Metrics.

– Continuous Training Impact on MLOps.

https://docs.google.com/presentation/d/1X92JqVkUY7k6yJXQcT2u83dpdrx5UzGFAJkkDMDfKe0/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1x3xbZHo4VtaZgoXfueCbOGGXuWRYj0nOsKwAAoGsrD0/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1G56D0-qG9YWnzQQeje9LMpcLSotMgBCiMyfj53yz7lY/edit?usp=drive_link
https://docs.google.com/presentation/d/1jtkcAnFot3VoY6dm8wARtIRPhM1Cfoe8S_8lMMox2To/edit?usp=drive_link
https://docs.google.com/presentation/d/1vW4jFv5mqpLo2_G2JXQrKLPMNoWoOvSXhFYotUbg3B0/edit?usp=drive_link
https://docs.google.com/presentation/d/1e7_JGZH2X9Ha99-UsFy0bgpC4g-Msq1zXogrbQVBKfQ/edit?usp=drive_link
https://docs.google.com/presentation/d/1PjilfceaDFp-spnZpTyqfcdvTbbfT0_95Hteqr-twk8/edit?usp=drive_link
https://docs.google.com/presentation/d/1cWMcFTl30Yl1XBYJZcND1USYKtS05TkfFkvwxfImOfY/edit?usp=drive_link
https://docs.google.com/presentation/d/1SYjvCe_LZ0S3F5MdiDvAiGflpWmffmq7vAgruyXtaHk/edit?usp=drive_link&resourcekey=0-uu6gpFHmuCx56J89oguWMQ
https://docs.google.com/presentation/d/12Hhq1WGobzsLdVUzRRD-S1Mm2Z5dINGWtbB6RBmv87c/edit?usp=drive_link
https://docs.google.com/presentation/d/1ShpXTuUsf44TW0vXuv1Mk_REeRcAIpQRO2J2EFuWP0g/edit?usp=drive_link&resourcekey=0-6wnzPJ0mFlnJnpzTMGzN3w
https://docs.google.com/presentation/d/16kQd5BBCA41gvUauznQRd1ZdW5NI6OgiJVB9cuEmk14/edit#slide=id.g94db9f9f78_0_2
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28. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.
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29. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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30. EfÏcient AI

Figure 30.1. DALL·E 3 Prompt: A conceptual illustration depicting efÏciency in artificial intelli-
gence using a shipyard analogy. The scene shows a bustling shipyard where containers represent
bits or bytes of data. These containers are being moved around efÏciently by cranes and vehicles,
symbolizing the streamlined and rapid processing of information in AI systems. The shipyard
is meticulously organized, illustrating the concept of optimal performance within the constraints
of limited resources. In the background, ships are docked, representing different platforms and
scenarios where AI is applied. The atmosphere should convey advanced technology, with an un-
derlying theme of sustainability and wide applicability.

EfÏciency in artificial intelligence (AI) is not simply a luxury; it is a necessity. In this chapter, we
dive into the key concepts that underpin efÏciency in AI systems. The computational demands
placed on neural networks can be daunting, even for the most minimal of systems. For AI to
be seamlessly integrated into everyday devices and essential systems, it must perform optimally
within the constraints of limited resources, all while maintaining its efÏcacy. The pursuit of efÏ-
ciency guarantees that AI models are streamlined, rapid, and sustainable, thereby widening their
applicability across a diverse array of platforms and scenarios.
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Learning Objectives

• Recognize the need for efÏcient AI in TinyML/edge devices.

• Understand the need for efÏcient model architectures like MobileNets and SqueezeNet.

• Understand why techniques for model compression are important.

• Get an inclination for why efÏcient AI hardware is important.

• Appreciate the significance of numerics and their representations.

• Appreciate that we need to understand nuances of model comparison beyond accuracy.

• Recognize efÏciency encompasses technology, costs, environment, ethics.

The focus is on gaining a conceptual understanding of the motivations and significance of the
various strategies for achieving efÏcient AI, both in terms of techniques and a holistic perspective.
Subsequent chapters will dive into the nitty gritty details on these various concepts.

30.1. Introduction

Training models can consume a significant amount of energy, sometimes equivalent to the carbon
footprint of sizable industrial processes. We will cover some of these sustainability details in the
AI Sustainability chapter. On the deployment side, if these models are not optimized for efÏciency,
they can quickly drain device batteries, demand excessive memory, or fall short of real-time pro-
cessing needs. Through this introduction, our objective is to elucidate the nuances of efÏciency,
setting the groundwork for a comprehensive exploration in the subsequent chapters.

30.2. The Need for EfÏcient AI

EfÏciency takes on different connotations based onwhere AI computations occur. Let’s take a brief
moment to revisit and differentiate between Cloud, Edge, and TinyML in terms of efÏciency.

For cloudAI, traditionalAImodels often ran in the large-scale data centers equippedwith powerful
GPUs and TPUs (Barroso, Hölzle, and Ranganathan 2019). Here, efÏciency pertains to optimizing
computational resources, reducing costs, and ensuring timely data processing and return. How-
ever, relying on the cloud introduced latency, especially when dealing with large data streams that
needed to be uploaded, processed, and then downloaded.

For edge AI, edge computing brought AI closer to the data source, processing information directly
on local devices like smartphones, cameras, or industrial machines (E. Li et al. 2020). Here, ef-
ficiency encompasses quick real-time responses and reduced data transmission needs. The con-
straints, however, are tighter-these devices, while more powerful than microcontrollers, have lim-
ited computational power compared to cloud setups.

Pushing the frontier even further is TinyML,whereAImodels run onmicrocontrollers or extremely
resource-constrained environments. The difference in performance for processors and memory

../sustainable_ai/sustainable_ai.qmd
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Figure 30.2. Cloud, Mobile and TinyML.

between TinyML and cloud or mobile systems can be several orders of magnitude (Warden and
Situnayake 2019). EfÏciency in TinyML is about ensuring models are lightweight enough to fit on
these devices, use minimal energy (critical for battery-powered devices), and still perform their
tasks effectively.

The spectrum from Cloud to TinyML represents a shift from vast, centralized computational re-
sources to distributed, localized, and constrained environments. As we transition from one to the
other, the challenges and strategies related to efÏciency evolve, underlining the need for special-
ized approaches tailored to each scenario. Having underscored the need for efÏcient AI, especially
within the context of TinyML, we will transition to exploring the methodologies devised to meet
these challenges. The following sections outline at a high level the main concepts that we will
dwelve into deeper at a later point. As we delve into these strategies, we will demonstrate the
breadth and depth of innovation needed to achieve efÏcient AI.

30.3. EfÏcient Model Architectures

Choosing the right model architecture is as crucial as optimizing it. In recent years, researchers
have explored some novel architectures that can have inherently fewer parameters while maintain-
ing strong performance.

MobileNets: MobileNets are a class of efÏcient models for mobile and embedded vision appli-
cations (Howard et al. 2017). The key idea that led to the success of MobileNets is the use of
depth-wise separable convolutions which significantly reduce the number of parameters and com-
putations in the network. MobileNetV2 and V3 further enhance this design with the introduction
of inverted residuals and linear bottlenecks.

SqueezeNet: SqueezeNet is a class of ML models known for its smaller size without sacrificing
accuracy. It achieves this by using a “fire module” that reduces the number of input channels
to 3x3 filters, thus reducing the parameters (Iandola et al. 2016). Moreover, it employs delayed
downsampling to increase the accuracy by maintaining a larger feature map.
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ResNet variants: The Residual Network (ResNet) architecture allows introduced skip connections,
or shortcuts (He et al. 2016). Some variants of ResNet are designed to be more efÏcient. For
instance, ResNet-SE incorporates the “squeeze and excitation” mechanism to recalibrate feature
maps (Hu, Shen, and Sun 2018), while ResNeXt offers grouped convolutions for efÏciency (S. Xie
et al. 2017).

30.4. EfÏcient Model Compression

Model compression methods are very important for bringing deep learning models to devices
with limited resources. These techniques reduce the size, energy consumption, and computational
demands of models without a significant loss in accuracy. At a high level, the methods can briefly
be binned into the following fundamental methods:

Pruning: This is akin to trimming the branches of a tree. This was first thought of in the Optimal
Brain Damage paper (LeCun, Denker, and Solla 1989). This was later popularized in the context of
deep learning by S. Han, Mao, and Dally (2016). In pruning, certain weights or even entire neurons
are removed from the network, based on specific criteria. This can significantly reduce the model
size. There are various strategies, like weight pruning, neuron pruning, and structured pruning.
Wewill explore these inmore detail in Section 34.2.1. In the example in Figure 30.3, removing some
of the nodes in the inner layers reduces the numbers of edges between the nodes and, in turn, the
size of the model.

Figure 30.3. Pruning applies different criteria that determine which nodes and/or weights can be removed
without having significant impact on the model’s performance.

Quantization: Quantization is the process of constraining an input from a large set to output in
a smaller set, primarily in deep learning, this means reducing the number of bits that represent

https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
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the weights and biases of the model. For example, using 16-bit or 8-bit representations instead of
32-bit can reduce model size and speed up computations, with a minor trade-off in accuracy. We
will explore these in more detail in Section 34.3.4. Figure 30.4 shows an example of quantization
by rounding to the closest number. The conversion from 32-bit floating point to 16-bit reduces the
memory usage by 50%. And going from 32-bit to 8-bit integer, memory is reduced by 75%. While
the loss in numeric precision, and consequently model performance, is minor, the memory usage
efÏciency is very significant.

Figure 30.4. One method of quantization involves rounding to the nearest representable number. Quantiza-
tion helps save on memory while minimizing performance loss.

Knowledge Distillation: Knowledge distillation involves training a smaller model (student) to
replicate the behavior of a larger model (teacher). The idea is to transfer the knowledge from the
cumbersome model to the lightweight one, so the smaller model attains performance close to its
larger counterpart but with significantly fewer parameters. Wewill explore knowledge distillation
in more detail in the Section 34.2.2.1.

30.5. EfÏcient Inference Hardware

Training an AI model is an intensive task that requires powerful hardware and can take hours
to weeks, but inference needs to be as fast as possible, especially in real-time applications. This
is where efÏcient inference hardware comes into play. By optimizing the hardware specifically
for inference tasks, we can achieve rapid response times and power-efÏcient operation, especially
crucial for edge devices and embedded systems.

TPUs (Tensor Processing Units): TPUs are custom-built ASICs (Application-Specific Integrated
Circuits) by Google to accelerate machine learning workloads (N. P. Jouppi et al. 2017a). They are

../training/training.qmd
https://cloud.google.com/tpu
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optimized for tensor operations, offering high throughput for low-precision arithmetic, and are
designed specifically for neural network machine learning. TPUs deliver a significant acceleration
in model training and inference as compared to general-purpose GPU/CPUs. This boost means
faster model training and real-time or near-real-time inference capabilities, crucial for applications
like voice search and augmented reality.

Edge TPUs are a smaller, power-efÏcient version of Google’s TPUs, tailored for edge devices. They
provide fast on-device ML inferencing for TensorFlow Lite models. Edge TPUs allow for low-
latency, high-efÏciency inference on edge devices like smartphones, IoT devices, and embedded
systems. This means AI capabilities can be deployed in real-time applications without needing to
communicate with a central server, thus saving bandwidth and reducing latency. Consider the
table in Figure 30.5. It shows the performance differences of running different models on CPUs
versus a Coral USB accelerator. The Coral USB accelerator is an accessory by Google’s Coral AI
platform that lets developrs connect Edge TPUs to Linux computers. Running inference on the
Edge TPUs was 70 to 100 times faster than on CPUs.

Figure 30.5. Many applications require very high-performance inference, which can be achieved with on
device accelerators such as Edge TPUs. Source: TensorFlow Blog

NN Accelerators: Fixed function neural network accelerators are hardware accelerators designed
explicitly for neural network computations. These can be standalone chips or part of a larger
system-on-chip (SoC) solution. By optimizing the hardware for the specific operations that neural
networks require, such as matrix multiplications and convolutions, NN accelerators can achieve
faster inference times and lower power consumption compared to general-purpose CPUs and
GPUs. They are especially beneficial in TinyML devices with power or thermal constraints, such
as smartwatches, micro-drones, or robotics.

https://cloud.google.com/edge-tpu
https://blog.tensorflow.org/2019/03/build-ai-that-works-offline-with-coral.html
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But these are all but the most common place examples, there are a number of other types of hard-
ware that are emerging that have the potential to offer signficiant advantages for inference. These
include but are not limited to neuromorphic hardware, photonic computing, and so forth. In Sec-
tion 38.3 we will explore these in greater detail.

EfÏcient hardware for inference not only speeds up the process but also saves energy, extends
battery life, and can operate in real-time conditions. As AI continues to be integrated into amyriad
of applications—from smart cameras to voice assistants—the role of optimized hardware will only
become more prominent. By leveraging these specialized hardware components, developers and
engineers can bring the power of AI to devices and situations that were previously unthinkable.

30.6. EfÏcient Numerics

Machine learning, and especially deep learning, involves enormous amounts of computation.
Models can have millions to billions of parameters, and these are often trained on vast datasets.
Every operation, every multiplication or addition, demands computational resources. Therefore,
the precision of the numbers used in these operations can have a significant impact on the
computational speed, energy consumption, and memory requirements. This is where the concept
of efÏcient numerics comes into play.

30.6.1. Numerical Formats

There aremany different types of numerics. Numerics have a long history in computing systems.

Floating point: Known as single-precision floating-point, FP32 utilizes 32 bits to represent a num-
ber, incorporating its sign, exponent, and fraction. FP32 is widely adopted in many deep learning
frameworks and offers a balance between accuracy and computational requirements. It’s prevalent
in the training phase for many neural networks due to its sufÏcient precision in capturing minute
details during weight updates.

Also known as half-precision floating point, FP16 uses 16 bits to represent a number, including
its sign, exponent, and fraction. FP16 offers a good balance between precision and memory sav-
ings. It’s particularly popular in deep learning training on GPUs that support mixed-precision
arithmetic, combining the speed benefits of FP16 with the precision of FP32 where needed.

There are also several other numerical formats that fall into an exotic calss. An exotic example is
BF16, or Brain Floating Point. It is a 16-bit numerical format that is designed explicitly for deep
learning applications. It’s a compromise between FP32 and FP16, retaining the 8-bit exponent from
FP32 while reducing the mantissa to 7 bits (as compared to FP32’s 23-bit mantissa). This structure
prioritizes range over precision. BF16 has been shown to achieve training results that are compara-
ble in accuracy to FP32 while using significantly less memory and computational resources. This
makes it suitable not just for inference but also for training deep neural networks.

By retaining the 8-bit exponent of FP32, BF16 offers a similar range, which is crucial for deep learn-
ing tasks where certain operations can result in very large or very small numbers. At the same
time, by truncating precision, BF16 allows for reduced memory and computational requirements
compared to FP32. BF16 has emerged as a promisingmiddle ground in the landscape of numerical
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formats for deep learning, providing an efÏcient and effective alternative to the more traditional
FP32 and FP16 formats.

Figure 30.6. Three floating-point formats. Source: Google blog

Integer: These are integer representations using 8, 4, and 2 bits. They are often used during the
inference phase of neural networks, where the weights and activations of the model are quantized
to these lower precisions. Integer representations are deterministic and offer significant speed and
memory advantages over floating-point representations. For many inference tasks, especially on
edge devices, the slight loss in accuracy due to quantization is often acceptable given the efÏciency
gains. An extreme form of integer numerics is for binary neural networks (BNNs), where weights
and activations are constrained to one of two values: either +1 or -1.

Variable bitwidths: Beyond the standardwidths, research is ongoing into extremely lowbit-width
numerics, even down to binary or ternary representations. Extremely low bit-width operations can
offer significant speedups and reduce power consumption even further. While challenges remain
in maintaining model accuracy with such drastic quantization, advances continue to be made in
this area.

EfÏcient numerics is not just about reducing the bit-width of numbers but understanding the trade-
offs between accuracy and efÏciency. As machine learning models become more pervasive, espe-
cially in real-world, resource-constrained environments, the focus on efÏcient numerics will con-
tinue to grow. By thoughtfully selecting and leveraging the appropriate numeric precision, one
can achieve robust model performance while optimizing for speed, memory, and energy. The
table below summarizes them.

Precision Pros Cons

FP32
(Floating
Point
32-bit)

Standard precision used in most deep
learning frameworks. High accuracy due to
ample representational capacity. Well-suited
for training

High memory usage. Slower
inference times compared to
quantized models. Higher energy
consumption.

google.com
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Precision Pros Cons

FP16
(Floating
Point
16-bit)

Reduces memory usage compared to FP32.
Speeds up computations on hardware that
supports FP16. Often used in
mixed-precision training to balance speed
and accuracy.

Lower representational capacity
compared to FP32. Risk of numerical
instability in some models or layers.

INT8
(8-bit
Integer)

Significantly reduced memory footprint
compared to floating-point representations.
Faster inference if hardware supports INT8
computations. Suitable for many
post-training quantization scenarios.

Quantization can lead to some
accuracy loss. Requires careful
calibration during quantization to
minimize accuracy degradation.

INT4
(4-bit
Integer)

Even lower memory usage than INT8.
Further speed-up potential for inference.

Higher risk of accuracy loss compared
to INT8. Calibration during
quantization becomes more critical.

Binary Minimal memory footprint (only 1 bit per
parameter). Extremely fast inference due to
bitwise operations. Power efÏcient.

Significant accuracy drop for many
tasks. Complex training dynamics
due to extreme quantization.

Ternary Low memory usage but slightly more than
binary. Offers a middle ground between
representation and efÏciency.

Accuracy might still be lower than
higher precision models. Training
dynamics can be complex.

30.6.2. EfÏciency Benefits

Numerical efÏciency matters for machine learning workloads for a number of reasons:

Computational EfÏciency: High-precision computations (like FP32 or FP64) can be slow and
resource-intensive. By reducing numeric precision, one can achieve faster computation times, es-
pecially on specialized hardware that supports lower precision.

Memory EfÏciency: Storage requirements decrease with reduced numeric precision. For instance,
FP16 requires half the memory of FP32. This is crucial when deploying models to edge devices
with limited memory or when working with very large models.

Power EfÏciency: Lower precision computations often consume less power, which is especially
important for battery-operated devices.

Noise Introduction: Interestingly, the noise introduced by using lower precision can sometimes
act as a regularizer, helping to prevent overfitting in some models.

Hardware Acceleration: Many modern AI accelerators and GPUs are optimized for lower preci-
sion operations, leveraging the efÏciency benefits of such numerics.

30.7. Evaluating Models

It’s worth noting that the actual benefits and trade-offs can vary based on the specific architecture
of the neural network, the dataset, the task, and the hardware being used. Before deciding on
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a numeric precision, it’s advisable to perform experiments to evaluate the impact on the desired
application.

30.7.1. EfÏciency Metrics

To guide this process systematically, it is important to have a deep understanding of model evalu-
ation methods. When assessing AI models’ effectiveness and suitability for various applications,
efÏciency metrics come to the forefront.

FLOPs (Floating Point Operations) gauge the computational demands of a model. For instance, a
modern neural network like BERT has billions of FLOPs, which might be manageable on a power-
ful cloud server but would be taxing on a smartphone. Higher FLOPs can lead to more prolonged
inference times and more significant power drain, especially on devices without specialized hard-
ware accelerators. Hence, for real-time applications such as video streaming or gaming, models
with lower FLOPs might be more desirable.

Memory Usage pertains to how much storage the model requires, which affects both the storage
and RAM of the deploying device. Consider deploying a model onto a smartphone: a model that
occupies several gigabytes of space not only consumes precious storage but might also be slower
due to the need to load largeweights intomemory. This becomes especially crucial for edge devices
like security cameras or drones, where minimal memory footprints are vital for both storage and
rapid data processing.

Power Consumption becomes especially crucial for devices that rely on batteries. For instance, a
wearable healthmonitor using a power-hungrymodel could drain its battery in hours, rendering it
impractical for continuous healthmonitoring. Aswemove toward an era dominated by IoTdevices,
where many devices operate on battery power, optimizing models for low power consumption
becomes essential.

Inference Time is about how swiftly amodel can produce results. In applications like autonomous
driving, where split-second decisions are the difference between safety and calamity, models must
operate rapidly. If a self-driving car’s model takes even a few seconds too long to recognize an
obstacle, the consequences could be dire. Hence, ensuring a model’s inference time aligns with
the real-time demands of its application is paramount.

In essence, these efÏciency metrics are more than mere numbers-they dictate where and how a
model can be effectively deployed. A model might boast high accuracy, but if its FLOPs, memory
usage, power consumption, or inference time make it unsuitable for its intended platform or real-
world scenarios, its practical utility becomes limited.

30.7.2. EfÏciency Comparisons

There is an abundance of models in the ecosystem, each boasting its unique strengths and id-
iosyncrasies. However, pure model accuracy figures or training and inference speeds don’t paint
the complete picture. When we dive deeper into comparative analyses, several critical nuances
emerge.
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Often, we encounter the delicate balance between accuracy and efÏciency. For instance, while a
dense deep learning model and a lightweight MobileNet variant might both excel in image clas-
sification, their computational demands could be at two extremes. This differentiation is espe-
cially pronounced when comparing deployments on resource-abundant cloud servers versus con-
strained TinyML devices. In many real-world scenarios, the marginal gains in accuracy could be
overshadowed by the inefÏciencies of a resource-intensive model.

Moreover, the optimal model choice isn’t always universal but often depends on the specifics of
an application. Consider object detection: a model that excels in general scenarios might falter in
niche environments like detecting manufacturing defects on a factory floor. This adaptability-or
the lack of it-can dictate a model’s real-world utility.

Another important consideration is the relationship between model complexity and its practical
benefits. Take voice-activated assistants as an example such as “Alexa” or “OK Google.” While
a complex model might demonstrate a marginally superior understanding of user speech, if it’s
slower to respond than a simpler counterpart, the user experience could be compromised. Thus,
adding layers or parameters doesn’t always equate to better real-world outcomes.

Furthermore, while benchmark datasets, such as ImageNet (Russakovsky et al. 2015), COCO (T.-Y.
Lin et al. 2014), Visual Wake Words (Chowdhery et al. 2019), Google Speech Commands (Warden
2018), etc. provide a standardized performance metric, they might not capture the diversity and
unpredictability of real-world data. Two facial recognition models with similar benchmark scores
might exhibit varied competencies when faced with diverse ethnic backgrounds or challenging
lighting conditions. Such disparities underscore the importance of robustness and consistency
across varied data. For example, Figure 30.7 from the Dollar Street dataset shows stove images
across extreme monthly incomes. So if a model was trained on pictures of stoves found in wealth
countries only, it will fail to recognize stoves from poorer regions.

In essence, a thorough comparative analysis transcends numerical metrics. It’s a holistic assess-
ment, intertwined with real-world applications, costs, and the intricate subtleties that each model
brings to the table. This is why it becomes important to have standard benchmarks and metrics
that are widely established and adopted by the community.

30.8. Conclusion

EfÏcient AI is extremely important as we push towards broader and more diverse real-world de-
ployment of machine learning. This chapter provided an overview, exploring the various method-
ologies and considerations behind achieving efÏcient AI, starting with the fundamental need, sim-
ilarities and differences across cloud, edge, and TinyML systems.

We saw that efÏcient model architectures can be useful for optimizations. Model compression
techniques such as pruning, quantization, and knowledge distillation exist to help reduce com-
putational demands and memory footprint without significantly impacting accuracy. Specialized
hardware like TPUs and NN accelerators offer optimized silicon for the operations and data flow
of neural networks. And efÏcient numerics strike a balance between precision and efÏciency, en-
abling models to attain robust performance using minimal resources. In the subsequent chapters,
wewill dive deeper into each of these different topics and explore them in great depth and detail.
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Figure 30.7. Objects, such as stoves, have different shapes and technological levels in differen regions. A
model that is not trained on diverse datasets might perform well on a benchmark but fail in real-world appli-
cations. Source: Dollar Street stove images.
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Together, these form a holistic framework for efÏcient AI. But the journey doesn’t end here. Achiev-
ing optimally efÏcient intelligence requires continued research and innovation. Asmodels become
more sophisticated, datasets grow larger, and applications diversify into specialized domains, ef-
ficiency must evolve in lockstep. Measuring real-world impact would need nuanced benchmarks
and standardized metrics beyond simplistic accuracy figures.

Moreover, efÏcient AI expands beyond technological optimization but also encompasses costs, en-
vironmental impact, and ethical considerations for the broader societal good. As AI permeates
across industries and daily lives, a comprehensive outlook on efÏciency underpins its sustainable
and responsible progress. The subsequent chapters will build upon these foundational concepts,
providing actionable insights and hands-on best practices for developing and deploying efÏcient
AI solutions.

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.
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31. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• Model Evaluation.

• Continuous Evaluation Challenges for TinyML.

https://docs.google.com/presentation/d/1jdBnIxgNovG3b8frTl3DwqiIOw_K4jvp3kyv2GoKfYQ/edit?usp=drive_link&resourcekey=0-PN8sYpltO1nP_xePynJn9w
https://docs.google.com/presentation/d/1OuhwH5feIwPivEU6pTDyR3QMs7AFstHLiF_LB8T5qYQ/edit?usp=drive_link&resourcekey=0-DZxIuVBUbJawuFh0AO-Pvw
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32. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.
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33. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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34. Model Optimizations

Figure 34.1. DALL·E 3 Prompt: Illustration of a neural network model represented as a busy con-
struction site, with a diverse group of construction workers, both male and female, of various eth-
nicities, labeled as ‘pruning’, ‘quantization’, and ‘sparsity’. They are working together to make the
neural networkmore efÏcient and smaller, while maintaining high accuracy. The ‘pruning’ worker,
a Hispanic female, is cutting unnecessary connections from the middle of the network. The ‘quan-
tization’ worker, a Caucasian male, is adjusting or tweaking the weights all over the place. The
‘sparsity’ worker, an African female, is removing unnecessary nodes to shrink the model. Con-
struction trucks and cranes are in the background, assisting the workers in their tasks. The neural
network is visually transforming from a complex and large structure to a more streamlined and
smaller one.

When machine learning models are deployed on systems, especially on resource-constrained em-
bedded systems, the optimization of models is a necessity. While machine learning inherently
often demands substantial computational resources, the systems are inherently limited in mem-
ory, processing power, and energy. This chapter will dive into the art and science of optimizing
machine learning models to ensure they are lightweight, efÏcient, and effective when deployed in
TinyML scenarios.
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Learning Objectives

• Learn techniques like pruning, knowledge distillation and specialized model architec-
tures to represent models more efÏciently

• Understand quantization methods to reduce model size and enable faster inference
through reduced precision numerics

• Explore hardware-aware optimization approaches to match models to target device ca-
pabilities

• Discover software tools like frameworks and model conversion platforms that enable
deployment of optimized models

• Develop holistic thinking to balance tradeoffs in model complexity, accuracy, latency,
power etc. based on application requirements

• Gain strategic insight into selecting and applying model optimizations based on use
case constraints and hardware targets

34.1. Introduction

Wehave structured this chapter in three tiers. First, in Section 34.2 we examine the significance and
methodologies of reducing the parameter complexity of models without compromising their infer-
ence capabilities. Techniques such as pruning and knowledge distillation are discussed, offering
insights into howmodels can be compressed and simplifiedwhile maintaining, or even enhancing,
their performance.

Going one level lower, in Section 34.3, we study the role of numerical precision in model compu-
tations and how altering it impacts model size, speed, and accuracy. We will examine the various
numerical formats and how reduced-precision arithmetic can be leveraged to optimize models for
embedded deployment.

Finally, as we go lower and closer to the hardware, in Section 34.4, we will navigate through the
landscape of hardware-software co-design, exploring how models can be optimized by tailoring
them to the specific characteristics and capabilities of the target hardware. We will discuss how
models can be adapted to exploit the available hardware resources effectively.
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Figure 34.2. A visualization showing each of the three sections to be covered on the hardware-software
gradient.

34.2. EfÏcient Model Representation

The first avenue of attack for model optimization starts in familiar territory for most ML practi-
tioners: efÏcient model representation is often first tackled at the highest level of parametrization
abstraction - the model’s architecture itself.

Most traditional ML practitioners design models with a general high-level objective in mind,
whether it be image classification, person detection, or keyword spotting as mentioned previously
in this textbook. Their designs generally end up naturally fitting into some soft constraints due to
limited compute resources during development, but generally these designs are not aware of later
constraints, such as those required if the model is to be deployed on a more constrained device
instead of the cloud.

In this section, we’ll discuss how practitioners can harness principles of hardware-software co-
design even at amodel’s high level architecture tomake theirmodels compatiblewith edge devices.
From most to least hardware aware at this level of modification, we discuss several of the most
common strategies for efÏcient model parametrization: pruning, model compression, and edge-
friendly model architectures.

34.2.1. Pruning

34.2.1.1. Overview

Model pruning is a technique in machine learning that aims to reduce the size and complexity of a
neural network model while maintaining its predictive capabilities as much as possible. The goal
of model pruning is to remove redundant or non-essential components of the model, including
connections between neurons, individual neurons, or even entire layers of the network.
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This process typically involves analyzing the machine learning model to identify and remove
weights, nodes, or layers that have little impact on the model’s outputs. By selectively pruning
a model in this way, the total number of parameters can be reduced significantly without sub-
stantial declines in model accuracy. The resulting compressed model requires less memory and
computational resources to train and run while enabling faster inference times.

Model pruning is especially useful when deploying machine learning models to devices with lim-
ited compute resources, such as mobile phones or TinyML systems. The technique facilitates the
deployment of larger, more complex models on these devices by reducing their resource demands.
Additionally, smaller models require less data to generalize well and are less prone to overfitting.
By providing an efÏcient way to simplify models, model pruning has become a vital technique for
optimizing neural networks in machine learning.

There are several common pruning techniques used in machine learning, these include structured
pruning, unstructured pruning, iterative pruning, bayesian pruning, and even randompruning. In
addition to pruning theweights, one can also prune the activations. Activation pruning specifically
targets neurons or filters that activate rarely or have overall low activation. There are numerous
other methods, such as sensitivity and movement pruning. For a comprehensive list of methods,
the reader is encouraged to read the following paper: “A Survey onDeepNeural Network Pruning:
Taxonomy, Comparison, Analysis, and Recommendations” (2023).

So how does one choose the type of pruning methods? Many variations of pruning techniques
exist where each varies the heuristic of what should be kept and pruned from themodel as well the
number of times pruning occurs. Traditionally, pruning happens after the model is fully trained,
where the pruned model may experience mild accuracy loss. However, as we will discuss further,
recent discoveries have found that pruning can be used during training (i.e., iteratively) to identify
more efÏcient and accurate model representations.

34.2.1.2. Structured Pruning

We start with structured pruning, a technique that reduces the size of a neural network by eliminat-
ing entire model-specific substructures while maintaining the overall model structure. It removes
entire neurons/channels or layers based on importance criteria. For example, for a convolutional
neural network (CNN), this could be certain filter instances or channels. For fully connected net-
works, this could be neurons themselveswhilemaintaining full connectivity or even be elimination
of entire model layers that are deemed to be insignificant. This type of pruning often leads to reg-
ular, structured sparse networks that are hardware friendly.

34.2.1.2.1. Components

Best practices have started to emerge on how to think about structured pruning. There are three
main components:

1. Structures to target for pruning
2. Establishing a criteria for pruning
3. Selecting a pruning strategy

https://arxiv.org/pdf/2308.06767.pdf
https://arxiv.org/pdf/2308.06767.pdf
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34.2.1.2.2. Structures to target for pruning

Given that there are different strategies, each of these structures (i.e., neurons, channels and layers)
is pruned based on specific criteria and strategies, ensuring that the reduced model maintains as
much of the predictive prowess of the original model as possible while gaining in computational
efÏciency and reduction in size.

The primary structures targeted for pruning include neurons, channels, and sometimes, entire
layers, each having its unique implications and methodologies. When neurons are pruned, we
are removing entire neurons along with their associated weights and biases, thereby reducing the
width of the layer. This type of pruning is often utilized in fully connected layers.

With channel pruning, which is predominantly applied in convolutional neural networks (CNNs),
it involves eliminating entire channels or filters, which in turn reduces the depth of the feature
maps and impacts the network’s ability to extract certain features from the input data. This is
particularly crucial in image processing tasks where computational efÏciency is paramount.

Finally, layer pruning takes a more aggressive approach by removing entire layers of the network.
This significantly reduces the network’s depth and thereby its capacity to model complex patterns
and hierarchies in the data. This approach necessitates a careful balance to ensure that the model’s
predictive capability is not unduly compromised.

Figure 34.3 demonstrates the difference between channel/filter wise pruning and layer pruning.
When we prune a channel, we have to reconfigure the model’s architecture in order to adapt to the
structural changes. One adjustment is changing the number of input channels in the subsequent
layer (here, the third and deepest layer): changing the depths of the filters that are applied to
the layer with the pruned channel. On the other hand, pruning an entire layer (removing all the
channels in the layer) requires more drastic adjustements. The main one involves modifying the
connections between the remaining layers to replace or bypass the pruned layer. In our case, we
reconfigured had to connect the first and last layers. In all pruning cases, we have to fine-tune the
new structure to adjust the weights.

34.2.1.2.3. Establishing a criteria for pruning

Establishing well-defined criteria for determining which specific structures to prune from a neural
network model is a crucial component of the model pruning process. The core goal here is to
identify and remove components that contribute the least to the model’s predictive capabilities,
while retaining structures integral to preserving the model’s accuracy.

A widely adopted and effective strategy for systematically pruning structures relies on computing
importance scores for individual components like neurons, filters, channels or layers. These scores
serve as quantitativemetrics to gauge the significance of each structure and its effect on themodel’s
output.

There are several techniques for assigning these importance scores:

• Weight magnitude-based pruning assigns scores based on the absolute values of the weights.
Components with very small weights contribute minimally to activations and can be re-
moved.
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Figure 34.3. On the left, we have an example of a channel-pruning process, in which we remove a specific
channel (or filter which subsequently removes the corresponding channel). On the right, we show the process
of layer pruning, which involves removing/bypassing an entire layer. Both processes require post-pruning
reconfiguration and fine-tuning to adapt the model to the structural changes.
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• Gradient-based pruning utilizes the gradients of the loss functionwith respect to eachweight
to determine sensitivity. Weights with low gradient magnitudes when altered have little
effect on the loss and can be pruned.

• Activation-based pruning tracks activation values for neurons/filters over a validation
dataset. Consistently low activation values suggest less relevance, warranting removal.

• Taylor expansion approximates the change in loss function from removing a given weight.
Weights with negligible impact on loss are prime candidates for pruning.

The idea is to measure, either directly or indirectly, the contribution of each component to the
model’s output. Structures with minimal influence according to the defined criteria are pruned
first. This enables selective, optimized pruning that maximally compresses models while preserv-
ing predictive capacity. In general, it is important to evaluate the impact of removing particular
structures on the model’s output.

34.2.1.2.4. Selecting a pruning strategy

The pruning strategy orchestrates how structures are removed and integrates with subsequent
model fine-tuning to recover predictive performance. Twomain structured pruning strategies exist:
iterative pruning and one-shot pruning.

Iterative pruning gradually removes structures across multiple cycles of pruning followed by fine-
tuning. In each cycle, a small set of structures are pruned based on importance criteria. The model
is then fine-tuned, allowing it to adjust smoothly to the structural changes before the next pruning
iteration. This gradual, cyclic approach prevents abrupt accuracy drops. It allows the model to
slowly adapt as structures are reduced across iterations.

Consider a situation where we wish to prune the 6 least effective channels (based on some spe-
cific critera) from a convolutional neural network. In Figure 34.4, we show a simplified pruning
process carried over 3 iterations. In every iteration, we only prune 2 channels. Removing the chan-
nels results in accuracy degradation. In the first iteration, the accuracy drops from 0.995 to 0.971.
However, after we fine-tune the model on the new structure, we are able to recover from the perfor-
mance loss, bringing the accuracy up to 0.992. Since the structural changes are minor and gradual,
the network can more easily adapt to them. Running the same process 2 more times, we end up
with a final accuracy of 0.991 (a loss of only 0.4% from the original) and 27% decrease in the num-
ber of channels. Thus, iterative pruning enables us to maintain performance while benefiting from
increased computational efÏciency due to the decreased model size.

One-shot pruning takes a more aggressive approach by pruning a large portion of structures si-
multaneously in one shot based on predefined importance criteria. This is followed by extensive
fine-tuning to recover model accuracy. While faster, this aggressive strategy can degrade accuracy
if the model cannot recover during fine-tuning.

The choice between these strategies involves weighing factors like model size, target sparsity level,
available compute and acceptable accuracy losses. One-shot pruning can rapidly compressmodels,
but iterative pruning may enable better accuracy retention for a target level of pruning. In practice,
the strategy is tailored based on use case constraints. The overarching aim is to generate an optimal
strategy that removes redundancy, achieves efÏciency gains through pruning, and finely tunes the
model to stabilize accuracy at an acceptable level for deployment.
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Figure 34.4. In structured iterative pruning, we gradually remove a small set of structures (channels, in
this case). Running fine-tuning on the new structure on every iteration allows the model to quickly adapt to
the changes. The gradual and controlled nature of iterative pruning ensures that the accuracy drop on each
iteration is minimal. Subsequently, the network typically manages to restore its accuracy to levels comparable
to its original, unpruned state.
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Now consider the same network we had in the iterative pruning example. Whereas in the iterative
process we pruned 2 channels at a time, in the one-shot pruning we would prune the 6 channels
at once (Figure 34.5). Removing 27% of the network’s channel simultaneously alters the structure
significantly, causing the accuracy to drop from 0.995 to 0.914. Given the major changes, the net-
work is not able to properly adapt during fine-tuning, and the accuracy went up to 0.943, a 5%
degradation from the accuracy of the unpruned network. While the final structures in both iter-
ative pruning and oneshot pruning processes are identical, the former is able to maintain high
performance while the latter suffers significant degradations.

Figure 34.5. In one-shot pruning, we remove a certain number of structures (here channels) that have
minimal contribution to the network. Since this is carried out in a single iteration, the network undergoes
drastic changes to its structure. So the network might not be able to properly adapt to the sudden and major
changes, resulting in significant accuracy degradation.

34.2.1.3. Advantages of Structured Pruning

Structured pruning brings forth a myriad of advantages that cater to various facets of model
deployment and utilization, especially in environments where computational resources are
constrained.

34.2.1.3.1. Computational EfÏciency

By eliminating entire structures, such as neurons or channels, structured pruning significantly
diminishes the computational load during both training and inference phases, thereby enabling
faster model predictions and training convergence. Moreover, the removal of structures inherently
reduces the model’s memory footprint, ensuring that it demands less storage and memory during
operation, which is particularly beneficial in memory-constrained environments like TinyML sys-
tems.

34.2.1.3.2. Hardware EfÏciency
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Structured pruning often results in models that are more amenable to deployment on specialized
hardware, such as Field-Programmable Gate Arrays (FPGAs) or Application-Specific Integrated
Circuits (ASICs), due to the regularity and simplicity of the pruned architecture. With reduced
computational requirements, it translates to lower energy consumption, which is crucial for battery-
powered devices and sustainable computing practices.

34.2.1.3.3. Maintenance and Deployment

The pruned model, while smaller, retains its original architectural form, which can simplify the
deployment pipeline and ensure compatibility with existing systems and frameworks. Also, with
fewer parameters and simpler structures, the pruned model becomes easier to manage and moni-
tor in production environments, potentially reducing the overhead associated with model mainte-
nance and updates. Later on, when we dive into MLOps, this need will become apparent.

34.2.1.4. Unstructured Pruning

Unstructured pruning is, as its name suggests, pruning themodelwithout regard tomodel-specific
substructure. As mentioned above, it offers a greater aggression in pruning and can achieve
higher model sparsities while maintaining accuracy given less constraints on what can and can’t
be pruned. Generally, post-training unstructured pruning consists of an importance criterion for
individual model parameters/weights, pruning/removal of weights that fall below the criteria,
and optional fine-tuning after to try and recover the accuracy lost during weight removal.

Unstructured pruning has some advantages over structured pruning: removing individual
weights instead of entire model substructures often leads in practice to lower model accuracy de-
creases. Furthermore, generally determining the criterion of importance for an individual weight
is much simpler than for an entire substructure of parameters in structured pruning, making the
former preferable for cases where that overhead is hard or unclear to compute. Similarly, the
actual process of structured pruning is generally less flexible, as removing individual weights is
generally simpler than removing entire substructures and ensuring the model still works.

Unstructured pruning, while offering the potential for significant model size reduction and en-
hanced deployability, brings with it challenges related to managing sparse representations and
ensuring computational efÏciency. It is particularly useful in scenarios where achieving the high-
est possible model compression is paramount and where the deployment environment can handle
sparse computations efÏciently.

The following compact table provides a concise comparison between structured and unstructured
pruning. In this table, aspects related to the nature and architecture of the pruned model (Defi-
nition, Model Regularity, and Compression Level) are grouped together, followed by aspects re-
lated to computational considerations (Computational EfÏciency and Hardware Compatibility),
and ending with aspects related to the implementation and adaptation of the pruned model (Im-
plementation Complexity and Fine-Tuning Complexity). Both pruning strategies offer unique ad-
vantages and challenges, and the selection between them should be influenced by specific project
and deployment requirements.

../ops/ops.qmd
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Aspect Structured Pruning Unstructured Pruning

Definition Pruning entire structures (e.g., neurons,
channels, layers) within the network

Pruning individual weights or neurons,
resulting in sparse matrices or
non-regular network structures

Model
Regularity

Maintains a regular, structured
network architecture

Results in irregular, sparse network
architectures

Compression
Level

May offer limited model compression
compared to unstructured pruning

Can achieve higher model compression
due to fine-grained pruning

Computational
EfÏciency

Typically more computationally
efÏcient due to maintaining regular
structures

Can be computationally inefÏcient due to
sparse weight matrices, unless
specialized hardware/software is used

Hardware
Compati-
bility

Generally better compatible with
various hardware due to regular
structures

May require hardware that efÏciently
handles sparse computations to realize
benefits

Implementation
Complex-
ity

Often simpler to implement and
manage due to maintaining network
structure

Can be complex to manage and compute
due to sparse representations

Fine-
Tuning
Complex-
ity

May require less complex fine-tuning
strategies post-pruning

Might necessitate more complex
retraining or fine-tuning strategies
post-pruning

Figure 34.6. A visualization showing the differences and examples between unstructured and structured
pruning. Observe that unstructured pruning can lead to models that no longer obey high-level structural
guaruntees of their original unpruned counterparts: the left network is no longer a fully connected network
after pruning. Structured pruning on the other hand maintains those invariants: in the middle, the fully
connected network is pruned in a way that the pruned network is still fully connected; likewise, the CNN
maintains its convolutional structure, albeit with fewer filters (Qi et al. (2021)).
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34.2.1.5. Lottery Ticket Hypothesis

Pruning has evolved from a purely post-training technique that came at the cost of some accu-
racy, to a powerful meta-learning approach applied during training to reduce model complexity.
This advancement in turn improves compute, memory, and latency efÏciency at both training and
inference.

A breakthrough finding that catalyzed this evolution was the lottery ticket hypothesis by Frankle
and Carbin (2019). They empirically discovered by Jonathan Frankle and Michael Carbin. Their
work states that within dense neural networks, there exist sparse subnetworks, referred to as “win-
ning tickets,” that can match or even exceed the performance of the original model when trained
in isolation. Specifically, these winning tickets, when initialized using the same weights as the
original network, can achieve similarly high training convergence and accuracy on a given task. It
is worthwhile pointing out that they empirically discovered the lottery ticket hypothesis, which
was later formalized.

The intuition behind this hypothesis is that, during the training process of a neural network, many
neurons and connections become redundant or unimportant, particularly with the inclusion of
training techniques encouraging redundancy like dropout. Identifying, pruning out, and initializ-
ing these “winning tickets’ ’ allows for faster training andmore efÏcientmodels, as they contain the
essential model decision information for the task. Furthermore, as generally known with the bias-
variance tradeoff theory, these tickets suffer less from overparameterization and thus generalize
better rather than overfitting to the task.

Figure 34.7. An example experiment from the lottery ticket hypothesis showing pruning and training exper-
iments on a fully connected LeNet over a variety of pruning ratios: note the first plot showing how pruning
is able to reveal a subnetwork nearly one-fifth the size that trains to a higher test accuracy faster than the
unpruned network. However, further note how in the second plot that further pruned models in models that
both train slower and are not able to achieve that same maximal test accuracy due to the lower number of
parameters.

The following is the process of finding the winning lottery ticket subnetwork, as also shown in
Figure 34.8:

1- Initialize the network’s weights to random values.

2- Train the network until it converges to the desired performance.

https://arxiv.org/abs/1803.03635
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3- Prune out some percentage of the edges with the lowest weight values.

4- Reinitialize the network with the same random values from step 1.

5- Repeat steps 2-4 for a number of times, or as long as the accuracy doesn’t significantly degrade.

When we finish, we are left with a pruned network, which is a subnetwork of the one we start with.
The subnetwork should have a significantly smaller structure, while maintaining a comparable
level of accuracy.

Figure 34.8. On the left, we have a simplified overview of the process of finding the winning ticket subnetwork.
On the right, we have an example of a subnetwork (highlighted in bold black), as compared to the original
network (in faded grey).

34.2.1.6. Challenges & Limitations

There is no free lunch with pruning optimizations, with some choices coming with both improve-
ments and costs to considers. Below we discuss some tradeoffs for practitioners to consider.

34.2.1.6.1. Quality vs. Size Reduction

A key challenge in both structured and unstructured pruning is balancing size reduction with
maintaining or improving predictive performance. This trade-off becomes more complex with un-
structured pruning, where individual weight removal can create sparse weight matrices. Ensuring
the pruned model retains generalization capacity while becoming more computationally efÏcient
is critical, often requiring extensive experimentation and validation.
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34.2.1.6.2. Determining Pruning Criteria

Establishing a robust pruning criteria, whether for removing entire structures (structured pruning)
or individual weights (unstructured pruning), is challenging. The criteria must accurately identify
elements whose removal minimally impacts performance. For unstructured pruning, this might
involve additional complexities due to the potential for generating sparse weight matrices, which
can be computationally inefÏcient on certain hardware.

34.2.1.6.3. Fine-Tuning and Retraining

Post-pruning fine-tuning is imperative in both structured and unstructured pruning to recover lost
performance and stabilize themodel. The challenge encompasses determining the extent, duration,
and nature of the fine-tuning process, which can be influenced by the pruning method and the
degree of pruning applied.

34.2.1.6.4. Scalability of Pruning Strategies

Ensuring that pruning strategies, whether structured or unstructured, are scalable and applica-
ble across various models and domains is challenging. Unstructured pruning might introduce
additional challenges related to managing and deploying models with sparse weight matrices, es-
pecially in hardware that is not optimized for sparse computations.

34.2.1.6.5. Hardware Compatibility and EfÏciency

Especially pertinent to unstructured pruning, hardware compatibility and efÏciency become crit-
ical. Unstructured pruning often results in sparse weight matrices, which may not be efÏciently
handled by certain hardware, potentially negating the computational benefits of pruning (see Fig-
ure 34.9). Ensuring that pruned models, particularly those resulting from unstructured pruning,
are compatible and efÏcient on the target hardware is a significant consideration.

34.2.1.6.6. Complexity in Implementing Pruning Algorithms

Unstructured pruning might introduce additional complexity in implementing pruning algo-
rithms due to the need to manage sparse representations of weights. Developing or adapting
algorithms that can efÏciently handle, store, and compute sparse weight matrices is an additional
challenge and consideration in unstructured pruning.

34.2.1.6.7. Legal and Ethical Considerations

Last but not least, adherence to legal and ethical guidelines is paramount, especially in domains
with significant consequences. Both pruning methods must undergo rigorous validation, testing,
and potentially certification processes to ensure compliance with relevant regulations and stan-
dards. This is especially important in use cases likemedical AI applications or autonomous driving
where quality drops due to pruning like optimizations can be life threatening.
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Figure 34.9. Pruning can produce very sparse weight matrices, in which the vast majority of weights are set
to zero. While the matrix is now mostly made up of zeros, it still maintains its original shape, which uses up
precious memory and introduces calculation inefÏciencies.

34.2.2. Model Compression

Model compression techniques are crucial for deploying deep learning models on resource-
constrained devices. These techniques aim to create smaller, more efÏcient models that preserve
the predictive performance of the original models.

34.2.2.1. Knowledge Distillation

One popular technique is knowledge distillation (KD), which transfers knowledge from a large,
complex “teacher” model to a smaller “student” model. The key idea is to train the student model
to mimic the teacher’s outputs. The concept of KD was first popularized by Hinton (2005).

34.2.2.1.1. Overview and Benefits

At its core, KD strategically leverages the refined outputs of a pre-trained teacher model to trans-
fer knowledge to a smaller student model. The key technique is using “soft targets” derived from
the teacher’s probabilistic predictions. Specifically, the teacher’s outputs are passed through a
temperature-scaled softmax function, yielding softened probability distributions over classes. This
softening provides richer supervision signals for the student model compared to hard target la-
bels.

The loss function is another critical component that typically amalgamates a distillation loss, which
measures the divergence between the teacher and student outputs, and a classification loss, which
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ensures the student model adheres to the true data labels. The Kullback-Leibler (KL) divergence
is commonly employed to quantify the distillation loss, providing a measure of the discrepancy
between the probability distributions output by the teacher and student models.

Another core concept is “temperature scaling” in the softmax function. It plays the role of con-
trolling the granularity of the information distilled from the teacher model. A higher temperature
parameter produces softer, more informative distributions, thereby facilitating the transfer of more
nuanced knowledge to the student model. However, it also introduces the challenge of effectively
balancing the trade-off between the informativeness of the soft targets and the stability of the train-
ing process.

These components, when adeptly configured and harmonized, enable the student model to as-
similate the teacher model’s knowledge, crafting a pathway towards efÏcient and robust smaller
models that retain the predictive prowess of their larger counterparts.

Figure 34.10. A visualization of the training procedure of knowledge distillation. Note how the logits or soft
labels of the teacher model are used to provide a distillation loss for the student model to learn from (IntelLabs
(2023)).

34.2.2.1.2. Challenges

However, KD has a unique set of challenges and considerations that researchers and practitioners
must attentively address. One of the challenges is in the meticulous tuning of hyperparameters,
such as the temperature parameter in the softmax function and the weighting between the distil-
lation and classification loss in the objective function. Striking a balance that effectively leverages
the softened outputs of the teacher model while maintaining fidelity to the true data labels is non-
trivial and can significantly impact the student model’s performance and generalization capabili-
ties.

Furthermore, the architecture of the studentmodel itself poses a considerable challenge. Designing
amodel that is compact tomeet computational andmemory constraints, while still being capable of
assimilating the essential knowledge from the teacher model, demands a nuanced understanding
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of model capacity and the inherent trade-offs involved in compression. The student model must be
carefully architected to navigate the dichotomy of size and performance, ensuring that the distilled
knowledge is meaningfully captured and utilized. Moreover, the choice of teacher model, which
inherently influences the quality and nature of the knowledge to be transferred, is important and
it introduces an added layer of complexity to the KD process.

These challenges underscore the necessity for a thorough and nuanced approach to implementing
KD, ensuring that the resultant student models are both efÏcient and effective in their operational
contexts.

34.2.2.2. Low-rank Matrix Factorization

Similar in approximation theme, low-rank matrix factorization (LRMF) is a mathematical tech-
nique used in linear algebra anddata analysis to approximate a givenmatrix by decomposing it into
two or more lower-dimensional matrices. The fundamental idea is to express a high-dimensional
matrix as a product of lower-rank matrices, which can help reduce the complexity of data while
preserving its essential structure. Mathematically, given a matrix 𝐴 ∈ ℝ𝑚×𝑛, LRMF seeks matrices𝑈 ∈ ℝ𝑚×𝑘 and 𝑉 ∈ ℝ𝑘×𝑛 such that 𝐴 ≈ 𝑈𝑉 , where 𝑘 is the rank and is typically much smaller than𝑚 and 𝑛.
34.2.2.2.1. Background and Benefits

One of the seminal works in the realm of matrix factorization, particularly in the context of rec-
ommendation systems, is the paper by Koren, Bell, and Volinsky (2009). The authors delve into
various factorization models, providing insights into their efÏcacy in capturing the underlying
patterns in the data and enhancing predictive accuracy in collaborative filtering. LRMF has been
widely applied in recommendation systems (such as Netflix, Facebook, etc.), where the user-item
interactionmatrix is factorized to capture latent factors corresponding to user preferences and item
attributes.

The main advantage of low-rank matrix factorization lies in its ability to reduce data dimensional-
ity as shown in Figure 34.11, where there are fewer parameters to store, making it computationally
more efÏcient and reducing storage requirements at the cost of some additional compute. This
can lead to faster computations and more compact data representations, which is especially valu-
able when dealing with large datasets. Additionally, it may aid in noise reduction and can reveal
underlying patterns and relationships in the data.

34.2.2.2.2. Challenges

But practitioners and researchers encounter a spectrum of challenges and considerations that ne-
cessitate careful attention and strategic approaches. As with any lossy compression technique, we
may lose information during this approximation process: choosing the correct rank that balances
the information lost and the computational costs is tricky as well and adds an additional hyper-
parameter to tune for.

Low-rankmatrix factorization is a valuable tool for dimensionality reduction andmaking compute
fit onto edge devices but, like other techniques, needs to be carefully tuned to the model and task
at hand. A key challenge resides in managing the computational complexity inherent to LRMF,
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Figure 34.11. A visualization showing the decrease in parameterization enabled by low-rank matrix fac-
torization. Observe how the matrix 𝑀 can be approximated by the product of matrices 𝐿𝑘 and 𝑅𝑇𝑘 . For
intuition, most fully connected layers in networks are stored as a projection matrix 𝑀 , which requires 𝑚×𝑛
parameter to be loaded on computation. However, by decomposing and approximating it as the product of
two lower rank matrices, we thus only need to store 𝑚 × 𝑘 + 𝑘 × 𝑛 parameters in terms of storage while
incurring an additional compute cost of the matrix multiplication. So long as 𝑘 < 𝑛/2, this factorization
has fewer parameters total to store while adding a computation of runtime 𝑂(𝑚𝑘𝑛) (Gu (2023)).
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especiallywhen grapplingwith high-dimensional and large-scale data. The computational burden,
particularly in the context of real-time applications and massive datasets, remains a significant
hurdle for effectively using LRMF.

Moreover, the conundrum of choosing the optimal rank, (k), for the factorization introduces an-
other layer of complexity. The selection of (k) inherently involves a trade-off between approxima-
tion accuracy and model simplicity, and identifying a rank that adeptly balances these conflicting
objectives often demands a combination of domain expertise, empirical validation, and sometimes,
heuristic approaches. The challenge is further amplifiedwhen the data encompasses noise orwhen
the inherent low-rank structure is not pronounced, making the determination of a suitable (k) even
more elusive.

Handling missing or sparse data, a common occurrence in applications like recommendation sys-
tems, poses another substantial challenge. Traditional matrix factorization techniques, such as
Singular Value Decomposition (SVD), are not directly applicable to matrices with missing entries,
necessitating the development and application of specialized algorithms that can factorize incom-
plete matrices while mitigating the risks of overfitting to the observed entries. This often involves
incorporating regularization terms or constraining the factorization in specific ways, which in turn
introduces additional hyperparameters that need to be judiciously selected.

Furthermore, in scenarios where data evolves or grows over time, developing LRMF models that
can adapt to new data without necessitating a complete re-factorization is a critical yet challeng-
ing endeavor. Online and incremental matrix factorization algorithms seek to address this by en-
abling the update of factorized matrices as new data arrives, yet ensuring stability, accuracy, and
computational efÏciency in these dynamic settings remains an intricate task. This is particularly
challenging in the space of TinyML, where edge redeployment for refreshed models can be quite
challenging.

34.2.2.3. Tensor Decomposition

Similar to low-rank matrix factorization, more complex models may store weights in higher di-
mensions, such as tensors: tensor decomposition is the higher-dimensional analogue of matrix
factorization, where a model tensor is decomposed into lower rank components (see Figure 34.12),
which again are easier to compute on and store but may suffer from the same issues as mentioned
above of information loss and nuanced hyperparameter tuning. Mathematically, given a tensor𝒜, tensor decomposition seeks to represent 𝒜 as a combination of simpler tensors, facilitating a
compressed representation that approximates the original data while minimizing the loss of infor-
mation.

The work of Tamara G. Kolda and Brett W. Bader, “Tensor Decompositions and Applications”
(2009), stands out as a seminal paper in the field of tensor decompositions. The authors provide a
comprehensive overview of various tensor decomposition methods, exploring their mathematical
underpinnings, algorithms, and a wide array of applications, ranging from signal processing to
data mining. Of course, the reason we are discussing it is because it has huge potential for system
performance improvements, particularly in the space of TinyML, where throughput and memory
footprint savings are crucial to feasibility of deployments.

https://epubs.siam.org/doi/abs/10.1137/07070111X
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Figure 34.12. A visualization showing the decrease in parameterization enabled by tensor decomposition.
Observe how the shown three-dimensional tensor 𝑦 can be approximated by three matrices, all of lower rank,
greatly reducing the number of parameters to be held in memory (Xinyu (n.d.)).

34.2.3. Edge-Aware Model Design

Finally, we reach the other end of the hardware-software gradient, where we specifically make
model architecture decisions directly given knowledge of the edge devices wewish to deploy on.

As covered in previous sections, edge devices are constrained specifically with limitations onmem-
ory and parallelizable computations: as such, if there are critical inference speed requirements,
computations must be flexible enough to satisfy hardware constraints, something that can be de-
signed at the model architecture level. Furthermore, trying to cram SOTA large ML models onto
edge devices even after pruning and compression is generally infeasible purely due to size: the
model complexity itself must be chosen with more nuance as to more feasibly fit the device. Edge
MLdevelopers have approached this architectural challenge both through designing bespoke edge
ML model architectures and through device-aware neural architecture search (NAS), which can
more systematically generate feasible on-device model architectures.

34.2.3.1. Model Design Techniques

One edge friendly architecture design is depthwise separable convolutions. Commonly used in
deep learning for image processing, it consists of two distinct steps: the first is the depthwise
convolution, where each input channel is convolved independently with its own set of learnable
filters, as show in Figure 34.13. This step reduces computational complexity by a significant mar-
gin compared to standard convolutions, as it drastically reduces the number of parameters and
computations involved. The second step is the pointwise convolution, which combines the output
of the depthwise convolution channels through a 1x1 convolution, creating inter-channel interac-
tions. This approach offers several advantages. Pros include reduced model size, faster inference
times, and often better generalization due to fewer parameters, making it suitable for mobile and
embedded applications. However, depthwise separable convolutions may not capture complex
spatial interactions as effectively as standard convolutions and might require more depth (layers)
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to achieve the same level of representational power, potentially leading to longer training times.
Nonetheless, their efÏciency in terms of parameters and computationmakes them a popular choice
in modern convolutional neural network architectures.

Figure 34.13. A visualization showing each of the individual operations behind a single depthwise separable
convolution: first, we give the input image a convolution without modifying the depth. Once those convo-
lutions are completed, we then do a pointwise 1-by-1 convolution to get to the desired number of channels.
This reduces the number of parameters, making it a key TinyML technique (Hegde (2023)).

34.2.3.2. Example Model Architectures

In this vein, a number of recent architectures have been, from inception, specifically designed for
maximizing accuracy on an edge deployment, notably SqueezeNet, MobileNet, and EfÏcientNet.

• SqueezeNet by Iandola et al. (2016) for instance, utilizes a compact architecture with 1x1
convolutions and fire modules to minimize the number of parameters while maintaining
strong accuracy.

• MobileNet by Howard et al. (2017), on the other hand, employs the aforementioned depth-
wise separable convolutions to reduce both computation and model size.

https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1704.04861
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• EfÏcientNet by Tan and Le (2023) takes a different approach by optimizing network scaling
(i.e. varying the depth, width and resolution of a network) and compound scaling, a more
nuanced variation network scaling, to achieve superior performance with fewer parameters.

These models are essential in the context of edge computing where limited processing power and
memory require lightweight yet effective models that can efÏciently perform tasks such as image
recognition, object detection, and more. Their design principles showcase the importance of inten-
tionally tailored model architecture for edge computing, where performance and efÏciency must
fit within constraints.

34.2.3.3. Streamlining Model Architecture Search

Finally, systematized pipelines for searching for performant edge-compatible model architectures
are possible through frameworks like TinyNAS by J. Lin et al. (2020) and MorphNet by Gordon et
al. (2018).

TinyNAS is an innovative neural architecture search framework introduced in the MCUNet paper,
designed to efÏciently discover lightweight neural network architectures for edge devices with
limited computational resources. Leveraging reinforcement learning and a compact search space
of micro neural modules, TinyNAS optimizes for both accuracy and latency, enabling the deploy-
ment of deep learning models on microcontrollers, IoT devices, and other resource-constrained
platforms. Specifically, TinyNAS, in conjunction with a network optimizer TinyEngine, generates
different search spaces by scaling the input resolution and themodelwidth of amodel, then collects
the computation FLOPs distribution of satisfying networks within the search space to evaluate its
priority. TinyNAS relies on the assumption that a search space that accommodates higher FLOPs
under memory constraint can produce higher accuracy models, something that the authors ver-
ified in practice in their work. In empirical performance, TinyEngine reduced the peak memory
usage of models by around 3.4 times and accelerated inference by 1.7 to 3.3 times compared to
TFLite and CMSIS-NN.

Similarly, MorphNet is a neural network optimization framework designed to automatically re-
shape and morph the architecture of deep neural networks, optimizing them for specific deploy-
ment requirements. It achieves this through two steps: first, it leverages a set of customizable
network morphing operations, such as widening or deepening layers, to dynamically adjust the
network’s structure. These operations enable the network to adapt to various computational con-
straints, includingmodel size, latency, and accuracy targets, which are extremely prevalent in edge
computing usage. In the second step, MorphNet uses a reinforcement learning-based approach to
search for the optimal permutation of morphing operations, effectively balancing the trade-off be-
tween model size and performance. This innovative method allows deep learning practitioners
to automatically tailor neural network architectures to specific application and hardware require-
ments, ensuring efÏcient and effective deployment across various platforms.

TinyNAS and MorphNet represent a few of the many significant advancements in the field of sys-
tematic neural network optimization, allowing architectures to be systematically chosen and gen-
erated to fit perfectly within problem constraints.

https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2007.10319
https://arxiv.org/abs/1711.06798
https://www.tensorflow.org/lite
https://www.keil.com/pack/doc/CMSIS/NN/html/index.html
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34.3. EfÏcient Numerics Representation

Numerics representation involves a myriad of considerations, including, but not limited to, the
precision of numbers, their encoding formats, and the arithmetic operations facilitated. It invari-
ably involves a rich array of different trade-offs, where practitioners are tasked with navigating
between numerical accuracy and computational efÏciency. For instance, while lower-precision
numerics may offer the allure of reduced memory usage and expedited computations, they con-
currently present challenges pertaining to numerical stability and potential degradation of model
accuracy.

34.3.0.1. Motivation

The imperative for efÏcient numerics representation arises, particularly as efÏcient model opti-
mization alone falls short when adapting models for deployment on low-powered edge devices
operating under stringent constraints.

Beyond minimizing memory demands, the tremendous potential of efÏcient numerics represen-
tation lies in, but is not limited to, these fundamental ways. By diminishing computational inten-
sity, efÏcient numerics can thereby amplify computational speed, allowing more complex models
to compute on low-powered devices. Reducing the bit precision of weights and activations on
heavily over-parameterized models enables condensation of model size for edge devices without
significantly harming the model’s predictive accuracy. With the omnipresence of neural networks
in models, efÏcient numerics has a unique advantage in leveraging the layered structure of NNs
to vary numeric precision across layers, minimizing precision in resistant layers while preserving
higher precision in sensitive layers.

In this section, wewill dive into how practitioners can harness the principles of hardware-software
co-design at the lowest levels of a model to facilitate compatibility with edge devices. Kicking off
with an introduction to the numerics, we will examine its implications for device memory and
computational complexity. Subsequently, we will embark on a discussion regarding the trade-offs
entailed in adopting this strategy, followed by a deep dive into a paramount method of efÏcient
numerics: quantization.

34.3.1. The Basics

34.3.1.1. Types

Numerical data, the bedrock uponwhichmachine learningmodels stand, manifest in two primary
forms. These are integers and floating point numbers.

Integers: Whole numbers, devoid of fractional components, integers (e.g., -3, 0, 42) are key in sce-
narios demanding discrete values. For instance, in ML, class labels in a classification task might
be represented as integers, where “cat”, “dog”, and “bird” could be encoded as 0, 1, and 2 respec-
tively.

Floating-Point Numbers: Encompassing real numbers, floating-point numbers (e.g., -3.14, 0.01,
2.71828) afford the representation of values with fractional components. In ML model parameters,
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weights might be initialized with small floating-point values, such as 0.001 or -0.045, to commence
the training process. Currently, there are 4 popular precision formats discussed below.

Variable bitwidths: Beyond the standardwidths, research is ongoing into extremely lowbit-width
numerics, even down to binary or ternary representations. Extremely low bit-width operations can
offer significant speedups and reduce power consumption even further. While challenges remain
in maintaining model accuracy with such drastic quantization, advances continue to be made in
this area.

34.3.1.2. Precision

Precision, delineating the exactness with which a number is represented, bifurcates typically into
single, double, half and in recent years there have been a number of other precisions that have
emerged to better support machine learning tasks efÏciently on the underlying hardware.

Double Precision (Float64): Allocating 64 bits, double precision (e.g., 3.141592653589793) provides
heightened accuracy, albeit demanding augmented memory and computational resources. In sci-
entific computations, where precision is paramount, variables like π might be represented with
Float64.

Single Precision (Float32): With 32 bits at its disposal, single precision (e.g., 3.1415927) strikes a
balance betweennumerical accuracy andmemory conservation. InML, Float32might be employed
to store weights during training to maintain a reasonable level of precision.

Half Precision (Float16): Constrained to 16 bits, half precision (e.g., 3.14) curtails memory usage
and can expedite computations, albeit sacrificing numerical accuracy and range. In ML, especially
during inference on resource-constrained devices, Float16 might be utilized to reduce the model’s
memory footprint.

Bfloat16: Brain Floating-Point Format or Bfloat16, also employs 16 bits but allocates them differ-
ently compared to FP16: 1 bit for the sign, 8 bits for the exponent (resulting in the same number
range as in float32), and 7 bits for the fraction. This format, developed by Google, prioritizes a
larger exponent range over precision, making it particularly useful in deep learning applications
where the dynamic range is crucial.

Integer: Integer representations are made using 8, 4, and 2 bits. They are often used during the
inference phase of neural networks, where the weights and activations of the model are quantized
to these lower precisions. Integer representations are deterministic and offer significant speed and
memory advantages over floating-point representations. For many inference tasks, especially on
edge devices, the slight loss in accuracy due to quantization is often acceptable given the efÏciency
gains. An extreme form of integer numerics is for binary neural networks (BNNs), where weights
and activations are constrained to one of two values: either +1 or -1.

Precision Pros Cons

FP32
(Floating
Point 32-bit)

Standard precision used in most
deep learning frameworks. High
accuracy due to ample
representational capacity.
Well-suited for training.

High memory usage. Slower inference
times compared to quantized models.
Higher energy consumption.
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Precision Pros Cons

FP16
(Floating
Point 16-bit)

Reduces memory usage compared
to FP32. Speeds up computations
on hardware that supports FP16.
Often used in mixed-precision
training to balance speed and
accuracy.

Lower representational capacity compared
to FP32. Risk of numerical instability in
some models or layers.

INT8 (8-bit
Integer)

Significantly reduced memory
footprint compared to
floating-point representations.
Faster inference if hardware
supports INT8 computations.
Suitable for many post-training
quantization scenarios.

Quantization can lead to some accuracy
loss. Requires careful calibration during
quantization to minimize accuracy
degradation.

INT4 (4-bit
Integer)

Even lower memory usage than
INT8. Further speed-up potential
for inference.

Higher risk of accuracy loss compared to
INT8. Calibration during quantization
becomes more critical.

Binary Minimal memory footprint (only 1
bit per parameter). Extremely fast
inference due to bitwise operations.
Power efÏcient.

Significant accuracy drop for many tasks.
Complex training dynamics due to
extreme quantization.

Ternary Low memory usage but slightly
more than binary. Offers a middle
ground between representation
and efÏciency.

Accuracy might still be lower than higher
precision models. Training dynamics can
be complex.

34.3.1.3. Numeric Encoding and Storage

Numeric encoding, the art of transmuting numbers into a computer-amenable format, and their
subsequent storage are critical for computational efÏciency. For instance, floating-point numbers
might be encoded using the IEEE 754 standard, which apportions bits among sign, exponent, and
fraction components, thereby enabling the representation of a vast array of values with a single
format. There are a few new IEEE floating point formats that have been defined specifically for AI
workloads:

• bfloat16- A 16-bit floating point format introduced by Google. It has 8 bits for exponent, 7
bits for mantissa and 1 bit for sign. Offers a reduced precision compromise between 32-bit
float and 8-bit integers. Supported on many hardware accelerators.

• posit - A configurable format that can represent different levels of precision based on expo-
nent bits. Aims to be more efÏcient than IEEE 754 binary floats. Has adjustable dynamic
range and precision.

• Flexpoint - A format introduced by Intel that can dynamically adjust precision across layers
or within a layer. Allows tuning precision to accuracy and hardware requirements.

• BF16ALT - A proposed 16-bit format by ARM as an alternative to bfloat16. Uses additional
bit in exponent to prevent overflow/underflow.

https://cloud.google.com/tpu/docs/bfloat16
https://ieeexplore.ieee.org/document/9399648
https://arxiv.org/abs/1711.02213
https://developer.arm.com/documentation/ddi0596/2020-12/SIMD-FP-Instructions/BFMLALB--BFMLALT--vector---BFloat16-floating-point-widening-multiply-add-long--vector--
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Figure 34.14. Three floating-point formats.

• TF32 - Introduced by Nvidia for Ampere GPUs. Uses 10 bits for exponent instead of 8 bits
like FP32. Improves model training performance while maintaining accuracy.

• FP8 - 8-bit floating point format that keeps 6 bits formantissa and 2 bits for exponent. Enables
better dynamic range than integers.

The key goals of these new formats are to provide lower precision alternatives to 32-bit floats
for better computational efÏciency and performance on AI accelerators while maintaining
model accuracy. They offer different tradeoffs in terms of precision, range and implementation
cost/complexity.

34.3.2. EfÏciency Benefits

Numerical efÏciency matters for machine learning workloads for a number of reasons:

Computational EfÏciency: High-precision computations (like FP32 or FP64) can be slow and
resource-intensive. By reducing numeric precision, one can achieve faster computation times, es-
pecially on specialized hardware that supports lower precision.

Memory EfÏciency: Storage requirements decrease with reduced numeric precision. For instance,
FP16 requires half the memory of FP32. This is crucial when deploying models to edge devices
with limited memory or when working with very large models.

Power EfÏciency: Lower precision computations often consume less power, which is especially
important for battery-operated devices.

Noise Introduction: Interestingly, the noise introduced by using lower precision can sometimes
act as a regularizer, helping to prevent overfitting in some models.

https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://arxiv.org/abs/2209.05433


Chapter 34. Model Optimizations 285

Hardware Acceleration: Many modern AI accelerators and GPUs are optimized for lower preci-
sion operations, leveraging the efÏciency benefits of such numerics.

EfÏcient numerics is not just about reducing the bit-width of numbers but understanding the trade-
offs between accuracy and efÏciency. As machine learning models become more pervasive, espe-
cially in real-world, resource-constrained environments, the focus on efÏcient numerics will con-
tinue to grow. By thoughtfully selecting and leveraging the appropriate numeric precision, one
can achieve robust model performance while optimizing for speed, memory, and energy.

34.3.3. Numeric Representation Nuances

There are a number of nuances with numerical representations for ML that require us to have an
understanding of both the theoretical and practical aspects of numerics representation, as well as
a keen awareness of the specific requirements and constraints of the application domain.

34.3.3.1. Memory Usage

Thememory footprint of MLmodels, particularly those of considerable complexity and depth, can
be substantial, thereby posing a significant challenge in both training and deployment phases. For
instance, a deep neural network with 100 million parameters, represented using Float32 (32 bits
or 4 bytes per parameter), would necessitate approximately 400 MB of memory just for storing
the model weights. This does not account for additional memory requirements during training
for storing gradients, optimizer states, and forward pass caches, which can further amplify the
memory usage, potentially straining the resources on certain hardware, especially edge devices
with limited memory capacity.

34.3.3.2. Impact on Model Parameters and Weights

The numeric representation casts a significant impact on the storage and computational requisites
of ML model parameters and weights. For instance, a model utilizing Float64 for weights will
demand double the memory and potentially increased computational time compared to a counter-
part employing Float32. A weight matrix, for instance, with dimensions [1000, 1000] using Float64
would consume approximately 8MB of memory, whereas using Float32 would halve this to ap-
proximately 4MB.

34.3.3.3. Computational Complexity

Numerical precision directly impacts computational complexity, influencing the time and
resources required to perform arithmetic operations. For example, operations using Float64
generally consume more computational resources than their Float32 or Float16 counterparts (see
Figure 34.15). In the realm of ML, where models might need to process millions of operations (e.g.,
multiplications and additions in matrix operations during forward and backward passes), even
minor differences in the computational complexity per operation can aggregate into a substantial
impact on training and inference times. As shown in Figure 34.16, quantized models can be many
times faster than their unquantized versions.
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In addition to pure runtimes, there is also a concern over energy efÏciency. Not all numerical com-
putations are created equal from the underlying hardware standpoint. Some numerical operations
are more energy efÏcient than others. For example, Figure 34.17 below shows that integer addition
is much more energy efÏcient than integer multiplication.

Figure 34.15. Tables comparing energy use by quantized operations (Isscc (2014)).

34.3.3.4. Hardware Compatibility

Ensuring compatibility and optimized performance across diverse hardware platforms is another
challenge in numerics representation. Different hardware, such as CPUs, GPUs, TPUs, and FP-
GAs, have varying capabilities and optimizations for handling different numeric precisions. For
example, certain GPUs might be optimized for Float32 computations, while others might provide
accelerations for Float16. Developing and optimizing ML models that can leverage the specific
numerical capabilities of different hardware, while ensuring that the model maintains its accuracy
and robustness, requires careful consideration and potentially additional development and testing
efforts.

34.3.3.5. Precision and Accuracy Trade-offs

The trade-off between numerical precision andmodel accuracy is a nuanced challenge in numerics
representation. Utilizing lower-precision numerics, such as Float16, might conserve memory and
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Figure 34.16. Graph showing the speed differences for three different models in normal and quantized form.

Figure 34.17. In this visualization, we can note the massive reductions in energy use by quantized operations
(Isscc (2014)).
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expedite computations but can also introduce issues like quantization error and reduced numeri-
cal range. For instance, training a model with Float16 might introduce challenges in representing
very small gradient values, potentially impacting the convergence and stability of the training pro-
cess. Furthermore, in certain applications, such as scientific simulations or financial computations,
where high precision is paramount, the use of lower-precision numerics might not be permissible
due to the risk of accruing significant errors.

34.3.3.6. Trade-off Examples

To understand and appreciate the nuances let’s consider some use case examples. Through these
we will realize that the choice of numeric representation is not merely a technical decision but
a strategic one, influencing the model’s predictive acumen, its computational demands, and its
deployability across diverse computational environments. In this section we will look at a couple
of examples to better understand the trade-offs with numerics and how they tie to the real world.

34.3.3.6.1. Autonomous Vehicles

In the domain of autonomous vehicles, ML models are employed to interpret sensor data and
make real-time decisions. The models must process high-dimensional data from various sensors
(e.g., LiDAR, cameras, radar) and execute numerous computationswithin a constrained time frame
to ensure safe and responsive vehicle operation. So the trade-offs here would include:

• Memory Usage: Storing and processing high-resolution sensor data, especially in floating-
point formats, can consume substantial memory.

• Computational Complexity: Real-time processing demands efÏcient computations, where
higher-precision numerics might impede the timely execution of control actions.

34.3.3.6.2. Mobile Health Applications

Mobile health applications often utilize ML models for tasks like activity recognition, health mon-
itoring, or predictive analytics, operating within the resource-constrained environment of mobile
devices. The trade-offs here would include:

• Precision and Accuracy Trade-offs: Employing lower-precision numerics to conserve re-
sources might impact the accuracy of health predictions or anomaly detections, which could
have significant implications for user health and safety.

• Hardware Compatibility: Models need to be optimized for diverse mobile hardware, ensur-
ing efÏcient operation across a wide range of devices with varying numerical computation
capabilities.

34.3.3.6.3. High-Frequency Trading (HFT) Systems

HFT systems leverage ML models to make rapid trading decisions based on real-time market data.
These systems demand extremely low-latency responses to capitalize on short-lived trading oppor-
tunities.
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• Computational Complexity: The models must process and analyze vast streams of market
data with minimal latency, where even slight delays, potentially introduced by higher-
precision numerics, can result in missed opportunities.

• Precision and Accuracy Trade-offs: Financial computations often demand high numerical
precision to ensure accurate pricing and risk assessments, posing challenges in balancing
computational efÏciency and numerical accuracy.

34.3.3.6.4. Edge-Based Surveillance Systems

Surveillance systems deployed on edge devices, like security cameras, utilize ML models for tasks
like object detection, activity recognition, and anomaly detection, often operating under stringent
resource constraints.

• MemoryUsage: Storing pre-trainedmodels andprocessing video feeds in real-time demands
efÏcient memory usage, which can be challenging with high-precision numerics.

• Hardware Compatibility: Ensuring that models can operate efÏciently on edge devices with
varying hardware capabilities and optimizations for different numeric precisions is crucial
for widespread deployment.

34.3.3.6.5. Scientific Simulations

ML models are increasingly being utilized in scientific simulations, such as climate modeling or
molecular dynamics simulations, to enhance predictive capabilities and reduce computational de-
mands.

• Precision and Accuracy Trade-offs: Scientific simulations often require high numerical pre-
cision to ensure accurate and reliable results, which can conflict with the desire to reduce
computational demands via lower-precision numerics.

• Computational Complexity: The models must manage and process complex, high-
dimensional simulation data efÏciently to ensure timely results and enable large-scale or
long-duration simulations.

These examples illustrate diverse scenarios where the challenges of numerics representation in
ML models are prominently manifested. Each system presents a unique set of requirements and
constraints, necessitating tailored strategies and solutions to navigate the challenges of memory
usage, computational complexity, precision-accuracy trade-offs, and hardware compatibility.

34.3.4. Quantization

Quantization is prevalent in various scientific and technological domains, and it essentially in-
volves the mapping or constraining of a continuous set or range into a discrete counterpart to
minimize the number of bits required.
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34.3.4.1. History

Historically, the idea of quantization is not novel and can be traced back to ancient times, particu-
larly in the realm of music and astronomy. In music, the Greeks utilized a system of tetrachords,
segmenting the continuous range of pitches into discrete notes, thereby quantizingmusical sounds.
In astronomy and physics, the concept of quantization was present in the discretized models of
planetary orbits, as seen in the Ptolemaic and Copernican systems.

During the 1800s, quantization-based discretization was used to approximate the calculation of
integrals, and further used to investigate the impact of rounding errors on the integration result.
With algorithms, Lloyd’s K-Means Algorithm is a classic example of quantization. However, the
term “quantization” was firmly embedded in scientific literature with the advent of quantum me-
chanics in the early 20th century, where it was used to describe the phenomenon that certain physi-
cal properties, such as energy, exist only in discrete, quantized states. This principle was pivotal in
explaining phenomena at the atomic and subatomic levels. In the digital age, quantization found
its application in signal processing, where continuous signals are converted into a discrete digital
form, and in numerical algorithms, where computations on real-valued numbers are performed
with finite-precision arithmetic.

Extending upon this second application and relevant to this section, it is used in computer science
to optimize neural networks by reducing the precision of the network weights. Thus, quantization,
as a concept, has been subtly woven into the tapestry of scientific and technological development,
evolving and adapting to the needs and discoveries of various epochs.

34.3.4.2. Initial Breakdown

We begin our foray into quantization with a brief analysis of one important use for quantization.

In signal processing, the continuous sine wave can be quantized into discrete values through a
process known as sampling. This is a fundamental concept in digital signal processing and is
crucial for converting analog signals (like the continuous sine wave) into a digital form that can
be processed by computers. The sine wave is a prevalent example due to its periodic and smooth
nature, making it a useful tool for explaining concepts like frequency, amplitude, phase, and, of
course, quantization.

In the quantized version shown below, the continuous sine wave is sampled at regular intervals (in
this case, every 𝜋4 radians), and only these sampled values are represented in the digital version of
the signal. The step-wise lines between the points show one way to represent the quantized signal
in a piecewise-constant form. This is a simplified example of how analog-to-digital conversion
works, where a continuous signal ismapped to a discrete set of values, enabling it to be represented
and processed digitally.

Returning to the context of Machine Learning (ML), quantization refers to the process of constrain-
ing the possible values that numerical parameters (such asweights and biases) can take to a discrete
set, thereby reducing the precision of the parameters and consequently, the model’s memory foot-
print. When properly implemented, quantization can reduce model size by up to 4x and improve
inference latency and throughput by up to 2-3x, as show in Figure 34.20. For example, an Image
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Figure 34.18. Sine Wave
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Figure 34.19. Quantized Sine Wave
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Classification model like ResNet-50 can be compressed from 96MB down to 24MBwith 8-bit quan-
tization. There is typically less than 1% loss in model accuracy from well tuned quantization. Ac-
curacy can often be recovered by re-training the quantizedmodel with quantization aware training
techniques. Therefore, this technique has emerged to be very important in deploying ML models
to resource-constrained environments, such as mobile devices, IoT devices, and edge computing
platforms, where computational resources (memory and processing power) are limited.

Figure 34.20. Figure comparing the sizes of three models with their quantized forms

There are several dimensions to quantization such as uniformity, stochasticity (or determinism),
symmetry, granularity (across layers/channels/groups or evenwithin channels), range calibration
considerations (static vs dynamic), and fine-tuning methods (QAT, PTQ, ZSQ). We examine these
below.

34.3.5. Types

34.3.5.1. Uniform Quantization

Uniform quantization involves mapping continuous or high-precision values to a lower-precision
representation using a uniform scale. Thismeans that the interval between each possible quantized
value is consistent. For example, if weights of a neural network layer are quantized to 8-bit integers
(values between 0 and 255), a weight with a floating-point value of 0.56 might be mapped to an
integer value of 143, assuming a linear mapping between the original and quantized scales. Due
to its use of integer or fixed-point math pipelines, this form of quantization allows computation on
the quantized domain without the need to dequantize beforehand.
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The process for implementing uniform quantization starts with choosing a range of real numbers
to be quantized. The next step is to select a quantization function and map the real values to the
integers representable by the bit-width of the quantized representation. For instance, a popular
choice for a quantization function is: 𝑄(𝑟) = 𝐼𝑛𝑡(𝑟/𝑆)−𝑍
where Q is the quantization operator, r is a real valued input (in our case, an activation or weight),
S is a real valued scaling factor, and Z is an integer zero point. The Int functionmaps a real value to
an integer value through a rounding operation. Through this function, we have effectivelymapped
real values r to some integer values, resulting in quantized levels which are uniformly spaced.

When the need arises for practitioners to retrieve the original higher precision values, real values
r can be recovered from quantized values through an operation known as dequantization. In the
example above, this would mean performing the following operation on our quantized value:̄𝑟 = 𝑆(𝑄(𝑟)+𝑍)
As discussed, some precision in the real value is lost by quantization. In this case, the recovered
value ̄𝑟 will not exactlymatch r due to the rounding operation. This is an important tradeoff to note;
however, in many successful uses of quantization, the loss of precision can be negligible and the
test accuracy remains high. Despite this, uniform quantization continues to be the current de-facto
choice due to its simplicity and efÏcient mapping to hardware.

34.3.5.2. Non-uniform Quantization

Non-uniform quantization, on the other hand, does not maintain a consistent interval between
quantized values. This approachmight be used to allocate more possible discrete values in regions
where the parameter values aremore densely populated, thereby preservingmore detail where it is
most needed. For instance, in bell-shaped distributions of weights with long tails, a set of weights
in a model predominantly lies within a certain range; thus, more quantization levels might be
allocated to that range to preserve finer details, enabling us to better capture information. However,
one major weakness of non-uniform quantization is that it requires dequantization before higher
precision computations due to its non-uniformity, restricting its ability to accelerate computation
compared to uniform quantization.

Typically, a rule-based non-uniform quantization uses a logarithmic distribution of exponentially
increasing steps and levels as opposed to linearly. Another popular branch lies in binary-code-
based quantization where real number vectors are quantized into binary vectors with a scaling
factor. Notably, there is no closed form solution for minimizing errors between the real value and
non-uniformly quantized value, so most quantizations in this field rely on heuristic solutions. For
instance, recentwork byC. Xu et al. (2018) formulates non-uniformquantization as an optimization
problemwhere the quantization steps/levels in quantizerQ are adjusted tominimize the difference
between the original tensor and quantized counterpart.

min𝑄 ||𝑄(𝑟)−𝑟||2

https://arxiv.org/abs/1802.00150
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Furthermore, learnable quantizers can be jointly trained with model parameters, and the quanti-
zation steps/levels are generally trained with iterative optimization or gradient descent. Addition-
ally, clustering has been used to alleviate information loss from quantization. While capable of
capturing higher levels of detail, non-uniform quantization schemes can be difÏcult to deploy efÏ-
ciently on general computation hardware, making it less-preferred to methods which use uniform
quantization.

Figure 34.21. Comparison between uniform quantization (left) and non-uniform quantization (right) (Gho-
lami et al. (2021)).

34.3.5.3. Stochastic Quantization

Unlike the two previous approaches which generate deterministic mappings, there is some work
exploring the idea of stochastic quantization for quantization aware training and reduced preci-
sion training. This approach maps floating numbers up or down with a probability associated to
the magnitude of the weight update. The hope generated by high level intuition is that such a
probabilistic approach may allow a neural network to explore more, as compared to determinis-
tic quantization. Supposedly, enabling a stochastic rounding may allow neural networks to escape
local optimums, thereby updating its parameters. Below are two example stochasticmapping func-
tions:
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Figure 34.22. Integer vs Binary quantization functions.

34.3.5.4. Zero Shot Quantization

Zero-shot quantization refers to the process of converting a full-precision deep learning model
directly into a low-precision, quantized model without the need for any retraining or fine-tuning
on the quantized model. The primary advantage of this approach is its efÏciency, as it eliminates
the often time-consuming and resource-intensive process of retraining a model post-quantization.
By leveraging techniques that anticipate andminimize quantization errors, zero-shot quantization
aims to maintain the model’s original accuracy even after reducing its numerical precision. It is
particularly useful for Machine Learning as a Service (MLaaS) providers aiming to expedite the
deployment of their customer’s workloads without having to access their datasets.

34.3.6. Calibration

Calibration is the process of selecting the most effective clipping range [𝛼, 𝛽] for weights and ac-
tivations to be quantized to. For example, consider quantizing activations that originally have a
floating-point range between -6 and 6 to 8-bit integers. If you just take theminimum andmaximum
possible 8-bit integer values (-128 to 127) as your quantization range, it might not be the most ef-
fective. Instead, calibration would involve passing a representative dataset then use this observed
range for quantization.

There are many calibration methods but a few commonly used include:

• Max: Use the maximum absolute value seen during calibration. However, this method is
susceptible to outlier data.

• Entropy: UseKLdivergence tominimize information loss between the original floating-point
values and values that could be represented by the quantized format. This is the default
method used by TensorRT.

• Percentile: Set the range to a percentile of the distribution of absolute values seen during
calibration. For example, 99% calibration would clip 1% of the largest magnitude values.

Importantly, the quality of calibration can make a difference between a quantized model that re-
tains most of its accuracy and one that degrades significantly. Hence, it’s an essential step in the
quantization process. When choosing a calibration range, there are two types: symmetric and
asymmetric.
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Figure 34.23. Histogram of input activations to layer 3 in ResNet50 and calibrated ranges (Wu, Judd, and
Isaev (2020)).

34.3.6.1. Symmetric Quantization

Symmetric quantization maps real values to a symmetrical clipping range centered around 0. This
involves choosing a range [𝛼, 𝛽] where 𝛼 = −𝛽. For example, one symmetrical range would be
based on the min/max values of the real values such that: -𝛼 = 𝛽 = 𝑚𝑎𝑥(𝑎𝑏𝑠(𝑟𝑚𝑎𝑥),𝑎𝑏𝑠(𝑟𝑚𝑖𝑛)).
Symmetric clipping ranges are the most widely adopted in practice as they have the advantage of
easier implementation. In particular, the mapping of zero to zero in the clipping range (sometimes
called “zeroing out of the zero point”) can lead to reduction in computational cost during inference
(Wu, Judd, and Isaev (2020)).

34.3.6.2. Asymmetric Quantization

Asymmetric quantization maps real values to an asymmetrical clipping range that isn’t necessar-
ily centered around 0. It involves choosing a range [𝛼, 𝛽] where 𝛼 ≠ −𝛽. For example, selecting
a range based on the minimum and maximum real values, or where 𝛼 = 𝑟𝑚𝑖𝑛 and 𝛽 = 𝑟𝑚𝑎𝑥, cre-
ates an asymmetric range. Typically, asymmetric quantization produces tighter clipping ranges
compared to symmetric quantization, which is important when target weights and activations are
imbalanced, e.g., the activation after the ReLU always has non-negative values. Despite producing
tighter clipping ranges, asymmetric quantization is less preferred to symmetric quantization as it
doesn’t always zero out the real value zero.

https://arxiv.org/abs/2004.09602


298 Chapter 34. Model Optimizations

Figure 34.24. Illustration of symmetric quantization (left) and asymmetric quantization (right). Symmetric
quantization maps real values to [-127, 127], and asymmetric maps to [-128, 127] (Gholami et al. (2021)).

34.3.6.3. Granularity

Upon deciding the type of clipping range, it is essential to tighten the range to allow a model to
retain as much of its accuracy as possible. We’ll be taking a look at convolutional neural networks
as our way of exploring methods that fine tune the granularity of clipping ranges for quantization.
The input activation of a layer in our CNN undergoes convolution with multiple convolutional
filters. Every convolutional filter can possess a unique range of values. Consequently, one distin-
guishing feature of quantization approaches is the precision with which the clipping range [α,β]
is determined for the weights.

1. Layerwise Quantization: This approach determines the clipping range by considering all of
the weights in the convolutional filters of a layer. Then, the same clipping range is used for
all convolutional filters. It’s the simplest to implement, and, as such, it often results in sub-
optimal accuracy due the wide variety of differing ranges between filters. For example, a
convolutional kernel with a narrower range of parameters loses its quantization resolution
due to another kernel in the same layer having a wider range.

2. Groupwise Quantization: This approach groups different channels inside a layer to calculate
the clipping range. This method can be helpful when the distribution of parameters across
a single convolution/activation varies a lot. In practice, this method was useful in Q-BERT
(Shen et al. 2019) for quantizing Transformer (Vaswani et al. 2023) models that consist of
fully-connected attention layers. The downside with this approach comes with the extra cost
of accounting for different scaling factors.

3. Channelwise Quantization: This popular method uses a fixed range for each convolutional
filter that is independent of other channels. Because each channel is assigned a dedicated scal-
ing factor, this method ensures a higher quantization resolution and often results in higher
accuracy.

4. Sub-channelwise Quantization: Taking channelwise quantization to the extreme, this
method determines the clipping range with respect to any groups of parameters in a
convolution or fully-connected layer. It may result in considerable overhead since different
scaling factors need to be taken into account when processing a single convolution or
fully-connected layer.

Of these, channelwise quantization is the current standard used for quantizing convolutional ker-
nels, since it enables the adjustment of clipping ranges for each individual kernel with negligible
overhead.
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Figure 34.25. Illustration of the main forms of quantization granularities. In layerwise quantization, the
same clipping range is applied to all filters which belong to the same layer. Notice how this can result in lower
quantization resolutions for channels with narrow distributions, e.g. Filter 1, Filter 2, and Filter C. A higher
quantization resolution can be achieved using channelwise quantization which dedicates different clipping
ranges to different channels (Gholami et al. (2021)).
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34.3.6.4. Static and Dynamic Quantization

After determining the type and granularity of the clipping range, practitioners must decide when
ranges are determined in their range calibration algorithms. There are two approaches to quantiz-
ing activations: static quantization and dynamic quantization.

Static quantization is the most frequently used approach. In this, the clipping range is pre-
calculated and static during inference. It does not add any computational overhead, but,
consequently, results in lower accuracy as compared to dynamic quantization. A popular method
of implementing this is to run a series of calibration inputs to compute the typical range of
activations [Quantization and training of neural networks for efÏcient integer-arithmetic-only
inference, Dyadic neural network quantization].

Dynamic quantization is an alternative approach which dynamically calculates the range for each
activation map during runtime. The approach requires real-time computations which might have
a very high overhead. By doing this, dynamic quantization often achieves the highest accuracy as
the range is calculated specifically for each input.

Between the two, calculating the range dynamically usually is very costly, so most practitioners
will often use static quantization instead.

34.3.7. Techniques

The two prevailing techniques for quantizing models are Post Training Quantization and Quanti-
zation Aware Training.

Post Training Quantization - Post-training quantization (PTQ) is a quantization technique where
the model is quantized after it has been trained. The model is trained in floating point and then
weights and activations are quantized as a post-processing step. This is the simplest approach and
does not require access to the training data. Unlike Quantization-Aware Training (QAT), PTQ sets
weight and activation quantization parameters directly, making it low-overhead and suitable for
limited or unlabeled data situations. However, not readjusting the weights after quantizing, espe-
cially in low-precision quantization can lead to very different behavior and thus lower accuracy.
To tackle this, techniques like bias correction, equalizing weight ranges, and adaptive rounding
methods have been developed. PTQ can also be applied in zero-shot scenarios, where no training
or testing data are available. This method has been made even more efÏcient to benefit compute-
and memory- intensive large language models. Recently, SmoothQuant, a training-free, accuracy-
preserving, and general-purpose PTQ solution which enables 8-bit weight, 8-bit activation quanti-
zation for LLMs, has been developed, demonstrating up to 1.56x speedup and 2x memory reduc-
tion for LLMs with negligible loss in accuracy (Xiao et al. (2022)).

Quantization Aware Training - Quantization-aware training (QAT) is a fine-tuning of the PTQ
model. The model is trained aware of quantization, allowing it to adjust for quantization effects.
This produces better accuracy with quantized inference. Quantizing a trained neural network
model with methods such as PTQ introduces perturbations that can deviate the model from its
original convergence point. For instance, Krishnamoorthi showed that even with per-channel
quantization, networks like MobileNet do not reach baseline accuracy with int8 Post Training
Quantization (PTQ) and require Quantization Aware Training (QAT) (Krishnamoorthi (2018)).To

https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/1806.08342
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Figure 34.26. Table showing the differences between different precisions of quantization.

Figure 34.27. In PTQ, a pretrained model is calibrated using calibration data (e.g., a small subset of training
data) to compute the clipping ranges and scaling factors (Gholami et al. (2021)).
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address this, QAT retrains the model with quantized parameters, employing forward and back-
ward passes in floating point but quantizing parameters after each gradient update. Handling the
non-differentiable quantization operator is crucial; a widely used method is the Straight Through
Estimator (STE), approximating the rounding operation as an identity function. While other meth-
ods and variations exist, STE remains the most commonly used due to its practical effectiveness.

Figure 34.28. In QAT, a pretrained model is quantized and then finetuned using training data to adjust
parameters and recover accuracy degradation. Note: the calibration process is often conducted in parallel
with the finetuning process for QAT (Gholami et al. (2021)).

Feature/Technique
Post Training
Quantization

Quantization Aware
Training

Dynamic
Quantization

Pros
Simplicity ✓ � �
Accuracy
Preservation

� ✓ ✓

Adaptability � � ✓
Optimized
Performance

� ✓ Potentially

Cons
Accuracy Degradation ✓ � Potentially
Computational
Overhead

� ✓ ✓

Implementation
Complexity

� ✓ ✓
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Feature/Technique
Post Training
Quantization

Quantization Aware
Training

Dynamic
Quantization

Tradeoffs
Speed vs. Accuracy ✓ � �
Accuracy vs. Cost � ✓ �
Adaptability
vs. Overhead

� � ✓

34.3.8. Weights vs. Activations

Weight Quantization: Involves converting the continuous or high-precision weights of a model
to lower-precision, such as converting Float32 weights to quantized INT8 (integer) weights. This
reduces the model size, thereby reducing the memory required to store the model and the compu-
tational resources needed to perform inference. For example, consider a weight matrix in a neural
network layerwith Float32weights as [0.215, -1.432, 0.902,…]. Throughweight quantization, these
might bemapped to INT8 values like [27, -183, 115,…], significantly reducing thememory required
to store them.

Activation Quantization: Involves quantizing the activation values (outputs of layers) during
model inference. This can reduce the computational resources required during inference, but it
introduces additional challenges in maintaining model accuracy due to the reduced precision
of intermediate computations. For example, in a convolutional neural network (CNN), the
activation maps (feature maps) produced by convolutional layers, originally in Float32, might be
quantized to INT8 during inference to accelerate computation, especially on hardware optimized
for integer arithmetic. Additionally, recent work has explored the use of Activation-aware Weight
Quantization for LLM compression and acceleration, which involves protecting only 1% of the
most important salient weights by observing the activations not weights (Lin et al. (2023)).

34.3.9. Trade-offs

Quantization invariably introduces a trade-off between model size/performance and accuracy.
While it significantly reduces the memory footprint and can accelerate inference, especially on
hardware optimized for low-precision arithmetic, the reduced precision can degrade model accu-
racy.

Model Size: A model with weights represented as Float32 being quantized to INT8 can theoret-
ically reduce the model size by a factor of 4, enabling it to be deployed on devices with limited
memory.

Inference Speed: Quantization can also accelerate inference, as lower-precision arithmetic is com-
putationally less expensive. For example, certain hardware accelerators, like Google’s Edge TPU,
are optimized for INT8 arithmetic and can perform inference significantly faster with INT8 quan-
tized models compared to their floating-point counterparts.

Accuracy: The reduction in numerical precision post-quantization can lead to a degradation in
model accuracy, which might be acceptable in certain applications (e.g., image classification) but
not in others (e.g., medical diagnosis). Therefore, post-quantization, the model typically requires

https://arxiv.org/pdf/2306.00978.pdf
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Figure 34.29. Note that QAT is an extension of PTQ. It receives the model quantized by PTQ and re-
trains it to finetune quantized parameters (“The Ultimate Guide to Deep Learning Model Quantization and
Quantization-Aware Training” (n.d.)).
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Figure 34.30. Summary of Post Training Quantization and Quantization Aware Training. PTQ reports the
best accuracy and corresponding calibration for each model (Wu, Judd, and Isaev (2020)).

Figure 34.31. Diagram of quantizing weights and activations
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Figure 34.32. The model size of large language models is developing at a faster pace than the GPU memory
in recent years, leading to a big gap between the supply and demand for memory. Quantization and model
compression techniques can help bridge the gap (Xiao et al. (2022)).

Figure 34.33. Benefits of lower precision data types for tensor operations on the NVIDIA Turing GPU
architecture (Wu, Judd, and Isaev (2020)).
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re-calibration or fine-tuning to mitigate accuracy loss. Furthermore, recent work has explored the
use of Activation-aware Weight Quantization (Lin et al. (2023)) which is based on the observation
that protecting only 1% of salient weights can greatly reduce quantization error.

Figure 34.34. Accuracy of AlexNet with different aggressiveness of weight sharing and quantization. 8/5
bit quantization has no loss of accuracy; 8/4 bit quantization, which is more hardware friendly, has negligible
loss of accuracy of 0.01%; To be really aggressive, 4/2 bit quantization resulted in 1.99% and 2.60% loss of
accuracy (Han, Mao, and Dally (2015)).

34.3.10. Quantization and Pruning

Pruning and quantization work well together, and it’s been found that pruning doesn’t hinder
quantization. In fact, pruning can help reduce quantization error. Intuitively, this is due to prun-
ing reducing the number of weights to quantize, thereby reducing the accumulated error from
quantization. For example, an unpruned AlexNet has 60 million weights to quantize whereas a
pruned AlexNet only has 6.7 million weights to quantize. This significant drop in weights helps
reduce the error between quantizing the unpruned AlexNet vs. the pruned AlexNet. Furthermore,
recent work has found that quantization-aware pruning generates more computationally efÏcient
models than either pruning or quantization alone; It typically performs similar to or better in terms
of computational efÏciency compared to other neural architecture search techniques like Bayesian
optimization (Hawks et al. (2021)).

Figure 34.35. Accuracy v.s. compression rate under different compression methods. Pruning and quantiza-
tion works best when combined (Han, Mao, and Dally (2015)).

https://arxiv.org/pdf/2306.00978.pdf
https://arxiv.org/pdf/2102.11289.pdf
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Figure 34.36. Pruning doesn’t hurt quantization. Dashed: quantization on unpruned network. Solid:
quantization on pruned network; Accuracy begins to drop at the same number of quantization bits whether
or not the network has been pruned. ALthough pruning made the number of parameters less, quantization
still works well, or even better (3 bits case on the left figure) as in the unpruned network (Han, Mao, and
Dally (2015)).

34.3.11. Edge-aware Quantization

Quantization not only reduces model size but also enables faster computations and draws less
power, making it vital to edge development. Edge devices typically have tight resource constraints
with compute, memory, and power, which are impossible tomeet for many of the deepNNmodels
of today. Furthermore, edge processors do not support floating point operations, making integer
quantization particularly important for chips like GAP-8, a RISC-V SoC for edge inference with a
dedicated CNN accelerator, which only support integer arithmetic..

One hardware platform utilizing quantization is the ARM Cortex-M group of 32-bit RISC ARM
processor cores. They leverage fixed-point quantization with power of two scaling factors so that
quantization and dequantization can be efÏciently done by bit shifting. Additionally, Google Edge
TPUs, Google’s emerging solution for running inference at the edge, is designed for small, low-
powered devices and can only support 8-bit arithmetic. Recently, there has been significant strides
in the computing power of edge processors, enabling the deployment and inference of costly NN
models previously limited to servers.

In addition to being an indispensable technique for many edge processors, quantization has also
brought noteworthy improvements to non-edge processors such as encouraging such processors
to meet the Service Level Agreement (SLA) requirements such as 99th percentile latency.

Thus, quantization combined with efÏcient low-precision logic and dedicated deep learning accel-
erators, has been one crucial driving force for the evolution of such edge processors.

34.4. EfÏcient Hardware Implementation

EfÏcient hardware implementation transcends the selection of suitable components; it requires a
holistic understanding of how software will interact with underlying architectures. The essence of
achieving peak performance in TinyML applications lies not only in refining algorithms to hard-
ware but also in ensuring that the hardware is strategically tailored to support these algorithms.
This synergy between hardware and software is crucial. As we delve deeper into the intricacies
of efÏcient hardware implementation, the significance of a co-design approach, where hardware
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Figure 34.37. Throughput comparison of different commerical edge processors for NN inference at the edge
(Gholami et al. (2021)).

and software are developed in tandem, becomes increasingly evident. This section provides an
overview of the techniques of how hardware and the interactions between hardware and software
can be optimized to improve models performance.

34.4.1. Hardware-Aware Neural Architecture Search

Focusing only on the accuracy when performing Neural Architecture Search leads to models that
are exponentially complex and require increasingmemory and compute. This has lead to hardware
constraints limiting the exploitation of the deep learning models at their full potential. Manually
designing the architecture of the model is even harder when considering the hardware variety
and limitations. This has lead to the creation of Hardware-aware Neural Architecture Search that
incorporate the hardware contractions into their search and optimize the search space for a specific
hardware and accuracy. HW-NAS can be categorized based how it optimizes for hardware. We
will briefly explore these categories and leave links to related papers for the interested reader.

34.4.1.1. Single Target, Fixed Platfrom Configuration

The goal here is to find the best architecture in terms of accuracy and hardware efÏciency for one
fixed target hardware. For a specific hardware, the ArduinoNicla Vision for example, this category
of HW-NAS will look for the architecture that optimizes accuracy, latency, energy consumption,
etc.
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Figure 34.38. Taxonomy of HW-NAS (Benmeziane et al. 2021)

34.4.1.1.1. Hardware-aware Search Strategy

Here, the search is a multi-objective optimization problem, where both the accuracy and hardware
cost guide the searching algorithm to find the most efÏcient architecture (Tan et al. 2019; Cai, Zhu,
and Han 2019; B. Wu et al. 2019).

34.4.1.1.2. Hardware-aware Search Space

Here, the search space is restricted to the architectures that perform well on the specific hardware.
This can be achieved by either measuring the operators (Conv operator, Pool operator, …) perfor-
mance, or define a set of rules that limit the search space. (L. L. Zhang et al. 2020)

34.4.1.2. Single Target, Multiple Platform Configurations

Some hardwares may have different configurations. For example, FPGAs have Configurable Logic
Blocks (CLBs) that can be configured by the firmware. This method allows for the HW-NAS to
explore different configurations. (Jiang et al. 2019; Ho Yoon et al. 2012)

34.4.1.3. Multiple Targets

This category aims at optimizing a single model for multiple hardwares. This can be helpful for
mobile devices development as it can optimize to different phones models. (Chu et al. 2021; Jiang
et al. 2019)
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34.4.1.4. Examples of Hardware-Aware Neural Architecture Search

34.4.1.4.1. TinyNAS

TinyNAS adopts a two stage approach to finding an optimal architecture for model with the con-
straints of the specific microcontroller in mind.

First, TinyNAS generate multiple search spaces by varying the input resolution of the model, and
the number of channels of the layers of the model. Then, TinyNAS chooses a search space based
on the FLOPs (Floating Point Operations Per Second) of each search space

Then, TinyNAS performs a search operation on the chosen space to find the optimal architecture
for the specific constraints of the microcontroller. (J. Lin et al. 2020)

Figure 34.39. A diagram showing how search spaces with high probability of finding an architecture with
large number of FLOPs provide models with higher accuracy (J. Lin et al. 2020)

34.4.1.5. Topology-Aware NAS

Focuses on creating and optimizing a search space that aligns with the hardware topology of the
device. (T. Zhang et al. 2020)

34.4.2. Challenges of Hardware-Aware Neural Architecture Search

While HW-NAS carries high potential for finding optimal architectures for TinyML, it comes with
some challenges. Hardware Metrics like latency, energy consumption and hardware utilization
are harder to evaluate than the metrics of accuracy or loss. They often require specilized tools
for precise measurements. Moreover, adding all these metrics leads to a much bigger search space.
This leads toHW-NASbeing time-consuming and expensive. It has to be applied to every hardware
for optimal results, moreover, meaning that if one needs to deploy the model on multiple devices,
the search has to be conductedmultiple times andwill result in differentmodels, unless optimizing
for all of themwhichmeans less accuracy. Finally, hardware changes frequently, andHW-NASmay
need to be conducted on each version.
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34.4.3. Kernel Optimizations

Kernel Optimizations aremodificationsmade to the kernel to enhance the performance ofmachine
learning models onf resource-constrained devices. We will separate kernel optimizations into two
types.

34.4.3.1. General Kernel Optimizations

These are kernel optimizations that all devices can benefit from. They provide technics to convert
the code to more efÏcient instructions.

34.4.3.1.1. Loop unrolling

Instead of having a loopwith loop control (incrementing the loop counter, checking the loop termi-
nation condition) the loop can be unrolled and the overhead of loop control can be omitted. This
may also provide additional opportunities for parallelism that may not be possible with the loop
structure. This can be particularly beneficial for tight loops, where the boy of the loop is a small
number of instructions with a lot of iterations.

34.4.3.1.2. Blocking

Blocking is used to make memory access patterns more efÏcient. If we have three computations
the first and the last need to access cache A and the second needs to access cache B, blocking blocks
the first two computations together to reduce the number of memory reads needed.

34.4.3.1.3. Tiling

Similarly to blocking, tiling divides data and computation into chunks, but extends beyond cache
improvements. Tiling creates independent partitions of computation that can be run in parallel,
which can result in significant performance improvements.:

34.4.3.1.4. Optimized Kernel Libraries

This comprises developing optimized kernels that take full advantage of a specific hardware. One
example is the CMSIS-NN library, which is a collection of efÏcient neural network kernels devel-
oped to optimize the performance andminimize thememory footprint ofmodels onArmCortex-M
processors, which are common on IoT edge devices. The kernel leverage multiple hardware capa-
bilities of Cortex-M processors like Single Instruction Multple Data (SIMD), Floating Point Units
(FPUs) andM-Profile Vector Extensions (MVE). These optimization make common operations like
matrix multiplications more efÏcient, boosting the performance of model operations on Cortex-M
processors. (Lai, Suda, and Chandra 2018b)
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34.4.4. Compute-in-Memory (CiM)

This is one example of Algorithm-Hardware Co-design. CiM is a computing paradigm that per-
forms computation within memory. Therefore, CiM architectures allow for operations to be per-
formed directly on the stored data, without the need to shuttle data back and forth between sep-
arate processing and memory units. This design paradigm is particularly beneficial in scenarios
where data movement is a primary source of energy consumption and latency, such as in TinyML
applications on edge devices. Through algorithm-hardware co-design, the algorithms can be op-
timized to leverage the unique characteristics of CiM architectures, and conversely, the CiM hard-
ware can be customized or configured to better support the computational requirements and char-
acteristics of the algorithms. This is achieved by using the analog properties of memory cells, such
as addition and multiplication in DRAM. (C. Zhou et al. 2021)

Figure 34.40. A figure showing how Computing in Memory can be used for always-on tasks to ofÒoad tasks
of the power consuming processing unit (C. Zhou et al. 2021)

34.4.5. Memory Access Optimization

Different devicesmay have differentmemory hierarchies. Optimizing for the specificmemory hier-
archy in the specific hardware can lead to great performance improvements by reducing the costly
operations of reading and writing to memory. Dataflow optimization can be achieved by optimiz-
ing for reusing data within a single layer and across multiple layers. This dataflow optimization
can be tailored to the specificmemory hierarchy of the hardware, which can lead to greater benefits
than general optimizations for different hardwares.

34.4.5.1. Leveraging Sparsity

Pruning is a fundamental approach to compress models to make them compatible with resource
constrained devices. This results in sparse models where a lot of weights are 0’s. Therefore, lever-
aging this sparsity can lead to significant improvements in performance. Tools were created to
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achieve exactly this. RAMAN, is a sparseTinyML accelerator designed for inference on edge de-
vices. RAMAN overlap input and output activations on the samememory space, reducing storage
requirements by up to 50%. (Krishna et al. 2023)

34.4.5.2. Optimization Frameworks

Optimization Frameworks have been introduced to exploit the specific capabilities of the hard-
ware to accelerate the software. One example of such a framework is hls4ml. This open-source
software-hardware co-design workflow aids in interpreting and translating machine learning al-
gorithms for implementation with both FPGA and ASIC technologies, enhancing their. Features
such as network optimization, new Python APIs, quantization-aware pruning, and end-to-end
FPGA workflows are embedded into the hls4ml framework, leveraging parallel processing units,
memory hierarchies, and specialized instruction sets to optimize models for edge hardware. More-
over, hls4ml is capable of translating machine learning algorithms directly into FPGA firmware.

Figure 34.41. A Diagram showing the workflow with the hls4ml framework (Fahim et al. 2021)

One other framework for FPGAs that focuses on a holistic approach is CFU Playground (Prakash
et al. 2022)

34.4.5.3. Hardware Built Around Software

In a contrasting approach, hardware can be custom-designed around software requirements to op-
timize the performance for a specific application. This paradigm creates specialized hardware to
better adapt to the specifics of the software, thus reducing computational overhead and improving
operational efÏciency. One example of this approach is a voice-recognition application by (J. Kwon
and Park 2021). The paper proposes a structure wherein preprocessing operations, traditionally
handled by software, are allocated to custom-designed hardware. This technique was achieved
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by introducing resistor-transistor logic to an inter-integrated circuit sound module for windowing
and audio raw data acquisition in the voice-recognition application. Consequently, this ofÒoading
of preprocessing operations led to a reduction in computational load on the software, showcas-
ing a practical application of building hardware around software to enhance the efÏciency and
performance.

Figure 34.42. A diagram showing how an FPGA was used to ofÒoad data preprocessing of the general
purpose computation unit. (J. Kwon and Park 2021)

34.4.5.4. SplitNets

SplitNets were introduced in the context of Head-Mounted systems. They distribute the Deep
Neural Networks (DNNs) workload among camera sensors and an aggregator. This is particularly
compelling the in context of TinyML. The SplitNet framework is a split-aware NAS to find the
optimal neural network architecture to achieve good accuracy, split the model among the sensors
and the aggregator, and minimize the communication between the sensors and the aggregator.
Minimal communication is important in TinyML where memory is highly constrained, this way
the sensors conduct some of the processing on their chips and then they send only the necessary
information to the aggregator. When testing on ImageNet, SplitNetswere able to reduce the latency
by one order of magnitude on head-mounted devices. This can be helpful when the sensor has its
own chip. (Dong et al. 2022)

34.4.5.5. Hardware Specific Data Augmentation

Each edge device may possess unique sensor characteristics, leading to specific noise patterns that
can impact model performance. One example is audio data, where variations stemming from the
choice of microphone are prevalent. Applications such as Keyword Spotting can experience sub-
stantial enhancements by incorporating data recorded from devices similar to those intended for
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Figure 34.43. A chart showing a comparison between the performance of SplitNets vs all on sensor and all
on aggregator approaches. (Dong et al. 2022)
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deployment. Fine-tuning of existing models can be employed to adapt the data precisely to the
sensor’s distinctive characteristics.

34.5. Software and Framework Support

While all of the aforementioned techniques like pruning, quantization, and efÏcient numerics are
well-known, they would remain impractical and inaccessible without extensive software support.
For example, directly quantizing weights and activations in a model would require manually mod-
ifying the model definition and inserting quantization operations throughout. Similarly, directly
pruning model weights requires manipulating weight tensors. Such tedious approaches become
infeasible at scale.

Without the extensive software innovation across frameworks, optimization tools and hardware
integration, most of these techniques would remain theoretical or only viable to experts. Without
framework APIs and automation to simplify applying these optimizations, they would not see
adoption. Software support makes them accessible to general practitioners and unlocks real-world
benefits. In addition, issues such as hyperparameter tuning for pruning, managing the trade-off
betweenmodel size and accuracy, and ensuring compatibilitywith target devices pose hurdles that
developers must navigate.

34.5.1. Built-in Optimization APIs

Major machine learning frameworks like TensorFlow, PyTorch, and MXNet provide libraries and
APIs to allow common model optimization techniques to be applied without requiring custom
implementations. For example, TensorFlow offers the TensorFlow Model Optimization Toolkit
which contains modules like:

• quantization - Applies quantization-aware training to convert floating point models to lower
precision like int8 with minimal accuracy loss. Handles weight and activation quantization.

• sparsity - Provides pruning APIs to induce sparsity and remove unnecessary connections in
models like neural networks. Can prune weights, layers, etc.

• clustering - Supports model compression by clustering weights into groups for higher com-
pression rates.

These APIs allow users to enable optimization techniques like quantization and pruning with-
out directly modifying model code. Parameters like target sparsity rates, quantization bit-widths
etc. can be configured. Similarly, PyTorch provides torch.quantization for converting models to
lower precision representations. TorchTensor and TorchModule form the base classes for quanti-
zation support. It also offers torch.nn.utils.prune for built-in pruning of models. MXNet offers
gluon.contrib layers that add quantization capabilities like fixed point rounding and stochastic
rounding of weights/activations during training. This allows quantization to be readily included
in gluon models.

The core benefit of built-in optimizations is that users can apply them without re-implementing
complex techniques. This makes optimized models accessible to a broad range of practitioners. It
also ensures best practices are followed by building on research and experience implementing the
methods. As new optimizations emerge, frameworks strive to provide native support and APIs

https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/quantization/keras/quantize_model
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/clustering
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where possible to further lower the barrier to efÏcient ML. The availability of these tools is key to
widespread adoption.

34.5.2. Automated Optimization Tools

Automated optimization tools provided by frameworks can analyze models and automatically ap-
ply optimizations like quantization, pruning, and operator fusion to make the process easier and
accessible without excessive manual tuning. In effect, this builds on top of the previous section.
For example, TensorFlow provides the TensorFlow Model Optimization Toolkit which contains
modules like:

• QuantizationAwareTraining - Automatically quantizes weights and activations in a model to
lower precision like UINT8 or INT8 with minimal accuracy loss. It inserts fake quantization
nodes during training so that the model can learn to be quantization-friendly.

• Pruning - Automatically removes unnecessary connections in a model based on analysis of
weight importance. Can prune entire filters in convolutional layers or attention heads in
transformers. Handles iterative re-training to recover any accuracy loss.

• GraphOptimizer - Applies graph optimizations like operator fusion to consolidate operations
and reduce execution latency, especially for inference.

Figure 34.44. Before/after diagram showing GraphOptimizer fusing operators in a sample graph

https://www.tensorflow.org/model_optimization/guide/quantization/training
https://www.tensorflow.org/model_optimization/guide/pruning/pruning_with_keras
https://www.tensorflow.org/guide/graph_optimization
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These automated modules only require the user to provide the original floating point model,
and handle the end-to-end optimization pipeline including any re-training to regain accuracy.
Other frameworks like PyTorch also offer increasing automation support, for example through
torch.quantization.quantize_dynamic. Automated optimization makes efÏcient ML accessible to
practitioners without optimization expertise.

34.5.3. Hardware Optimization Libraries

Hardware libraries like TensorRT and TensorFlow XLA allow models to be highly optimized for
target hardware through techniques that we discussed earlier.

Quantization: For example, TensorRT and TensorFlow Lite both support quantization of models
during conversion to their format. This provides speedups on mobile SoCs with INT8/INT4 sup-
port.

Kernel Optimization: For instance, TensorRT does auto-tuning to optimize CUDA kernels based
on the GPU architecture for each layer in the model graph. This extracts maximum throughput.

Operator Fusion: TensorFlowXLA does aggressive fusion to create optimized binary for TPUs. On
mobile, frameworks like NCNN also support fused operators. ‘ Hardware-Specific Code: Libraries
are used to generate optimized binary code specialized for the target hardware. For example, Ten-
sorRT uses Nvidia CUDA/cuDNN libraries which are hand-tuned for each GPU architecture. This
hardware-specific coding is key for performance. OnTinyMLdevices, this canmean assembly code
optimized for a Cortex M4 CPU for example. Vendors provide CMSIS-NN and other libraries.

Data Layout Optimizations - We can efÏciently leverage memory hierarchy of hardware like cache
and registers through techniques like tensor/weight rearrangement, tiling, and reuse. For example,
TensorFlow XLA optimizes buffer layouts to maximize TPU utilization. This helps any memory
constrained systems.

Profiling-based Tuning - We can use profiling tools to identify bottlenecks. For example, adjust
kernel fusion levels based on latency profiling. On mobile SoCs, vendors like Qualcomm provide
profilers in SNPE to find optimization opportunities in CNNs. This data-driven approach is im-
portant for performance.

By integrating frameworkmodels with these hardware libraries through conversion and execution
pipelines, ML developers can achieve significant speedups and efÏciency gains from low-level op-
timizations tailored to the target hardware. The tight integration between software and hardware
is key to enabling performant deployment of ML applications, especially on mobile and TinyML
devices.

34.5.4. Visualizing Optimizations

Implementing model optimization techniques without visibility into the effects on the model can
be challenging. Dedicated tooling or visualization tools can provide critical and useful insight
into model changes and helps track the optimization process. Let’s consider the optimizations we
considered earlier, such as pruning for sparsity and quantization.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
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34.5.4.0.1. Sparsity (ADD SOME LINKS INTO HERE)

For example, consider sparsity optimizations. Sparsity visualization tools can provide critical in-
sights into prunedmodels bymapping out exactlywhichweights have been removed. For example,
sparsity heat maps can use color gradients to indicate the percentage of weights pruned in each
layer of a neural network. Layers with higher percentages pruned appear darker. This identifies
which layers have been simplified the most by pruning. (Souza (2020))

Figure 34.45. A heat map showing a sparse neural network.

Trend plots can also track sparsity over successive pruning rounds - they may show initial rapid
pruning followed by more gradual incremental increases. Tracking the current global sparsity
along with statistics like average, minimum, and maximum sparsity per-layer in tables or plots
provides an overview of the model composition. For a sample convolutional network, these tools
could reveal that the first convolution layer is pruned 20% while the final classifier layer is pruned
70% given its redundancy. The global model sparsity may increase from 10% after initial pruning
to 40% after five rounds.

By making sparsity data visually accessible, practitioners can better understand exactly how their
model is being optimized and which areas are being impacted. The visibility enables them to fine-
tune and control the pruning process for a given architecture.

Sparsity visualization turns pruning into a transparent technique instead of a black-box opera-
tion.

34.5.4.0.2. Quantization

Converting models to lower numeric precisions through quantization introduces errors that can
impact model accuracy if not properly tracked and addressed. Visualizing quantization error dis-
tributions provides valuable insights into the effects of reduced precision numerics applied to dif-
ferent parts of a model. For this, histograms of the quantization errors for weights and activations
can be generated. These histograms can reveal the shape of the error distribution - whether they
resemble a Gaussian distribution or contain significant outliers and spikes. Large outliers may in-
dicate issues with particular layers handling the quantization. Comparing the histograms across
layers highlights any problem areas standing out with abnormally high errors.

https://www.numenta.com/blog/2020/10/30/case-for-sparsity-in-neural-networks-part-2-dynamic-sparsity/
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Figure 34.46. A figure showing the sparse columns of the filter matrix of a CNN that are aggregated to
create a dense matrix that, leading to smaller dimensions in the matrix and more efÏcient computations (H.
T. Kung, McDanel, and Zhang 2018)

Figure 34.47. A smooth histogram of quantization error. (Kuzmin et al. 2022)
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Activation visualizations are also important to detect overflow issues. By color mapping the activa-
tions before and after quantization, any values pushed outside the intended ranges become visible.
This reveals saturation and truncation issues that could skew the information flowing through
the model. Detecting these errors allows recalibrating activations to prevent loss of information.
(Mandal (2022))

Figure 34.48. Color mapping of activations.

Other techniques, such as tracking the overall mean square quantization error at each step of the
quantization-aware training process identifies fluctuations and divergences. Sudden spikes in the
tracking plot may indicate points where quantization is disrupting the model training. Monitor-
ing this metric builds intuition on model behavior under quantization. Together these techniques
turn quantization into a transparent process. The empirical insights enable practitioners to prop-

https://medium.com/exemplifyml-ai/visualizing-neural-network-activation-a27caa451ff
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erly assess quantization effects. They pinpoint areas of the model architecture or training process
to recalibrate based on observed quantization issues. This helps achieve numerically stable and
accurate quantized models.

Providing this data enables practitioners to properly assess the impact of quantization and identify
potential problem areas of the model to recalibrate or redesign to be more quantization friendly.
This empirical analysis builds intuition on achieving optimal quantization.

Visualization tools can provide insights that help practitioners better understand the effects of
optimizations on their models. The visibility enables correcting issues early before accuracy or
performance is impacted significantly. It also aids applying optimizations more effectively for spe-
cific models. These optimization analytics help build intuition when transitioning models to more
efÏcient representations.

34.5.5. Model Conversion and Deployment

Once models have been successfully optimized in frameworks like TensorFlow and PyTorch, spe-
cialized model conversion and deployment platforms are needed to bridge the gap to running
them on target devices.

TensorFlow Lite - TensorFlow’s platform to convert models to a lightweight format optimized for
mobile, embedded and edge devices. Supports optimizations like quantization, kernel fusion, and
stripping away unused ops. Models can be executed using optimized TensorFlow Lite kernels on
device hardware. Critical for mobile and TinyML deployment.

ONNX Runtime - Performs model conversion and inference for models in the open ONNX model
format. Provides optimized kernels, supports hardware accelerators likeGPUs, and cross-platform
deployment from cloud to edge. Allows framework-agnostic deployment.

PyTorch Mobile - Enables PyTorch models to be run on iOS and Android by converting to mobile-
optimized representations. Provides efÏcient mobile implementations of ops like convolution and
special functions optimized for mobile hardware.

These platforms integrate with hardware drivers, operating systems, and accelerator libraries on
devices to execute models efÏciently using hardware optimization. They also ofÒoad operations
to dedicated ML accelerators where present. The availability of these proven, robust deployment
platforms bridges the gap between optimizing models in frameworks and actual deployment to
billions of devices. They allow users to focus on model development rather than building cus-
tom mobile runtimes. Continued innovation to support new hardware and optimizations in these
platforms is key to widespread ML optimizations.

By providing these optimized deployment pipelines, the entire workflow from training to device
deployment can leverage model optimizations to deliver performant ML applications. This end-
to-end software infrastructure has helped drive the adoption of on-device ML.
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Figure 34.49. Interoperablily of ONNX
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34.6. Conclusion

In this chapter we’ve discussed model optimization across the software-hardware span. We dove
deep into efÏcient model representation, where we covered the nuances of structured and unstruc-
tured pruning and other techniques for model compression such as knowledge distillation and
matrix and tensor decomposition. We also dove briefly into edge-specific model design at the
parameter and model architecture level, exploring topics like edge-specific models and hardware-
aware NAS.

We then explored efÏcient numerics representations, where we covered the basics of numerics,
numeric encodings and storage, benefits of efÏcient numerics, and the nuances of numeric repre-
sentation with memory usage, computational complexity, hardware compatibility, and tradeoff
scenarios. We finished by honing in on an efÏcient numerics staple: quantization, where we exam-
ined its history, calibration, techniques, and interaction with pruning.

Finally, we looked at how we can make optimizations specific to the hardware we have. We ex-
plored how we can find model architectures tailored to the hardware, make optimizations in the
kernel to better handle the model, and frameworks built to make the most use out of the hardware.
We also looked at how we can go the other way around and build hardware around our specific
software and talked about splitting networks to run on multiple processors available on the edge
device.

By understanding the full picture of the degrees of freedom within model optimization both away
and close to the hardware and the tradeoffs to consider when implementing these methods, prac-
titioners can develop a more thoughtful pipeline for compressing their workloads onto edge de-
vices.

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.
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35. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• Quantization:

– Quantization overview.

– Post-Training Quantization (PTQ).

– Quantization-Aware Training (QAT).

• Pruning.

• Knowledge Distillation.

• Clustering.

• Neural Architecture Search (NAS):

– NAS overview.

– NAS explained.

https://docs.google.com/presentation/d/1cLWQINBY6vsc9Da4MhPgggHoPj2ByY0hpmPjeg5Ucqw/edit
https://docs.google.com/presentation/d/1pH_fkSezVRrVsX2uorC8prqTtOh-R7BBOPvth_KdanU/edit#slide=id.p1
https://docs.google.com/presentation/d/1bLNMHGEhhP7tAp7-FWM3zqDXycRhGBnNp6R_Ov5jVUA/edit#slide=id.p1
https://docs.google.com/presentation/d/1_ndYXxOGKFoGzZ4Yz9t4y1Pf5x5EN2JoW1DkqszimBM/edit
https://docs.google.com/presentation/d/1CXuncak6dQ17QEAUJE9O75tBzqZxVk5-3s3_l53UY4s/edit
https://docs.google.com/presentation/d/1ku1MJnfKoueoH8NEWP1o90XNNn61iOiaKJdtT7JDCrM/edit
https://docs.google.com/presentation/d/1jDymDTu27I9zBbfpd8uruEKwpDaz-Ze2IqwmqUh3BaE/edit#slide=id.p1
https://docs.google.com/presentation/d/1T-QDAquuVa1lL8B5bQ87FCWozFLntZOKxpzbWtbIcpw/edit#slide=id.p1
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36. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.
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37. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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38. AI Acceleration

Figure 38.1. DALL·E 3 Prompt: Create an intricate and colorful representation of a System on Chip
(SoC) design in a rectangular format. Showcase a variety of specialized machine learning accel-
erators and chiplets, all integrated into the processor. Provide a detailed view inside the chip,
highlighting the rapid movement of electrons. Each accelerator and chiplet should be designed to
interact with neural network neurons, layers, and activations, emphasizing their processing speed.
Depict the neural networks as a network of interconnected nodes, with vibrant data streams flow-
ing between the accelerator pieces, showcasing the enhanced computation speed.

Machine learning has emerged as a transformative technology across many industries. However,
deploying ML capabilities in real-world edge devices faces challenges due to limited computing
resources. Specialized hardware acceleration has become essential to enable high-performance
machine learning under these constraints. Hardware accelerators optimize compute-intensive op-
erations like inference using custom silicon optimized for matrix multiplications. This provides
dramatic speedups over general-purpose CPUs, unlocking real-time execution of advanced mod-
els on size, weight and power-constrained devices.

This chapter provides essential background on hardware acceleration techniques for embedded
machine learning and their tradeoffs. The goal is to equip readers to make informed hardware
selections and software optimizations to develop performant on-device ML capabilities.
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Learning Objectives

• Understand why hardware acceleration is needed for AI workloads

• Survey key accelerator options like GPUs, TPUs, FPGAs, and ASICs and their tradeoffs

• Learn about programming models, frameworks, compilers for AI accelerators

• Appreciate the importance of benchmarking and metrics for hardware evaluation

• Recognize the role of hardware-software co-design in building efÏcient systems

• Gain exposure to cutting-edge research directions like neuromorphics and quantum
computing

• Understand how ML is beginning to augment and enhance hardware design

38.1. Introduction

Machine learning has emerged as a transformative technology across many industries, enabling
systems to learn and improve from data. To deploy machine learning capabilities in real-world
environments, there is a growing demand for embedded ML solutions - where models are built
into edge devices like smartphones, home appliances and autonomous vehicles. However, these
edge devices have limited computing resources compared to data center servers.

To enable high-performance machine learning on resource-constrained edge devices, specialized
hardware acceleration has become essential. Hardware acceleration refers to using custom sili-
con chips and architectures to ofÒoad compute-intensive ML operations from the main processor.
In neural networks, the most intensive computations are the matrix multiplications during infer-
ence. Hardware accelerators can optimize these matrix operations, providing 10-100x speedups
over general-purpose CPUs. This acceleration unlocks the ability to run advanced neural network
models in real-time on devices with size, weight and power constraints.

This chapter overviews hardware acceleration techniques for embedded machine learning and
their design tradeoffs. The goal of this chapter is to equip readerswith essential background on em-
bedded ML acceleration. This will enable informed hardware selection and software optimization
to develop high-performance machine learning capabilities on edge devices.

38.2. Background and Basics

38.2.1. Historical Background

The origins of hardware acceleration date back to the 1960s, with the advent of floating point math
co-processors to ofÒoad calculations from themain CPU.One early examplewas the Intel 8087 chip
released in 1980 to accelerate floating point operations for the 8086 processor. This established the
practice of using specialized processors to handle math-intensive workloads efÏciently.

https://en.wikipedia.org/wiki/Intel_8087
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In the 1990s, the first graphics processing units (GPUs) emerged to process graphics pipelines for
rendering and gaming rapidly. Nvidia’s GeForce 256 in 1999 was one of the earliest programmable
GPUs capable of running custom software algorithms. GPUs exemplify domain-specific fixed-
function accelerators as well as evolving into parallel programmable accelerators.

In the 2000s, GPUswere applied to general-purpose computing underGPGPU. Their highmemory
bandwidth and computational throughput made them well-suited for math-intensive workloads.
This included breakthroughs in using GPUs to accelerate training of deep learning models such as
AlexNet in 2012.

In recent years, Google’s Tensor Processing Units (TPUs) represent customized ASICs specifically
architected for matrix multiplication in deep learning. Their optimized tensor cores achieve higher
TeraOPS/watt thanCPUs orGPUs during inference. Ongoing innovation includesmodel compres-
sion techniques like pruning and quantization to fit larger neural networks on edge devices.

This evolution demonstrates how hardware acceleration has focused on solving compute-intensive
bottlenecks, from floating point math to graphics to matrix multiplication for ML. Understanding
this history provides a crucial context for specialized AI accelerators today.

38.2.2. The Need for Acceleration

The evolution of hardware acceleration is closely tied to the broader history of computing. In the
early decades, chip design was governed by Moore’s Law and Dennard Scaling, which observed
that the number of transistors on an integrated circuit double every year and that as transistors
become smaller their peformance (speed) increased while power density (power per unit area)
remains constant, respectively. These two laws were held through the single-core era. Figure 38.2
shows the trends of different microprocessor metrics. As the figure denotes, Dennard Scaling fails
around themid-2000s, notice how the clock speed (frequency) remains almost constant even as the
number of transistors kept increasing.

However, as D. A. Patterson and Hennessy (2016) describe, technological constraints eventually
forced a transition to the multicore era, with chips containing multiple processing cores to deliver
gains in performance. As power limitations prevented further scaling, this led to “dark silicon”
(Dark Silicon) where not all chip areas could be simultaneously active (Xiu 2019).

The concept of dark silicon emerged as a consequence of these constraints. “Dark silicon” refers
to portions of the chip that cannot be powered on at the same time due to thermal and power
limitations. Essentially, as the density of transistors increased, the proportion of the chip that could
be actively used without overheating or exceeding power budgets shrank.

This phenomenon meant that while chips had more transistors, not all could be operational si-
multaneously, limiting potential performance gains. This power crisis necessitated a shift to the
accelerator era, with specialized hardware units tailored for specific tasks to maximize efÏciency.
The explosion inAIworkloads further drove demand for customized accelerators. Enabling factors
included new programming languages, software tools, and manufacturing advances.

Fundamentally, hardware accelerators are evaluated on performance, power, and silicon area
(PPA). The nature of the target application - whether memory-bound or compute-bound - heavily
influences the design. For example, memory-bound workloads demand high bandwidth and low
latency access, while compute-bound applications require maximal computational throughput.

https://en.wikipedia.org/wiki/History_of_the_graphics_processor
https://en.wikipedia.org/wiki/GeForce_256
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://en.wikipedia.org/wiki/Tensor_processing_unit
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1609.07061
https://en.wikipedia.org/wiki/Dark_silicon
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Figure 38.2. Microprocessor trends. Credit: Karl Rupp.

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
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38.2.3. General Principles

The design of specialized hardware accelerators involves navigating complex trade-offs between
performance, power efÏciency, silicon area, and workload-specific optimizations. This section out-
lines core considerations andmethodologies for achieving an optimal balance based on application
requirements and hardware constraints.

38.2.3.1. Performance Within Power Budgets

Performance refers to the throughput of computational work per unit time, commonly measured
in floating point operations per second (FLOPS) or frames per second (FPS). Higher performance
enables completing more work, but power consumption rises with activity.

Hardware accelerators aim tomaximize performancewithin set power budgets. This requires care-
ful balancing of parallelism, clock frequency of the chip, operating voltage of the chip, workload
optimization and other techniques to maximize operations per watt.

• Performance = Throughput * EfÏciency
• Throughput ~= Parallelism * Clock Frequency
• EfÏciency = Operations / Watt

For example, GPUs achieve high throughput via massively parallel architectures. However, their
efÏciency is lower than customized application-specific integrated circuits (ASICs) like Google’s
TPU that optimize for a specific workload.

38.2.3.2. Managing Silicon Area and Costs

Chip area directly impacts manufacturing cost. Larger die sizes require more materials, lower
yields, and higher defect rates. Mulit-die packages help scale designs but add packaging complex-
ity. Silicon area depends on:

• Computational resources - e.g. number of cores, memory, caches
• Manufacturing process node - smaller transistors enable higher density
• Programming model - programmed accelerators require more flexibility

Accelerator design involves squeezing maximim performance within area constraints. Techniques
like pruning and compression help fit larger models on chip.

38.2.3.3. Workload-Specific Optimizations

The target workload dictates optimal accelerator architectures. Some of the key considerations
include:

• Memory vs Compute boundedness: Memory-bound workloads require more memory
bandwidth, while compute-bound apps need arithmetic throughput.

• Data locality: Data movement should be minimized for efÏciency. Near-compute memory
helps.
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• Bit-level operations: Low precision datatypes like INT8/INT4 optimize compute density.
• Data parallelism: Multiple replicated compute units allow parallel execution.
• Pipelining: Overlapped execution of operations increases throughput.

Understanding workload characteristics enables customized acceleration. For example, convolu-
tional neural networks use sliding window operations that are optimally mapped to spatial arrays
of processing elements.

By navigating these architectural tradeoffs, hardware accelerators can delivermassive performance
gains and enable emerging applications in AI, graphics, scientific computing and other domains.

38.2.3.4. Sustainable Hardware Design

In recent years, AI sustainability has become a pressing concern driven by two key factors - the
exploding scale of AI workloads and their associated energy consumption.

First, the size of AI models and datasets has rapidly grown. For example, the amount of compute
used to train state-of-the-art models doubles every 3.5 months based on OpenAI’s AI compute
trends. This exponential growth requires massive computational resources in data centers.

Second, the energy usage of AI training and inference presents sustainability challenges. Data
centers running AI applications now consume substantial amounts of energy, contributing to high
carbon emissions. It’s estimated that training a large AI model can have a carbon footprint of
626,000 pounds of CO2 equivalent, almost 5 times the lifetime emissions of an average car.

As a result, AI research and practice must prioritize energy efÏciency and carbon impact alongside
accuracy. There is increasing focus on model efÏciency, data center design, hardware optimization
and other solutions to improve sustainability. Striking a balance between AI progress and environ-
mental responsibility has emerged as a key consideration and an area of active research across the
field.

The scale of AI systems is expected to keep growing. Developing sustainable AI is crucial for man-
aging the environmental footprint and enabling widespread beneficial deployment of this trans-
formative technology.

We will learn about Sustainable AI in a later chapter where we will go into more detail about it.

38.3. Accelerator Types

Hardware accelerators can take on many forms. They can exist as a widget (like the Neural En-
gine in the Apple M1 chip) or as entire chips specially designed to perform certain tasks very well.
In this section, we will examine processors for machine learning workloads along the spectrum
from highly specialized ASICs to more general-purpose CPUs. We first focus on custom hard-
ware purpose-built for AI to understand the most extreme optimizations possible when design
constraints are removed. This establishes a ceiling for performance and efÏciency.

We then progressively consider more programmable and adaptable architectures with discussions
of GPUs and FPGAs. These make tradeoffs in customization to maintain flexibility. Finally, we

../sustainable_ai/sustainable_ai.qmd
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
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cover general-purpose CPUs which sacrifice optimizations for a particular workload in exchange
for versatile programmability across applications.

By structuring the analysis along this spectrum, we aim to illustrate the fundamental tradeoffs
in accelerator design between utilization, efÏciency, programmability, and flexibility. The optimal
balance point depends on the constraints and requirements of the target application. This spectrum
perspective provides a framework for reasoning about hardware choices for machine learning and
the capabilities required at each level of specialization.

Figure 38.3 illustrates the complex interplay between flexibility, performance, functional diversity,
and area of architecture design. Notice how the ASIC is on the bottom-right corner, with minimal
area, flexibility, and power consumption and maximal performance, due to its highly specialized
application-specific nature. A key tradeoff is functinoal diversity vs performance: general purpose
architechtures can serve diverse applications but their application performance is degraded as
compared to more customized architectures.

The progression begins with the most specialized option, ASICs purpose-built for AI, to ground
our understanding in the maximum possible optimizations before expanding to more generaliz-
able architectures. This structured approach aims to elucidate the accelerator design space.

38.3.1. Application-Specific Integrated Circuits (ASICs)

AnApplication-Specific Integrated Circuit (ASIC) is a type of integrated circuit (IC) that is custom-
designed for a specific application or workload, rather than for general-purpose use. Unlike CPUs
and GPUs, ASICs do not support multiple applications or workloads. Rather, they are optimized
to perform a single task extremely efÏciently. The Google TPU is an example of an ASIC.

ASICs achieve this efÏciency by tailoring every aspect of the chip design - the underlying logic
gates, electronic components, architecture, memory, I/O, and manufacturing process - specifically
for the target application. This level of customization allows removing any unnecessary logic or
functionality required for general computation. The result is an IC that maximizes performance
and power efÏciency on the desired workload. The efÏciency gains from application-specific hard-
ware are so substantial that these software-centric firms are dedicating enormous engineering re-
sources to designing customized ASICs.

The rise of more complex machine learning algorithms has made the performance advantages
enabled by tailored hardware acceleration a key competitive differentiator, even for companies
traditionally concentrated on software engineering. ASICs have become a high-priority investment
for major cloud providers aiming to offer faster AI computation.

38.3.1.1. Advantages

ASICs provide significant benefits over general purpose processors like CPUs and GPUs due to
their customized nature. The key advantages include the following.

https://en.wikipedia.org/wiki/Integrated_circuit
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Figure 38.3. Design tradeoffs. Credit: S. Huang, Waeĳen, and Corporaal (2022)
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38.3.1.1.1. Maximized Performance and EfÏciency

The most fundamental advantage of ASICs is the ability to maximize performance and power ef-
ficiency by customizing the hardware architecture specifically for the target application. Every
transistor and design aspect is optimized for the desired workload - no unnecessary logic or over-
head is needed to support generic computation.

For example, Google’s Tensor Processing Units (TPUs) contain architectures tailored exactly for
the matrix multiplication operations used in neural networks. To design the TPU ASICs, Google’s
engineering teams need to clearly define the chip specifications, write the architecture description
using Hardware Description Languages like Verilog, synthesize the design to map it to hardware
components, and carefully place-and-route transistors and wires based on the fabrication process
design rules. This complex design process, known as very-large-scale integration (VLSI), allows
them to build an IC optimized just for machine learning workloads.

As a result, TPUASICs achieve over an order of magnitude higher efÏciency in operations per watt
than general purpose GPUs onMLworkloads bymaximizing performance andminimizing power
consumption through a full-stack custom hardware design.

38.3.1.1.2. Specialized On-Chip Memory

ASICs incorporate on-chip SRAM and caches specifically optimized to feed data to the compu-
tational units. For example, Apple’s M1 system-on-a-chip contains special low-latency SRAM to
accelerate the performance of its Neural Engine machine learning hardware. Large local memory
with high bandwidth enables keeping data as close as possible to the processing elements. This
provides tremendous speed advantages compared to off-chip DRAM access, which is up to 100x
slower.

Data locality and optimizing memory hierarchy is crucial for both high throughput and low
power.Below is a table “Numbers Everyone Should Know” from Jeff Dean.

Operation Latency Notes

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1 KB bytes over 1 Gbps network 10,000 ns 10 us
Read 4 KB randomly from SSD 150,000 ns 150 us
Read 1 MB sequentially from memory 250,000 ns 250 us
Round trip within same datacenter 500,000 ns 0.5 ms
Read 1 MB sequentially from SSD 1,000,000 ns 1 ms
Disk seek 10,000,000 ns 10 ms
Read 1 MB sequentially from disk 20,000,000 ns 20 ms
Send packet CA->Netherlands->CA 150,000,000 ns 150 ms

https://cloud.google.com/tpu/docs/intro-to-tpu
https://www.verilog.com/
https://research.google/people/jeff/
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38.3.1.1.3. Custom Datatypes and Operations

Unlike general purpose processors, ASICs can be designed to natively support custom datatypes
like INT4 or bfloat16 that are widely used in ML models. For instance, Nvidia’s Ampere GPU
architecture has dedicated bfloat16 Tensor Cores to accelerate AI workloads. Low precision
datatypes enable higher arithmetic density and performance. ASICs can also directly incorporate
non-standard operations common inML algorithms as primitive operations - for example, natively
supporting activation functions like ReLU makes execution more efÏcient. We encourage you to
refer to the EfÏcient Numeric Representations chapter for additional details.

38.3.1.1.4. High Parallelism

ASIC architectures can leverage much higher parallelism tuned for the target workload versus gen-
eral purpose CPUs or GPUs. More computational units tailored for the application means more
operations execute simultaneously. Highly parallel ASICs achieve tremendous throughput for
data parallel workloads like neural network inference.

38.3.1.1.5. Advanced Process Nodes

Cutting edge manufacturing processes allow packing more transistors into smaller die areas, in-
creasing density. ASICs designed specifically for high volume applications can better amortize the
costs of bleeding edge process nodes.

38.3.1.2. Disadvantages

38.3.1.2.1. Long Design Timelines

The engineering process of designing and validating an ASIC can take 2-3 years. Synthesizing the
architecture using hardware description languages, taping out the chip layout, and fabricating the
silicon on advanced process nodes involves long development cycles. For example, to tape out a
7nm chip, teams need to carefully define specifications, write the architecture in HDL, synthesize
the logic gates, place components, route all interconnections, and finalize the layout to send for
fabrication. This very large scale integration (VLSI) flow means ASIC design and manufacturing
can traditionally take 2-5 years.

There are a few key reasons why the long design timelines of ASICs, often 2-3 years, can be chal-
lenging for machine learning workloads:

• ML algorithms evolve rapidly: New model architectures, training techniques, and network
optimizations are constantly emerging. For example, Transformers becamehugely popular in
NLP in just the last few years. By the time an ASIC finishes tapeout, the optimal architecture
for a workload may have changed.

• Datasets grow quickly: ASICs designed for certain model sizes or datatypes can become un-
dersized relative to demand. For instance, natural languagemodels are scaling exponentially
with more data and parameters. A chip designed for BERT might not accommodate GPT-3.

• ML applications change frequently: The industry focus shifts between computer vision,
speech, NLP, recommender systems etc. An ASIC optimized for image classification may
have less relevance in a few years.
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• Faster design cycles with GPUs/FPGAs: Programmable accelerators like GPUs can adapt
much quicker by upgrading software libraries and frameworks. New algorithms can be de-
ployed without hardware changes.

• Time-to-market needs: Getting a competitive edge in ML requires rapidly experimenting
with new ideas and deploying them. Waiting several years for an ASIC is not aligned with
fast iteration.

The pace of innovation inML is notwellmatched to themulti-year timescale forASIC development.
Significant engineering efforts are required to extendASIC lifespan throughmodular architectures,
process scaling, model compression, and other techniques. But the rapid evolution of ML makes
fixed function hardware challenging.

38.3.1.2.2. High Non-Recurring Engineering Costs

The fixed costs of taking an ASIC from design to high volume manufacturing can be very capital
intensive, often tens of millions of dollars. Photomask fabrication for taping out chips in advanced
process nodes, packaging, and one-time engineering efforts are expensive. For instance, a 7nm chip
tapeout alone could cost tens of millions of dollars. The high non-recurring engineering (NRE)
investment narrows ASIC viability to high-volume production use cases where the upfront cost
can be amortized.

38.3.1.2.3. Complex Integration and Programming

ASICs require extensive software integration work including drivers, compilers, OS support, and
debugging tools. They also need expertise in electrical and thermal packaging. Additionally, pro-
gramming ASIC architectures efÏciently can involve challenges like workload partitioning and
scheduling across many parallel units. The customized nature necessitates significant integration
efforts to turn raw hardware into fully operational accelerators.

While ASICs provide massive efÏciency gains on target applications by tailoring every aspect of
the hardware design to one specific task, their fixed nature results in tradeoffs in flexibility and
development costs compared to programmable accelerators, which must be weighed based on the
application.

38.3.2. Field-Programmable Gate Arrays (FPGAs)

FPGAs are programmable integrated circuits that can be reconfigured for different applications.
Their customizable nature provides advantages for accelerating AI algorithms compared to fixed
ASICs or inflexible GPUs. While Google, Meta, and NVIDIA which are looking at putting ASICs
in data centers, Microsoft deployed FPGAs in their data centers (Putnam et al. 2014) in 2011 to
efÏciently serve diverse data center workloads.

38.3.2.1. Advantages

FPGAs provide several benefits over GPUs and ASICs for accelerating machine learning work-
loads.
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38.3.2.1.1. Flexibility Through Reconfigurable Fabric

The key advantage of FPGAs is the ability to reconfigure the underlying fabric to implement custom
architectures optimized for different models, unlike fixed-function ASICs. For example, quant
trading firms use FPGAs to accelerate their algorithms because they change frequently, and the
low NRE cost of FPGAs is more viable than taping out new ASICs. Figure 38.4 contains a table
comparison of three different FPGAs.

Figure 38.4. Comparison of FPGAs. Credit: Gwennap (n.d.).

FPGAs are composed of basic building blocks - configurable logic blocks, RAM blocks, and inter-
connects. Vendors provide a base amount of these resources, and engineers program the chips by
compiling HDL code into bitstreams that rearrange the fabric into different configurations. This
makes FPGAs adaptable as algorithms evolve.

While FPGAs may not achieve the utmost performance and efÏciency of workload-specific ASICs,
their programmability provides more flexibility as algorithms change. This adaptability makes
FPGAs a compelling choice for accelerating evolving machine learning applications. For machine
learningworkloads, Microsoft has deployed FPGAs in its Azure data centers to serve diverse appli-
cations, instead of using ASICs. The programmability enables optimization across changing ML
models.

38.3.2.1.2. Customized Parallelism and Pipelining

FPGA architectures can leverage spatial parallelism and pipelining by tailoring the hardware de-
sign to mirror the parallelism in ML models. For example, Intel’s HARPv2 FPGA platform splits
the layers of an MNIST convolutional network across separate processing elements to maximize
throughput. Unique parallel patterns like tree ensemble evaluations are also possible on FPGAs.
Deep pipelineswith optimized buffering and dataflow can be customized to eachmodel’s structure
and datatypes. This level of tailored parallelism and pipelining is not feasible on GPUs.

38.3.2.1.3. Low Latency On-Chip Memory

Large amounts of high bandwidth on-chip memory enables localized storage for weights and ac-
tivations. For instance, Xilinx Versal FPGAs contain 32MB of low latency RAM blocks along with
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dual-channel DDR4 interfaces for externalmemory. Bringingmemory physically closer to the com-
pute units reduces access latency. This provides significant speed advantages over GPUs that must
traverse PCIe or other system buses to reach off-chip GDDR6 memory.

38.3.2.1.4. Native Support for Low Precision

A key advantage of FPGAs is the ability to natively implement any bit width for arithmetic units,
such as INT4 or bfloat16 used in quantized ML models. For example, Intel’s Stratix 10 NX FPGAs
have dedicated INT8 cores that can achieve up to 143 INT8 TOPS at ~1 TOPS/W Intel Stratix 10 NX
FPGA. Lower bit widths increase arithmetic density and performance. FPGAs can even support
mixed precision or dynamic precision tuning at runtime.

38.3.2.2. Disadvatages

38.3.2.2.1. Lower Peak Throughput than ASICs

FPGAs cannot match the raw throughput numbers of ASICs customized for a specific model and
precision. The overheads of the reconfigurable fabric compared to fixed function hardware result
in lower peak performance. For example, the TPU v5e pods allow up to 256 chips to be connected
with more than 100 petaOps of INT8 performance while FPGAs can offer up to 143 INT8 TOPS or
286 INT4 TOPS Intel Stratix 10 NX FPGA.

This is because FPGAs are composed of basic building blocks - configurable logic blocks, RAM
blocks, and interconnects. Vendors provide a set amount of these resources. To program FPGAs,
engineerswriteHDL code and compile into bitstreams that rearrange the fabric, which has inherent
overheads versus an ASIC purpose-built for one computation.

38.3.2.2.2. Programming Complexity

To optimize FPGA performance, engineers must program the architectures in low-level hardware
description languages like Verilog or VHDL. This requires hardware design expertise and longer
development cycles versus higher level software frameworks like TensorFlow. Maximizing utiliza-
tion can be challenging despite advances in high-level synthesis from C/C++.

38.3.2.2.3. Reconfiguration Overheads

To change FPGAconfigurations requires reloading a newbitstream,which has considerable latency
and storage size costs. For example, partial reconfiguration on Xilinx FPGAs can take 100s of mil-
liseconds. This makes dynamically swapping architectures in real-time infeasible. The bitstream
storage also consumes on-chip memory.

38.3.2.2.4. Diminishing Gains on Advanced Nodes

While smaller process nodes benefit ASICs greatly, they provide less advantages for FPGAs. At
7nm and below, effects like process variation, thermal constraints, and aging disproportionately
impact FPGA performance. The overheads of configurable fabric also diminish gains vs fixed func-
tion ASICs.

https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/nx.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/nx.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/nx.html


346 Chapter 38. AI Acceleration

38.3.2.2.5. Case Study

FPGAs have found widespread application in various fields, including medical imaging, robotics,
and finance, where they excel in handling computationally intensive machine learning tasks. In
the context of medical imaging, an illustrative example is the application of FPGAs for brain tu-
mor segmentation, a traditionally time-consuming and error-prone process. For instance, Xiong
et al. developed a quantized segmentation accelerator, which they retrained using the BraTS19
and BraTS20 datasets. Their work yielded remarkable results, achieving over 5x and 44x perfor-
mance improvements, as well as 11x and 82x energy efÏciency gains compared to GPU and CPU
implementations, respectively (Xiong et al. 2021).

38.3.3. Digital Signal Processors (DSPs)

The first digital signal processor core was built in 1948 by Texas Instruments (The Evolution of
Audio DSPs). Traditionally, DSPs would have logic to allow them to directly access digital/audio
data in memory, perform an arithmetic operation (multiply-add-accumulate-MAC-was one of the
most common operations) and then write the result back to memory. The DSP would also include
specialized analog components to retrieve said digital/audio data.

Once we entered the smartphone era, DSPs started encompassing more sophisticated tasks. They
required Bluetooth, Wi-Fi, and cellular connectivity. Media also became much more complex. To-
day, it’s not common to have entire chips dedicated to just DSP, but a System on Chip would
include DSPs in addition to general-purpose CPUs. For example, Qualcomm’s Hexagon Digital
Signal Processor claims to be a “world-class processor with both CPU and DSP functionality to
support deeply embedded processing needs of the mobile platform for both multimedia and mo-
dem functions.” Google Tensors, the chip in the Google Pixel phones, also includes both CPUs and
specialized DSP engines.

38.3.3.1. Advatages

DSPs architecturally provide advantages in vector math throughput, low latency memory access,
power efÏciency, and support for diverse datatypes - making them well-suited for embedded ML
acceleration.

38.3.3.1.1. Optimized Architecture for Vector Math

DSPs contain specialized data paths, register files, and instructions optimized specifically for vec-
tor math operations commonly used in machine learning models. This includes dot product en-
gines, MAC units, and SIMD capabilities tailored for vector/matrix calculations. For example, the
CEVA-XM6 DSP (“Ceva SensPro Fuses AI and Vector DSP”) has 512-bit vector units to accelerate
convolutions. This efÏciency on vector math workloads is far beyond general CPUs.

https://audioxpress.com/article/the-evolution-of-audio-dsps
https://audioxpress.com/article/the-evolution-of-audio-dsps
https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor
https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor
https://blog.google/products/pixel/google-tensor-g3-pixel-8/
https://www.ceva-dsp.com/wp-content/uploads/2020/04/Ceva-SensPro-Fuses-AI-and-Vector-DSP.pdf
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38.3.3.1.2. Low Latency On-Chip Memory

DSPs integrate large amounts of fast on-chip SRAM memory to hold data locally for processing.
Bringing memory physically closer to the computation units reduces access latency. For exam-
ple, Analog’s SHARC+ DSP contains 10MB of on-chip SRAM. This high-bandwidth local memory
provides speed advantages for real-time applications.

38.3.3.1.3. Power EfÏciency

DSPs are engineered to provide high performance per watt on digital signal workloads. EfÏcient
data paths, parallelism, and memory architectures enable trillions of math operations per second
within tight mobile power budgets. For example, Qualcomm’s Hexagon DSP can deliver 4 trillion
operations per second (TOPS) while consuming minimal watts.

38.3.3.1.4. Support for Integer and Floating Point Math

UnlikeGPUswhich excel at single or half precision, DSPs can natively support both 8/16-bit integer
and 32-bit floating point datatypes used across ML models. Some DSPs even support dot product
acceleration at INT8 precision for quantized neural networks.

38.3.3.2. Disadvatages

DSPs make architectural tradeoffs that limit peak throughput, precision, and model capacity com-
pared to other AI accelerators. But their advantages in power efÏciency and integer math make
them a strong edge compute option. So while DSPs provide some benefits over CPUs, they also
come with limitations for machine learning workloads:

38.3.3.2.1. Lower Peak Throughput than ASICs/GPUs

DSPs cannot match the raw computational throughput of GPUs or customized ASICs designed
specifically for machine learning. For example, Qualcomm’s CloudAI 100 ASIC delivers 480 TOPS
on INT8, while their Hexagon DSP provides 10 TOPS. DSPs lack the massive parallelism of GPU
SM units.

38.3.3.2.2. Slower Double Precision Performance

Most DSPs are not optimized for higher precision floating point needed in someMLmodels. Their
dot product engines focus on INT8/16 and FP32 which provides better power efÏciency. But 64-bit
floating point throughput ismuch lower. This can limit usage inmodels requiring high precision.

38.3.3.2.3. Constrained Model Capacity

The limited on-chip memory of DSPs constrains the model sizes that can be run. Large deep learn-
ing models with hundreds of megabytes of parameters would exceed on-chip SRAM capacity.
DSPs are best suited for small to mid-sized models targeted for edge devices.

https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor
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38.3.3.2.4. Programming Complexity

EfÏciently programming DSP architectures requires expertise in parallel programming and opti-
mizing data access patterns. Their specialized microarchitectures have more learning curve than
high-level software frameworks. This makes development more complex.

38.3.4. Graphics Processing Units (GPUs)

The term graphics processing unit existed since at least the 1980s. There had always been a demand
for graphics hardware in both video game consoles (high demand, needed to be relatively lower
cost) and scientific simulations (lower demand, but needed higher resolution, could be at a high
price point).

The term was popularized, however, in 1999 when NVIDIA launched the GeForce 256 mainly
targeting the PC games market sector (Lindholm et al. 2008). As PC games became more sophis-
ticated, NVIDIA GPUs became more programmable over time as well. Soon, users realized they
could take advantage of this programmability and run a variety of non-graphics relatedworkloads
on GPUs and benefit from the underlying architecture. And so, starting in the late 2000s, GPUs
became general-purpose graphics processing units or GP-GPUs.

Intel Arc Graphics and AMD Radeon RX have also developed their GPUs over time.

38.3.4.1. Advatages

38.3.4.1.1. High Computational Throughput

The key advantage of GPUs is their ability to performmassively parallel floating point calculations
optimized for computer graphics and linear algebra (Raina, Madhavan, and Ng 2009). Modern
GPUs likeNvidia’s A100 offers up to 19.5 teraflops of FP32 performancewith 6912 CUDA cores and
40GB of graphics memory that is tightly coupled with 1.6TB/s of graphics memory bandwidth.

This raw throughput stems from the highly parallel streaming multiprocessor (SM) architecture
tailored for data-parallel workloads (Zhihao Jia, Zaharia, and Aiken 2019). Each SM contains hun-
dreds of scalar cores optimized for float32/64 math. With thousands of SMs on chip, GPUs are
purpose-built for matrix multiplication and vector operations used throughout neural networks.

For example, Nvidia’s latest H100 GPU provides 4000 TFLOPs of FP8, 2000 TFLOPs of FP16, 1000
TFLOPs of TF32, 67 TFLOPs of FP32 and 34 TFLOPs of FP64 Compute performance, which can
dramatically accelerate large batch training on models like BERT, GPT-3, and other transformer
architectures. The scalable parallelism of GPUs is key to speeding up computationally intensive
deep learning.

38.3.4.1.2. Mature Software Ecosystem

Nvidia provides extensive runtime libraries like cuDNN and cuBLAS that are highly optimized for
deep learning primitives. Frameworks like TensorFlow and PyTorch integrate with these libraries
to enable GPU acceleration with no direct programming. CUDA provides lower-level control for
custom computations.

https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/nx.html
https://www.amd.com/en/graphics/radeon-rx-graphics
https://www.nvidia.com/en-us/data-center/h100/
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cublas
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This ecosystemenables quickly leveragingGPUs via high-level PythonwithoutGPUprogramming
expertise. Known workflows and abstractions provide a convenient on-ramp for scaling up deep
learning experiments. The software maturity supplements the throughput advantages.

38.3.4.1.3. Broad Availability

The economies of scale of graphics processingmake GPUs broadly accessible in data centers, cloud
platforms like AWS and GCP, and desktop workstations. Their availability in research environ-
ments has provided a convenient platform for ML experimentation and innovation. For example,
nearly every state-of-the-art deep learning result has involved GPU acceleration because of this
ubiquity. The broad access supplements the software maturity to make GPUs the standard ML
accelerator.

38.3.4.1.4. Programmable Architecture

While not fully flexible as FPGAs, GPUs do provide programmability via CUDA and shader lan-
guages to customize computations. Developers can optimize data access patterns, create new ops,
and tune precisions for evolving models and algorithms.

38.3.4.2. Disadvatages

While GPUs have become the standard accelerator for deep learning, their architecture also comes
with some key downsides.

38.3.4.2.1. Less EfÏcient than Custom ASICs

The statement “GPUs are less efÏcient than ASICs” could spark intense debate within the ML/AI
field and cause this book to explode.

Typically, GPUs are perceived as less efÏcient than ASICs because the latter are custom-built for
specific tasks and thus can operate more efÏciently by design. GPUs, with their general-purpose
architecture, are inherently more versatile and programmable, catering to a broad spectrum of
computational tasks beyond ML/AI.

However, modern GPUs, however, have evolved to include specialized hardware support for es-
sential AI operations, such as generalized matrix multiplication (GEMM) and other matrix oper-
ations, native support for quantization, native support for pruning which are critical for running
ML models effectively. These enhancements have significantly improved the efÏciency of GPUs
for AI tasks, to the point where they can rival the performance of ASICs for certain applications.

Consequently, some might argue that contemporary GPUs represent a convergence of sorts, incor-
porating specialized, ASIC-like capabilities within a flexible, general-purpose processing frame-
work. This adaptability has blurred the lines between the two types of hardware, with GPUs of-
fering a strong balance of specialization and programmability that is well-suited to the dynamic
needs of ML/AI research and development.
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38.3.4.2.2. High Memory Bandwidth Needs

The massively parallel architecture requires tremendous memory bandwidth to supply thousands
of cores as shown in Figure 1. For example, the Nvidia A100 GPU requires 1.6TB/sec to fully
saturate its compute. GPUs rely on wide 384-bit memory buses to high bandwidth GDDR6 RAM,
but even the fastest GDDR6 tops out around 1 TB/sec. This dependence on external DRAM incurs
latency and power overheads.

38.3.4.2.3. Programming Complexity

While tools like CUDA help, optimally mapping and partitioning ML workloads across the mas-
sively parallel GPU architecture remains challenging. Achieving both high utilization andmemory
locality requires low-level tuning (Zhe Jia et al. 2018). Abstractions like TensorFlow can leave per-
formance on the table.

38.3.4.2.4. Limited On-Chip Memory

GPUs have relatively small on-chip memory caches compared to the large working set require-
ments ofMLmodels during training. They are reliant on high bandwidth access to external DRAM,
which ASICs minimize with large on-chip SRAM.

38.3.4.2.5. Fixed Architecture

Unlike FPGAs, the fundamental GPU architecture cannot be altered post-manufacture. This con-
straint limits adapting to novel MLworkloads or layers. The CPU-GPU boundary also creates data
movement overheads.

38.3.4.3. Case Study

The recent groundbreaking research conducted by OpenAI (Brown et al. 2020) with their GPT-
3 model. GPT-3, a language model consisting of 175 billion parameters, demonstrated unprece-
dented language understanding and generation capabilities. Its training, which would have taken
months on conventional CPUs, was accomplished in a matter of days using powerful GPUs, thus
pushing the boundaries of natural language processing (NLP) capabilities.

38.3.5. Central Processing Units (CPUs)

The term CPUs has a long history that dates back to 1955 (Weik 1955) while the first micropro-
cessor CPU-the Intel 4004-was invented in 1971 (Who Invented the Microprocessor?). Compilers
compile high-level programming languages like Python, Java, or C to assembly instructions (x86,
ARM, RISC-V, etc.) for CPUs to process. The set of instructions a CPU understands is called the
“instruction set” andmust be agreed upon by both the hardware and software running atop it (See
section 5 for a more in-depth description on instruction set architectures-ISAs).

An overview of significant developments in CPUs:

https://computerhistory.org/blog/who-invented-the-microprocessor/
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• Single-core Era (1950s- 2000): This era is known for seeing aggressive microarchitectural
improvements. Techniques like speculative execution (executing an instruction before the
previous one was done), out-of-order execution (re-ordering instructions to be more effec-
tive), and wider issue widths (executing multiple instructions at once) were implemented to
increase instruction throughput. The term “System onChip” also originated in this era as dif-
ferent analog components (components designed with transistors) and digital components
(components designed with hardware description languages that are mapped to transistors)
were put on the same platform to achieve some task.

• Multi-core Era (2000s): Driven by the decrease of Moore’s Law, this era is marked by scaling
the number of cores within a CPU. Now tasks can be split across many different cores each
with its own datapath and control unit. Many of the issues arising in this era pertained to
how to share certain resources, which resources to share, and how to maintain coherency
and consistency across all the cores.

• Sea of accelerators (2010s): Again, driven by the decrease of Moore’s law, this era is marked
by ofÒoading more complicated tasks to accelerators (widgets) attached the the main data-
path in CPUs. It’s common to see accelerators dedicated to various AI workloads, as well
as image/digital processing, and cryptography. In these designs, CPUs are often described
more as arbiters, deciding which tasks should be processed rather than doing the processing
itself. Any task could still be run on the CPU rather than the accelerators, but the CPUwould
generally be slower. However, the cost of designing and especially programming the accel-
erator became be a non-trivial hurdle that led to a spike of interest in design-specific libraries
(DSLs).

• Presence in data centers: Although we often hear that GPUs dominate the data center
marker, CPUs are still well suited for tasks that don’t inherently possess a large amount of
parallelism. CPUs often handle serial and small tasks and coordinate the data center as a
whole.

• On the edge: Given the tighter resource constraints on the edge, edge CPUs often only imple-
ment a subset of the techniques developed in the sing-core era because these optimizations
tend to be heavy on power and area consumption. Edge CPUs still maintain a relatively sim-
ple datapath with limited memory capacities.

Traditionally, CPUs have been synonymous with general-purpose computing-a term that has also
changed as the “average” workload a consumer would run changes over time. For example, float-
ing point components were once considered reserved for “scientific computing” so it was usually
implemented as a co-processor (a modular component that worked in tandem with the datapath)
and seldom deployed to average consumers. Compare this attitude to today, where FPUs are built
into every datapath.

38.3.5.1. Advatages

While limited in raw throughput, general-purpose CPUs do provide some practical benefits for AI
acceleration.

38.3.5.1.1. General Programmability

CPUs support diverse workloads beyond ML, providing flexible general-purpose programmabil-
ity. This versatility comes from their standardized instruction sets and mature compiler ecosys-
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tems that allow running any application from databases and web servers to analytics pipelines
(Hennessy and Patterson 2019).

This avoids the need for dedicated ML accelerators and enables leveraging existing CPU-based
infrastructure for basic ML deployment. For example, X86 servers from vendors like Intel and
AMD can run common ML frameworks using Python and TensorFlow packages alongside other
enterprise workloads.

38.3.5.1.2. Mature Software Ecosystem

For decades, highly optimized math libraries like BLAS, LAPACK, and FFTW have leveraged vec-
torized instructions and multithreading on CPUs (Dongarra 2009). Major ML frameworks like
PyTorch, TensorFlow, and SciKit-Learn are designed to integrate seamlessly with these CPU math
kernels.

Hardware vendors like Intel and AMD also provide low-level libraries to fully optimize perfor-
mance for deep learning primitives (AI Inference Acceleration on CPUs). This robust, mature soft-
ware ecosystem allows quickly deploying ML on existing CPU infrastructure.

38.3.5.1.3. Wide Availability

The economies of scale of CPU manufacturing, driven by demand across many markets like PCs,
servers, and mobile, make them ubiquitously available. Intel CPUs, for example, have powered
most servers for decades (Ranganathan 2011). This wide availability in data centers reduces hard-
ware costs for basic ML deployment.

Even small embedded devices typically integrate someCPU, enabling edge inference. The ubiquity
reduces need for purchasing specialized ML accelerators in many situations.

38.3.5.1.4. Low Power for Inference

Optimizations like vector extensions in ARM Neon and Intel AVX provide power efÏcient inte-
ger and floating point throughput optimized for “bursty” workloads like inference (Ignatov et al.
2018). While slower than GPUs, CPU inference can be deployed in power-constrained environ-
ments. For example, ARM’s Cortex-M CPUs now deliver over 1 TOPS of INT8 performance under
1W, enabling keyword spotting and vision applications on edge devices (ARM).

38.3.5.2. Disadvatages

While providing some advantages, general-purpose CPUs also come with limitations for AI work-
loads.

38.3.5.2.1. Lower Throughput than Accelerators

CPUs lack the specialized architectures for massively parallel processing that GPUs and other ac-
celerators provide. Their general-purpose design results in lower computational throughput for
the highly parallelizable math operations common in ML models (N. P. Jouppi et al. 2017a).

https://www.netlib.org/blas/
https://hpc.llnl.gov/software/mathematical-software/lapack#:~:text=The%20Linear%20Algebra%20PACKage%20(LAPACK,problems%2C%20and%20singular%20value%20decomposition.)
https://www.fftw.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/ai-inference-acceleration-on-intel-cpus.html#gs.0w9qn2
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8_2d00_m-based-processor-software-development-hints-and-tips
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38.3.5.2.2. Not Optimized for Data Parallelism

The architectures of CPUs are not specifically optimized for data parallel workloads inherent to AI
(Sze et al. 2017). They allocate substantial silicon area to instruction decoding, speculative execu-
tion, caching, and flow control that provide little benefit for the array operations used in neural
networks (AI Inference Acceleration on CPUs). However, modern CPUs are equipped with vector
instructions like AVX-512 specifically to accelerate certain key operations like matrix multiplica-
tion.

GPUstreamingmultiprocessors, for example, devotemost transistors to floatingpoint units instead
of complex branch prediction logic. This specialization allows much higher utilization for ML
math.

38.3.5.2.3. Higher Memory Latency

CPUs suffer from higher latency accessing main memory relative to GPUs and other accelerators
(DDR). Techniques like tiling and caching can help, but the physical separation from off-chip RAM
bottlenecks data-intensive ML workloads. This emphasizes the need for specialized memory ar-
chitectures in ML hardware.

38.3.5.2.4. Power InefÏciency Under Heavy Workloads

While suitable for intermittent inference, sustaining near-peak throughput for training results in
inefÏcient power consumption on CPUs, especially mobile CPUs (Ignatov et al. 2018). Accelera-
tors explicitly optimize the dataflow, memory, and computation for sustained ML workloads. For
training large models, CPUs are energy-inefÏcient.

38.3.6. Comparison

Accelerator Description Key Advantages Key Disadvantages

ASICs Custom ICs designed
for target workload
like AI inference

Maximizes perf/watt.
Optimized for tensor
ops Low latency
on-chip memory

Fixed architecture
lacks flexibility High
NRE cost Long design
cycles

FPGAs Reconfigurable fabric
with programmable
logic and routing

Flexible architecture
Low latency memory
access

Lower perf/watt than
ASICs Complex
programming

GPUs Originally for
graphics, now used
for neural network
acceleration

High throughput
Parallel scalability
Software ecosystem
with CUDA

Not as power efÏcient
as ASICs. Require
high memory
bandwidth

CPUs General purpose
processors

Programmability
Ubiquitous
availability

Lower performance
for AI workloads

https://www.intel.com/content/www/us/en/developer/articles/technical/ai-inference-acceleration-on-intel-cpus.html#gs.0w9qn2
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-avx-512.html
https://www.integralmemory.com/articles/the-evolution-of-ddr-sdram/
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In general, CPUs provide a readily available baseline, GPUs deliver broadly accessible acceleration,
FPGAs offer programmability, and ASICs maximize efÏciency for fixed functions. The optimal
choice depends on the scale, cost, flexibility and other requirements of the target application.

Although first developed for data center deployment, where [cite some benefit that google cites],
Google has also put considerable effort into developing Edge TPUs. These Edge TPUsmaintain the
inspiration from systolic arrays but are tailored to the limited resources accessible at the edge.

38.4. Hardware-Software Co-Design

Hardware-software co-design is based on the principle that AI systems achieve optimal perfor-
mance and efÏciency when the hardware and software components are designed in tight integra-
tion. This involves an iterative, collaborative design cycle where the hardware architecture and
software algorithms are concurrently developed and refined with continuous feedback between
teams.

For example, a new neural network model may be prototyped on an FPGA-based accelerator plat-
form to obtain real performance data early in the design process. These results provide feedback
to both the hardware designers on potential optimizations as well as the software developers on
refinements to the model or framework to better leverage the hardware capabilities. This level
of synergy is difÏcult to achieve with the common practice of software being developed indepen-
dently to deploy on fixed commodity hardware.

Co-design is particularly critical for embedded AI systems which face significant resource con-
straints like low power budgets, limited memory and compute capacity, and real-time latency re-
quirements. Tight integration between algorithmdevelopers and hardware architects helps unlock
optimizations across the stack to meet these restrictions. Enabling techniques include algorithmic
improvements like neural architecture search and pruning along with hardware advances like spe-
cialized dataflows and memory hierarchies.

By bringing hardware and software design together, rather than developing them separately, holis-
tic optimizations can be made that maximize performance and efÏciency. The next sections pro-
vide more details on specific co-design approaches.

38.4.1. The Need for Co-Design

There are several key factors that make a collaborative hardware-software co-design approach es-
sential for building efÏcient AI systems.

38.4.1.1. Increasing Model Size and Complexity

State-of-the-art AI models have been rapidly growing in size, enabled by advances in neural archi-
tecture design and availability of large datasets. For example, the GPT-3 language model contains
175 billion parameters (Brown et al. 2020), requiring huge computational resources for training.
This explosion in model complexity necessitates co-design to develop efÏcient hardware and algo-
rithms in tandem. Techniques like model compression (Cheng et al. 2018) and quantization must
be co-optimized with the hardware architecture.
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38.4.1.2. Constraints of Embedded Deployment

Deploying AI applications on edge devices like mobile phones or smart home appliances intro-
duces significant constraints on resources such as energy, memory, and silicon area (Sze et al. 2017).
To enable real-time inference under these restrictions requires co-exploring hardware optimiza-
tions like specialized dataflows and compressionwith efÏcient neural network design and pruning
techniques. Co-design maximizes performance within the tight deployment constraints.

38.4.1.3. Rapid Evolution of AI Algorithms

The field of AI is evolving extremely rapidly, with new model architectures, training method-
ologies, and software frameworks constantly emerging. For example, Transformers have become
hugely popular for NLP just in the last few years (Young et al. 2018). Keeping pace with these algo-
rithmic innovations requires hardware-software co-design to quickly adapt platforms and avoid
accrued technical debt.

38.4.1.4. Complex Hardware-Software Interactions

There are many subtle interactions and tradeoffs between hardware architectural choices and soft-
ware optimizations that have significant impacts on overall efÏciency. For instance, techniques like
tensor partitioning and batching affect parallelism. Data access patterns impact memory utiliza-
tion. Co-design provides a cross-layer perspective to unravel these dependencies.

38.4.1.5. Need for Specialization

AIworkloads benefit from specialized operations like low precisionmath and customizedmemory
hierarchies. This motivates incorporating custom hardware tailored to neural network algorithms
rather than relying solely on flexible software running on generic hardware (Sze et al. 2017). But
to realize the benefits, the software stack must explicitly target the custom hardware operations.

38.4.1.6. Demand for Higher EfÏciency

With growingmodel complexity, there are diminishing returns and overhead fromoptimizing only
the hardware or software in isolation (Putnam et al. 2014). Inevitable tradeoffs arise that require
a global optimization across layers. Jointly co-designing hardware and software provides large
compound efÏciency gains.
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38.4.2. Principles of Hardware-Software Co-Design

To build high-performance and efÏcient AI systems, there must be tight integration and co-
optimization between the underlying hardware architecture and software stack. Neither can
be designed in isolation - maximizing their synergies requires a holistic approach known as
hardware-software co-design.

The key goal is tailoring the hardware capabilities to match the algorithms and workloads run by
the software. This requires a feedback loop between hardware architects and software developers
to converge on optimized solutions. Several techniques enable effective co-design:

38.4.2.1. Hardware-Aware Software Optimization

The software stack can be optimized to better leverage the underlying hardware capabilities:

• Parallelism: Parallelizematrix computations like convolution or attention layers tomaximize
throughput on vector engines.

• Memory Optimization: Tune data layouts to improve cache locality based on hardware pro-
filing. This maximizes reuse and minimizes expensive DRAM access.

• Compression: Lerverage sparsity in the models to reduce storage space as well as save on
computation by zero-skipping operations.

• Custom Operations: Incorporate specialized ops like low precision INT4 or bfloat16 into
models to capitalize on dedicated hardware support.

• Dataflow Mapping: Explicitly map model stages to computational units to optimize data
movement on hardware.

38.4.2.2. Algorithm-Driven Hardware Specialization

Hardware can be tailored to better suit the characteristics of ML algorithms:

• Custom Datatypes: Support low precision INT8/4 or bfloat16 in hardware for higher arith-
metic density.

• On-Chip Memory: Increase SRAM bandwidth and lower access latency to match model
memory access patterns.

• Domain-Specific Ops: Add hardware units for key ML functions like FFTs or matrix multi-
plication to reduce latency and energy.

• Model Profiling: Usemodel simulation and profiling to identify computational hotspots and
guide hardware optimization.

The key is collaborative feedback - insights from hardware profiling guide software optimizations,
while algorithmic advances inform hardware specialization. This mutual enhancement provides
multiplicative efÏciency gains compared to isolated efforts.
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38.4.2.3. Algorithm-Hardware Co-exploration

Jointly exploring innovations in neural network architectures along with custom hardware de-
sign is a powerful co-design technique. This allows finding ideal pairings tailored to each other’s
strengths (Sze et al. 2017).

For instance, the shift to mobile architectures like MobileNets (Howard et al. 2017) was guided
by edge device constraints like model size and latency. The quantization (Jacob et al. 2018) and
pruning techniques (Gale, Elsen, and Hooker 2019) that unlocked these efÏcient models became
possible thanks to hardware accelerators with native low-precision integer support and pruning
support (Mishra et al. 2021).

Attention-based models have thrived on massively parallel GPUs and ASICs where their compu-
tation maps well spatially, as opposed to RNN architectures reliant on sequential processing. Co-
evolution of algorithms and hardware unlocked new capabilities.

Effective co-exploration requires close collaboration between algorithm researchers and hardware
architects. Rapid prototyping on FPGAs (C. Zhang et al. 2015) or specialized AI simulators allows
quickly evaluating different pairings of model architectures and hardware designs pre-silicon.

For example, Google’s TPU architecture evolved in conjunction with optimizations to TensorFlow
models to maximize performance on image classification. This tight feedback loop yieldedmodels
tailored for the TPU that would have been unlikely in isolation.

Studies have shown 2-5x higher performance and efÏciency gains with algorithm-hardware co-
exploration compared to isolated algorithm or hardware optimization efforts (Suda et al. 2016).
Parallelizing the joint development also reduces time-to-deployment.

Overall, exploring the tight interdependencies between model innovation and hardware advances
unlocks opportunities not visible when tackled sequentially. This synergistic co-design yields so-
lutions greater than the sum of their parts.

38.4.3. Challenges

While collaborative co-design can improve efÏciency, adaptability, and time-to-market, it also
comes with engineering and organizational challenges.

38.4.3.1. Increased Prototyping Costs

More extensive prototyping is required to evaluate different hardware-software pairings. The need
for rapid, iterative prototypes on FPGAs or emulators increases validation overhead. For example,
Microsoft found more prototypes needed for co-design of an AI accelerator versus sequential de-
sign (Fowers et al. 2018).
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38.4.3.2. Team and Organizational Hurdles

Co-design requires close coordination between traditionally disconnected hardware and software
groups. This could introduce communication issues or misaligned priorities and schedules. Nav-
igating different engineering workflows is also challenging. Some organizational inertia to adopt-
ing integrated practices may exist.

38.4.3.3. Simulation and Modeling Complexity

Capturing subtle interactions between hardware and software layers for joint simulation andmod-
eling adds significant complexity. Full cross-layer abstractions are difÏcult to construct quantita-
tively pre-implementation. This makes holistic optimizations harder to quantify ahead of time.

38.4.3.4. Over-Specialization Risks

Tight co-design bears the risk of overfitting optimizations to current algorithms, sacrificing gener-
ality. For example, hardware tuned exclusively for Transformer models could underperform on
future techniques. Maintaining flexibility requires foresight.

38.4.3.5. Adoption Challenges

Engineers comfortable with established discrete hardware or software design practices may resist
adopting unfamiliar collaborative workflows. Projects could face friction in transitioning to co-
design, despite long-term benefits.

38.5. Software for AI Hardware

At this time it should be obvious that specialized hardware accelerators like GPUs, TPUs, and FP-
GAs are essential to delivering high-performance artificial intelligence applications. But to lever-
age these hardware platforms effectively, an extensive software stack is required, spanning the
entire development and deployment lifecycle. Frameworks and libraries form the backbone of AI
hardware, offering sets of robust, pre-built code, algorithms, and functions specifically optimized
to perform a wide array of AI tasks on the different hardware. They are designed to simplify the
complexities involved in utilizing the hardware from scratch, which can be time-consuming and
prone to error. Software plays an important role in the following:

• Providing programming abstractions and models like CUDA and OpenCL to map computa-
tions onto accelerators.

• Integrating accelerators into popular deep learning frameworks like TensorFlow and
PyTorch.

• Compilers and tools to optimize across the hardware-software stack.
• Simulation platforms to model hardware and software together.
• Infrastructure to manage deployment on accelerators.
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This expansive software ecosystem is as important as the hardware itself in delivering performant
and efÏcient AI applications. This section provides an overview of the tools available at each layer
of the stack to enable developers to build and run AI systems powered by hardware acceleration.

38.5.1. Programming Models

Programming models provide abstractions to map computations and data onto heterogeneous
hardware accelerators:

• CUDA: Nvidia’s parallel programming model to leverage GPUs using extensions to lan-
guages like C/C++. Allows launching kernels across GPU cores (Luebke 2008).

• OpenCL: Open standard for writing programs spanning CPUs, GPUs, FPGAs and other ac-
celerators. Specifies a heterogeneous computing framework (Munshi 2009).

• OpenGL/WebGL: 3D graphics programming interfaces that can map general-purpose code
to GPU cores (Segal and Akeley 1999).

• Verilog/VHDL: Hardware description languages (HDLs) used to configure FPGAs as AI ac-
celerators by specifying digital circuits (Gannot and Ligthart 1994).

• TVM: Compiler framework providing Python frontend to optimize and map deep learning
models onto diverse hardware back-ends (T. Chen et al. 2018).

Key challenges include expressing parallelism,managingmemory across devices, andmatching al-
gorithms to hardware capabilities. Abstractions must balance portability with allowing hardware
customization. Programmingmodels enable developers to harness accelerators without hardware
expertise. More of these details are discussed in the AI frameworks section.

38.5.2. Libraries and Runtimes

Specialized libraries and runtimes provide software abstractions to access andmaximize utilization
of AI accelerators:

• Math Libraries: Highly optimized implementations of linear algebra primitives like GEMM,
FFTs, convolutions etc. tailored to target hardware. Nvidia cuBLAS, Intel MKL, and Arm
compute libraries are examples.

• Framework Integrations: Libraries to accelerate deep learning frameworks like TensorFlow,
PyTorch, and MXNet on supported hardware. For example, cuDNN for accelerating CNNs
on Nvidia GPUs.

• Runtimes: Software to handle execution on accelerators, including scheduling, synchroniza-
tion, memory management and other tasks. Nvidia TensorRT is an inference optimizer and
runtime.

• Drivers and Firmware: Low-level software to interfacewith hardware, initialize devices, and
handle execution. Vendors like Xilinx provide drivers for their accelerator boards.

For instance, PyTorch integrators use cuDNNand cuBLAS libraries to accelerate training onNvidia
GPUs. The TensorFlow XLA runtime optimizes and compiles models for accelerators like TPUs.
Drivers initialize devices and ofÒoad operations.

https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/opencl/
https://www.opengl.org
https://www.verilog.com
https://tvm.apache.org
../frameworks/frameworks.qmd
https://developer.nvidia.com/cublas
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.arm.com/technologies/compute-library
https://www.arm.com/technologies/compute-library
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/tensorrt
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The challenges include efÏciently partitioning and scheduling workloads across heterogeneous
devices like multi-GPU nodes. Runtimes must also minimize overhead of data transfers and syn-
chronization.

Libraries, runtimes and drivers provide optimized building blocks that deep learning developers
can leverage to tap into accelerator performance without hardware programming expertise. Their
optimization is essential for production deployments.

38.5.3. Optimizing Compilers

Optimizing compilers play a key role in extracting maximum performance and efÏciency from
hardware accelerators for AI workloads. They apply optimizations spanning algorithmic changes,
graph-level transformations, and low-level code generation.

• Algorithm Optimization: Techniques like quantization, pruning, and neural architecture
search to enhance model efÏciency and match hardware capabilities.

• Graph Optimizations: Graph-level optimizations like operator fusion, rewriting, and layout
transformations to optimize performance on target hardware.

• CodeGeneration: Generating optimized low-level code for accelerators fromhigh-levelmod-
els and frameworks.

For example, the TVM open compiler stack applies quantization for a BERT model targeting Arm
GPUs. It fuses pointwise convolution operations and transforms weight layout to optimize mem-
ory access. Finally it emits optimized OpenGL code to run the workload on the GPU.

Key compiler optimizations include maximizing parallelism, improving data locality and reuse,
minimizing memory footprint, and exploiting custom hardware operations. Compilers build and
optimize machine learning workloads holistically across hardware components like CPUs, GPUs,
and other accelerators.

However, efÏciently mapping complex models introduces challenges like efÏciently partitioning
workloads across heterogeneous devices. Production-level compilers also require extensive time
tuning on representative workloads. Still, optimizing compilers are indispensable in unlocking the
full capabilities of AI accelerators.

38.5.4. Simulation and Modeling

Simulation software is important in hardware-software co-design. It enables joint modeling of
proposed hardware architectures and software stacks:

• Hardware Simulation: Platforms like Gem5 allow detailed simulation of hardware compo-
nents like pipelines, caches, interconnects, and memory hierarchies. Engineers can model
hardware changes without physical prototyping (Binkert et al. 2011).

• Software Simulation: Compiler stacks like TVM support simulation of machine learning
workloads to estimate performance on target hardware architectures. This assists with soft-
ware optimizations.

• Co-simulation: Unified platforms like the SCALE-Sim (Samajdar et al. 2018) integrate hard-
ware and software simulation into a single tool. This enables what-if analysis to quantify the
system-level impacts of cross-layer optimizations early in the design cycle.

https://www.gem5.org
https://tvm.apache.org
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For example, an FPGA-based AI accelerator design could be simulated using Verilog hardware
description language and synthesized into a Gem5model. Verilog is well-suited for describing the
digital logic and interconnects that make up the accelerator architecture. Using Verilog allows the
designer to specify the datapaths, control logic, on-chipmemories, and other components that will
be implemented in the FPGA fabric. Once the Verilog design is complete, it can be synthesized into
a model that simulates the behavior of the hardware, such as using the Gem5 simulator. Gem5 is
useful for this task because it allows modeling of full systems including processors, caches, buses,
and custom accelerators. Gem5 supports interfacing Verilogmodels of hardware to the simulation,
enabling unified system modeling.

The synthesized FPGA accelerator model could then have ML workloads simulated using TVM
compiled onto it within the Gem5 environment for unified modeling. TVM allows optimized com-
pilation of ML models onto heterogeneous hardware like FPGAs. Running TVM-compiled work-
loads on the accelerator within the Gem5 simulation provides an integrated way to validate and
refine the hardware design, software stack, and system integration before ever needing to physi-
cally realize the accelerator on a real FPGA.

This type of co-simulation provides estimations of overall metrics like throughput, latency, and
power to guide co-design before expensive physical prototyping. They also assist with partitioning
optimizations between hardware and software to guide design tradeoffs.

However, limitations exist in accurately modeling subtle low-level interactions between compo-
nents. Quantified simulations are an estimate but cannot wholly replace physical prototypes and
testing. Still, unified simulation and modeling provides invaluable early insights into system-level
optimization opportunities during the co-deign process.

38.6. Benchmarking AI Hardware

Benchmarking is a critical process that quantifies and compares the performance of various hard-
ware platforms designed to speed up artificial intelligence applications. It guides purchasing deci-
sions, development focus, and performance optimization efforts for both hardware manufacturers
and software developers.

The benchmarking chapter explores this topic in great detail and why it has become an indispens-
able part of the AI hardware development cycle and how it impacts the broader technology land-
scape. Here, we will briefly review the main concepts but refer you to the chapter for more de-
tails.

Benchmarking suites such as MLPerf, Fathom, and AI Benchmark offer a set of standardized tests
that can be used across different hardware platforms. These suites measure AI accelerator perfor-
mance across various neural networks and machine learning tasks, from basic image classification
to complex language processing. By providing a common ground for comparison, they help en-
sure that performance claims are consistent and verifiable. These “tools” are applied not only to
guide the development of hardware but also to ensure that the software stack leverages the full
potential of the underlying architecture.

• MLPerf: Includes a broad set of benchmarks covering both training (Mattson et al. 2020a)
and inference (Reddi et al. 2020) for a range of machine learning tasks.

../benchmarking/benchmarking.qmd
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• Fathom: Focuses on core operations found in deep learning models, emphasizing their exe-
cution on different architectures (Adolf et al. 2016).

• AI Benchmark: Targets mobile and consumer devices, assessing AI performance in end-user
applications (Ignatov et al. 2018).

Benchmarks also have performance metrics that are the quantifiable measures used to evaluate the
effectiveness of AI accelerators. These metrics provide a comprehensive view of an accelerator’s ca-
pabilities and are used to guide the design and selection process for AI systems. Common metrics
include:

• Throughput: Usually measured in operations per second, this metric indicates the volume
of computations an accelerator can handle.

• Latency: The time delay from input to output in a system, vital for real-time processing tasks.
• Energy EfÏciency: Calculated as computations per watt, representing the trade-off between

performance and power consumption.
• Cost EfÏciency: This evaluates the cost of operation relative to performance, an essential

metric for budget-conscious deployments.
• Accuracy: Particularly in inference tasks, the precision of computations is critical and some-

times balanced against speed.
• Scalability: The ability of the system to maintain performance gains as the computational

load scales up.

Benchmark results give insights beyond just numbers - they can reveal bottlenecks in the software
and hardware stack. For example, benchmarks may show how increased batch size improves GPU
utilization by providingmore parallelism. Or how compiler optimizations boost TPUperformance.
These learnings enable continuous optimization (Zhihao Jia, Zaharia, and Aiken 2019).

Standardized benchmarking provides quantified, comparable evaluation of AI accelerators to in-
form design, purchasing, and optimization. But real-world performance validation remains essen-
tial as well (H. Zhu et al. 2018).

38.7. Challenges and Solutions

AI accelerators offer impressive performance improvements, but their integration into the broader
AI landscape is often hindered by significant portability and compatibility challenges. The crux of
the issue lies in the diversity of the AI ecosystem - a vast array of machine learning accelerators,
frameworks and programming languages exists, eachwith its unique features and requirements.

38.7.1. Portability/Compatibility Issues

Developers frequently encounter difÏculties when attempting to transfer their AI models from one
hardware environment to another. For example, amachine learningmodel developed for a desktop
environment in Python using the PyTorch framework, optimized for anNvidiaGPU,may not easily
transition to a more constrained device such as the Arduino Nano 33 BLE. This complexity stems
from stark differences in programming requirements - Python and PyTorch on the desktop versus
a C++ environment on an Arduino, not to mention the shift from x86 architecture to ARM ISA.
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These divergences highlight the intricacy of portability within AI systems. Moreover, the rapid
advancement in AI algorithms and models means that hardware accelerators must continually
adapt, creating amoving target for compatibility. The absence of universal standards and interfaces
compounds the issue, making it challenging to deploy AI solutions consistently across various
devices and platforms.

38.7.1.1. Solutions and Strategies

To address these hurdles, the AI industry is moving towards several solutions:

38.7.1.1.1. Standardization Initiatives

The Open Neural Network Exchange (ONNX) is at the forefront of this pursuit, proposing an open
and shared ecosystem that promotes model interchangeability. ONNX facilitates the use of AI
models across various frameworks, allowing for models trained in one environment to be efÏ-
ciently deployed in another, which significantly reduces the need for time-consuming rewrites
or adjustments.

38.7.1.1.2. Cross-Platform Frameworks

Complementing the standardization efforts, cross-platform frameworks such as TensorFlow Lite
and PyTorchMobile have been developed specifically to create cohesion between diverse computa-
tional environments ranging from desktops to mobile and embedded devices. These frameworks
offer streamlined, lightweight versions of their parent frameworks, ensuring compatibility and
functional integrity across different hardware types without sacrificing performance. This ensures
that developers can create applications with the confidence that they will work on a multitude of
devices, bridging a gap that has traditionally posed a considerable challenge in AI development.

38.7.1.1.3. Hardware-agnostic Platforms

The rise of hardware-agnostic platforms has also played an important role in democratizing the
use of AI. By creating environments where AI applications can be executed on various accelerators,
these platforms remove the burden of hardware-specific coding from developers. This abstraction
not only simplifies the development process but also opens up new possibilities for innovation and
application deployment, free from the constraints of hardware specifications.

38.7.1.1.4. Advanced Compilation Tools

In addition, the advent of advanced compilation tools like TVM-an end-to-end tensor compiler-
offers an optimized path through the jungle of diverse hardware architectures. TVM equips devel-
opers with themeans to fine-tunemachine learningmodels for a broad spectrum of computational
substrates, ensuring optimal performance and avoiding the need for manual model adjustment
each time there is a shift in the underlying hardware.

https://onnx.ai/
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38.7.1.1.5. Community and Industry Collaboration

The collaboration between open-source communities and industry consortia cannot be under-
stated. These collective bodies are instrumental in forming shared standards and best practices
that all developers and manufacturers can adhere to. Such collaboration fosters a more unified
and synergistic AI ecosystem, significantly diminishing the prevalence of portability issues and
smoothing the path toward global AI integration and advancement. Through these combined
efforts, the field of AI is steadily moving toward a future where seamless model deployment
across various platforms becomes a standard, rather than an exception.

Solving the portability challenges is crucial for the AI field to realize the full potential of hardware
accelerators in a dynamic and diverse technological landscape. It requires a concerted effort from
hardware manufacturers, software developers, and standard bodies to create a more interopera-
ble and flexible environment. With continued innovation and collaboration, the AI community
can pave the way for seamless integration and deployment of AI models across a multitude of
platforms.

38.7.2. Power Consumption Concerns

Power consumption is a crucial issue in the development and operation of data center AI accelera-
tors, like Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs) (N. P. Jouppi et al.
2017b) (Norrie et al. 2021) (N. Jouppi et al. 2023). These powerful components are the backbone
of contemporary AI infrastructure, but their high energy demands contribute to the environmen-
tal impact of technology and drive up operational costs significantly. As data processing needs
become more complex, with the popularity of AI and deep learning increasing, there’s a pressing
demand for GPUs and TPUs that can deliver the necessary computational power more efÏciently.
The impact of such advancements is two-fold: they can lower the environmental footprint of these
technologies and also reduce the cost of running AI applications.

Emerging hardware technologies are at the cusp of revolutionizing power efÏciency in this sector.
Photonic computing, for instance, uses light rather than electricity to carry information, offering a
promise of high-speed processing with a fraction of the power usage. We delve deeper into this
and other innovative technologies in the “Emerging Hardware Technologies” section, exploring
their potential to address current power consumption challenges.

At the edge of the network, AI accelerators are engineered to process data on devices like smart-
phones, IoT sensors, and smart wearables. These devices often work under severe power lim-
itations, necessitating a careful balancing act between performance and power usage. A high-
performance AI model may provide quick results but at the cost of depleting battery life swiftly
and increasing thermal output, which may affect the device’s functionality and durability. The
stakes are higher for devices deployed in remote or hard-to-reach areas, where consistent power
supply cannot be guaranteed, underscoring the need for low-power consuming solutions.

The challenge of power efÏciency at the edge is further compounded by latency issues. Edge AI ap-
plications in fields such as autonomous driving and healthcare monitoring require not just speed
but also precision and reliability, as delays in processing can lead to serious safety risks. For these
applications, developers are compelled to optimize both the AI algorithms and the hardware de-
sign to strike an optimal balance between power consumption and latency.
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This optimization effort is not just about making incremental improvements to existing technolo-
gies; it’s about rethinking how and where we process AI tasks. By designing AI accelerators that
are both power-efÏcient and capable of quick processing, we can ensure these devices serve their
intended purposes without unnecessary energy use or compromised performance. Such develop-
ments could propel the widespread adoption of AI across various sectors, enabling smarter, safer,
and more sustainable use of technology.

38.7.3. Overcoming Resource Constraints

Resource constraints also pose a significant challenge for Edge AI accelerators, as these specialized
hardware and software solutions must deliver robust performance within the limitations of edge
devices. Due to power and size limitations, edge AI accelerators often have restricted computation,
memory, and storage capacity (L. Zhu et al. 2023). This scarcity of resources necessitates a careful
allocation of processing capabilities to execute machine learning models efÏciently.

Moreover, managing constrained resources demands innovative approaches, including model
quantization (Lin et al. 2023) (Y. Li, Dong, and Wang 2020), pruning (T. Wang et al. 2020), and
optimizing inference pipelines. Edge AI accelerators must strike a delicate balance between
providing meaningful AI functionality and not exhausting the available resources, all while
maintaining low power consumption. Overcoming these resource constraints is crucial to ensure
the successful deployment of AI at the edge, where many applications, from IoT to mobile
devices, rely on the efÏcient use of limited hardware resources to deliver real-time and intelligent
decision-making.

38.8. Emerging Technologies

Thus far we have discussed AI hardware technology in the context of conventional von Neumann
architecture design and CMOS-based implementation. These specialized AI chips offer benefits
like higher throughput and power efÏciency but rely on traditional computing principles. The
relentless growth in demand for AI compute power is driving innovations in integration methods
for AI hardware.

Two leading approaches have emerged for maximizing compute density - wafer-scale integration
and chiplet-based architectures, whichwewill discuss in this section. Lookingmuch further ahead,
we will look into emerging technologies that diverge from conventional architectures and adopt
fundamentally different approaches for AI-specialized computing.

Some of these unconventional paradigms include neuromorphic computing which mimics biolog-
ical neural networks, quantum computing that leverages quantum mechanical effects, and optical
computing utilizing photons instead of electrons. Beyond novel computing substrates, new device
technologies are enabling additional gains through better memory and interconnect.

Examples include memristors for in-memory computing and nanophotonics for integrated pho-
tonic communication. Together, these technologies offer the potential for orders of magnitude
improvements in speed, efÏciency, and scalability compared to current AI hardware. We will ex-
amine these in this section.
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38.8.1. Integration Methods

Integration methods refer to the approaches used to combine and interconnect the various compu-
tational and memory components in an AI chip or system. The goal of integration is to maximize
performance, power efÏciency, and density by closely linking the key processing elements.

In the past, AI compute was primarily performed on CPUs and GPUs built using conventional
integration methods. These discrete components were manufactured separately then connected
together on a board. However, this loose integration creates bottlenecks like data transfer over-
heads.

As AI workloads have grown, there is increasing demand for tighter integration between compute,
memory, and communication elements. Some key drivers of integration include:

• Minimizing data movement: Tight integration reduces latency and power for moving data
between components. This improves efÏciency.

• Customization: Tailoring all components of a system to AI workloads allows optimizations
throughout the hardware stack.

• Parallelism: Integrating a large number of processing elements enables massively parallel
computation.

• Density: Tighter integration allows packing more transistors and memory into a given area.
• Cost: Economies of scale from large integrated systems can reduce costs.

In response, new manufacturing techniques like wafer-scale fabrication and advanced packaging
now allow much higher levels of integration. The goal is to create unified, specialized AI com-
pute complexes tailored for deep learning and other AI algorithms. Tighter integration is key to
delivering the performance and efÏciency needed for the next generation of AI.

38.8.1.1. Wafer-scale AI

Wafer-scale AI takes an extremely integrated approach, manufacturing an entire silicon wafer as
one gigantic chip. This differs drastically from conventional CPUs and GPUs which cut each wafer
intomany smaller individual chips. Figure 38.5 shows a comparison between CerebrasWafer Scale
Engine 2, which’s the largest chip ever built, and the largest GPU. While some GPUs may contain
billions of transistors, they still pale in comparison to the scale of a wafer-size chip with over a
trillion transistors.

The wafer-scale approach also diverges from more modular system-on-chip designs that still have
discrete components communicating by bus. Instead, wafer-scale AI enables full customization
and tight integration of computation, memory, and interconnects across the entire die.

By designing the wafer as one integrated logic unit, data transfer between elements is minimized.
This provides lower latency and power consumption compared to discrete system-on-chip
or chiplet designs. While chiplets can offer flexibility by mixing and matching components,
communication between chiplets is a challenge. The monolithic nature of wafer-scale integration
eliminates these inter-chip communication bottlenecks.

However, the ultra-large scale also poses difÏculties for manufacturability and yield with wafer-
scale designs. Defects in any region of the wafer can make (certian parts of) the chip unusable.
And specialized lithography techniques are required to produce such large dies. So wafer-scale
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Figure 38.5. Wafer-scale vs. GPU. Credit: Cerebras.

integration pursues the maximum performance gains from integration but requires overcoming
substantial fabrication challenges. The following video will provide additional context.

https://www.youtube.com/watch?v=Fcob512SJz0

38.8.1.2. Chiplets for AI

Chiplet design refers to a semiconductor architecture in which a single integrated circuit (IC) is
constructed frommultiple smaller, individual components known as chiplets. Each chiplet is a self-
contained functional block, typically specialized for a specific task or functionality. These chiplets
are then interconnected on a larger substrate or package to create a complete, cohesive system.
Figure 38.6 illustrates this concept. For AI hardware, chiplets enable mixing different types of
chips optimized for tasks like matrix multiplication, data movement, analog I/O, and specialized
memories. This heterogeneous integration differs greatly from wafer-scale integration where all
logic ismanufactured as onemonolithic chip. Companies like Intel andAMDhave adopted chiplet
design for their CPUs.

Chiplets are interconnected using advanced packaging techniques like high-density substrate in-
terposers, 2.5D/3D stacking, andwafer-level packaging. This allows combining chiplets fabricated
with different process nodes, specialized memories, and various optimized AI engines.

Some key advantages of using chiplets for AI include:

• Flexibility: Flexibility: Chiplets allow combining different chip types, process nodes, and
memories tailored for each function. This is more modular versus a fixed wafer-scale design.

https://www.cerebras.net/product-chip/
https://www.youtube.com/watch?v=Fcob512SJz0
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Figure 38.6. Chiplet partitioning. Credit: Vivet et al. (2021).

• Yield: Smaller chiplets have higher yield than a gigantic wafer-scale chip. Defects are con-
tained to individual chiplets.

• Cost: Leverages existing manufacturing capabilities versus requiring specialized new pro-
cesses. Reduces costs by reusing mature fabrication.

• Compatibility: Can integrate with more conventional system architectures like PCIe and
standard DDR memory interfaces.

However, chiplets also face integration and performance challenges:

• Lower density compared to wafer-scale, as chiplets are limited in size.
• Added latency when communicating between chiplets versus monolithic integration. Re-

quires optimization for low-latency interconnect.
• Advanced packaging adds complexity versuswafer-scale integration, though this is arguable.

The key objective of chiplets is finding the right balance between modular flexibility and integra-
tion density for optimal AI performance. Chiplets aim for efÏcient AI acceleration while working
within the constraints of conventional manufacturing techniques. Overall, chiplets take a middle
path between the extremes of wafer-scale integration and fully discrete components. This provides
practical benefits but may sacrifice some computational density and efÏciency versus a theoretical
wafer-size system.



Chapter 38. AI Acceleration 369

38.8.2. Neuromorphic Computing

Neuromorphic computing is an emerging field aiming to emulate the efÏciency and robustness of
biological neural systems for machine learning applications. A key difference from classical Von
Neumann architectures is the merging of memory and processing in the same circuit (Schuman et
al. 2022; Marković et al. 2020; Furber 2016), as illustrated in Figure 38.7. This integrated approach
is inspired by the structure of the brain. A key advantage is the potential for orders of magnitude
improvement in energy efÏcient computation compared to conventionalAI hardware. For example,
some estimates project 100x-1000x gains in energy efÏciency versus current GPU-based systems for
equivalent workloads.

Figure 38.7. Comparison of the von Neumann architecture with the neuromorphic architecture. Credit:
Schuman et al. (2022).

Intel and IBM are leading commercial efforts in neuromorphic hardware. Intel’s Loihi and Loihi 2
chips (M. Davies et al. 2018, 2021) offer programmable neuromorphic cores with on-chip learning.
IBM’s Northpole (Modha et al. 2023) device comprises more than 100 million magnetic tunnel
junction synapses and 68 billion transistors. These specialized chips deliver benefits like lowpower
consumption for edge inference.

Spiking neural networks (SNNs) (Maass 1997) are computational models suited for neuromorphic
hardware. Unlike deep neural networks that communicate via continuous values, SNNs use dis-
crete spikes more akin to biological neurons. This allows efÏcient event-based computation rather
than constant processing. Additionally, SNNs take into account temporal characteristics of input
data in addition to spatial characteristics. This bettermimics biological neural networks, where tim-
ing of neuronal spikes plays an important role. However, training SNNs remains challenging due
to the added temporal complexity. Figure 38.8 provides an overview of the spiking methodlogy:
(a) Diagram of a neuron; (b) Measuring an action potential propagated along the axon of a neuron.
Only the action potential is detectable along the axon; (c) The neuron’s spike is approximated with
a binary representation; (d) Event-Driven Processing; (e) Active Pixel Sensor and Dynamic Vision
Sensor. You can also watch the video linked below for a more detailed explanation.

https://www.youtube.com/watch?v=yihk_8XnCzg

Specialized nanoelectronic devices called memristors (Chua 1971) serve as the synaptic compo-
nents in neuromorphic systems. Memristors act as non-volatile memory with adjustable conduc-

https://www.youtube.com/watch?v=yihk_8XnCzg
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Figure 38.8. Neuromoprhic spiking. Credit: Eshraghian et al. (2023).

tance, emulating the plasticity of real synapses. By combining memory and processing functions,
memristors enable in-situ learning without separate data transfers. However, memristor technol-
ogy has not yet reached maturity and scalability for commercial hardware.

Recently, the integration of photonics with neuromorphic computing (Shastri et al. 2021) has
emerged as an active research area. Using light for computation and communication allows high
speeds and reduced energy consumption. However, fully realizing photonic neuromorphic sys-
tems requires overcoming design and integration challenges.

Neuromorphic computing offers promising capabilities for efÏcient edge inference but still faces
obstacles around training algorithms, nanodevice integration, and system design. Ongoing multi-
disciplinary research across computer science, engineering, materials science, and physics will be
key to unlocking the full potential of this technology for AI use cases.

38.8.3. Analog Computing

Analog computing is an emerging approach that uses analog signals and components like capaci-
tors, inductors, and amplifiers rather than digital logic for computing. It represents information as
continuous electrical signals instead of discrete 0s and 1s. This allows the computation to directly
reflect the analog nature of real-world data, avoiding digitization errors and overhead.

Analog computing has generated renewed interest for efÏcient AI hardware, particularly for in-
ference directly on low-power edge devices. Operations like multiplication and summation at the
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core of neural networks can be performed with very low energy consumption using analog cir-
cuits. This makes analog well-suited for deploying ML models on energy-constrained end nodes.
Startups like Mythic are developing analog AI accelerators.

While analog computing was popular in early computers, the boom of digital logic led to its de-
cline. However, analog is compelling for niche applications requiring extreme efÏciency (Haensch,
Gokmen, and Puri 2019). It contrasts with digital neuromorphic approaches that still use digital
spikes for computation. Analog may allow lower precision computation but requires expertise in
analog circuit design. Tradeoffs around precision, programming complexity, and fabrication costs
remain active areas of research.

Neuromorphic computing, which aims to emulate biological neural systems for efÏcient ML infer-
ence, can for instance use analog circuits to implement the key components and behaviors of brains.
For example, researchers have designed analog circuits to model neurons and synapses using ca-
pacitors, transistors, and operational amplifiers (Hazan and Ezra Tsur 2021). The capacitors can
exhibit the spiking dynamics of biological neurons, while the amplifiers and transistors provide
weighted summation of inputs to mimic dendrites. Variable resistor technologies like memristors
can realize analog synapses with spike-timing dependent plasticity - the ability to strengthen or
weaken connections based on spiking activity.

Startups like SynSense have developed analog neuromorphic chips containing these biomimetic
components (Bains 2020). This analog approach results in very low power consumption and high
scalability for edge devices versus complex digital SNN implementations.

However, training analog SNNs on chip remains an open challenge. Overall, analog realization
is a promising technique for delivering the efÏciency, scalability, and biological plausibility envi-
sioned with neuromorphic computing. The physics of analog components combined with neural
architecture design could enable large improvements in inference efÏciency over conventional dig-
ital neural networks.

38.8.4. Flexible Electronics

While much of the new hardware technology in the ML workspace has been focused on optimiz-
ing and making systems more efÏcient, there’s a parallel trajectory aiming to adapt hardware for
specific applications (Gates 2009; Musk et al. 2019; Tang et al. 2023; Tang, He, and Liu 2022; S.
H. Kwon and Dong 2022). One such avenue is the development of flexible electronics for AI use
cases.

Flexible electronics refer to electronic circuits and devices fabricated on flexible plastic or polymer
substrates rather than rigid silicon. This allows the electronics to bend, twist, and conform to
irregular shapes, unlike conventional rigid boards and chips. Figure 38.9 shows an example of
a flexible device prototype that wirelessly measures body temperature, which can be seamlessly
integrated into clothing or skin patches. The flexibility and bendability of emerging electronic
materials allows them to be integrated into thin, lightweight form factorswell-suited for embedded
AI and TinyML applications.

Flexible AI hardware can conform to curvy surfaces and operate efÏciently with microwatt power
budgets. Flexibility also enables rollable or foldable form factors to minimize device footprint
and weight, which is ideal for small, portable smart devices and wearables incorporating TinyML.
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Another key advantage of flexible electronics compared to conventional technologies is lower man-
ufacturing costs and simpler fabrication processes, which could democratize access to these tech-
nologies. While silicon masks and fabrication costs typically cost millions of dollars, flexible hard-
ware typically costs only tens of cents to manufacture (T.-C. Huang et al. 2011; Biggs et al. 2021).
The potential to fabricate flexible electronics directly onto plastic films using high-throughput
printing and coating processes can reduce costs and improve manufacturability at scale versus
rigid AI chips (Musk et al. 2019).

Figure 38.9. Flexible device prototype. Credit: Jabil Circuit.

The field is enabled by advances in organic semiconductors and nanomaterials that can be de-
posited on thin, flexible films. However, fabrication remains challenging compared to mature
silicon processes. Flexible circuits typically exhibit lower performance than rigid equivalents right
now. Still, they promise to transform electronics into lightweight, bendable materials.

Flexible electronics use cases are well-suited for intimate integration with the human body. Poten-
tial medical AI applications include biointegrated sensors, soft assistive robots, and implants to
monitor or stimulate the nervous system intelligently. Specifically, flexible electrode arrays could
enable higher density, less invasive neural interfaces compared to rigid equivalents.

Therefore, flexible electronics are ushering in a new era of wearables and body sensors, largely due
to innovations in organic transistors. These components allow for more lightweight and bendable
electronics, which are ideal forwearables, electronic skin, and body-conformingmedical devices.

In terms of biocompatibility, they are well-suited for bioelectronic devices, opening avenues for
applications in both brain and cardiac interfaces. For example, research in flexible brain–computer
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interfaces and soft bioelectronics for cardiac applications demonstrates the potential for wide-
ranging medical applications.

Companies and research institutions are not only developing and investing great amounts of re-
sources in flexible electrodes, as showcased in Neuralink’s work (Musk et al. 2019), but are also
pushing the boundaries to integrate machine learning models within the systems (S. H. Kwon
and Dong 2022). These smart sensors aim for a seamless, long-lasting symbiosis with the human
body.

Ethically, the incorporation of smart, machine-learning-driven sensors within the body raises im-
portant questions. Issues surrounding data privacy, informed consent, and the long-term societal
implications of such technologies are the focus of ongoing work in neuroethics and bioethics (Se-
gura Anaya et al. 2017; Goodyear 2017; Farah 2005; Roskies 2002). The field is progressing at a
pace that necessitates parallel advancements in ethical frameworks to guide the responsible devel-
opment and deployment of these technologies. Overall, while there are limitations and ethical hur-
dles to overcome, the prospects for flexible electronics are expansive and hold immense promise
for future research and applications.

38.8.5. Memory Technologies

Memory technologies are critical to AI hardware, but conventional DDR DRAM and SRAM create
bottlenecks. AIworkloads require high bandwidth (>1 TB/s) and extreme scientific applications of
AI require extremely low latency (<50 ns) to feed data to compute units (Duarte et al. 2022), high
density (>128Gb) to store large model parameters and data sets, and excellent energy efÏciency
(<100 fJ/b) for embedded use (N. Verma et al. 2019). New memories are needed to meet these
demands. Emerging options include several new technologies:

• Resistive RAM (ReRAM) can improve density with simple, passive arrays. However, chal-
lenges around variability remain (Chi et al. 2016).

• Phase change memory (PCM) exploits the unique properties of chalcogenide glass. Crys-
talline and amorphous phases have different resistances. Intel’s Optane DCPMM provides
fast (100ns), high endurance PCM. But challenges include limited write cycles and high reset
current (Burr et al. 2016).

• 3D stacking can also boost memory density and bandwidth by vertically integrating mem-
ory layers with TSV interconnects (Loh 2008). For example, HBM provides 1024-bit wide
interfaces.

New memory technologies are critical to unlock the next level of AI hardware performance and
efÏciency through their innovative cell architectures andmaterials. Realizing their benefits in com-
mercial systems remains an ongoing challenge.

In-Memory Computing is gaining traction as a promising avenue for optimizing machine learning
and high-performance computing workloads. At its core, the technology co-locates data storage
and computation to improve energy efÏciency and reduce latencyWong et al. (2012). Two key tech-
nologies under this umbrella are Resistive RAM (ReRAM) and Processing-In-Memory (PIM).

ReRAM (Wong et al. 2012) and PIM (Chi et al. 2016) serve as the backbone for in-memory comput-
ing by storing and computing data in the same location. ReRAM focuses on issues of uniformity,
endurance, retention, multibit operation, and scalability. On the other hand, PIM involves CPU
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units integrated directly intomemory arrays, specialized for tasks likematrixmultiplicationwhich
are central in AI computations.

These technologies find applications in AIworkloads and high-performance computing, where the
synergy of storage and computation can lead to significant performance gains. The architecture is
particularly useful for compute-intensive tasks common in machine learning models.

While in-memory computing technologies like ReRAM and PIM offer exciting prospects for ef-
ficiency and performance, they come with their own set of challenges such as issues with data
uniformity and scalability in ReRAM (Imani, Rahimi, and S. Rosing 2016). Nonetheless, the field
is ripe for innovation, and addressing these limitations can potentially open new frontiers in both
AI and high-performance computing.

38.8.6. Optical Computing

In AI acceleration, a burgeoning area of interest lies in novel technologies that deviate from tradi-
tional paradigms. Some emerging technologies mentioned above such as flexible electronics, in-
memory computing or even neuromorphics computing are close to becoming a reality, given their
ground-breaking innovations and applications. One of the promising and leading the next-gen
frontiers are optical computing technologies H. Zhou et al. (2022). Companies like [LightMatter]
are pioneering the use of light photonics for calculations, thereby utilizing photons instead of elec-
trons for data transmission and computation.

Optical computing utilizes photons and photonic devices rather than traditional electronic circuits
for computing and data processing. It takes inspiration from fiber optic communication links that
already rely on light for fast, efÏcient data transfer (Shastri et al. 2021). Light can propagate with
much less loss compared to electrons in semiconductors, enabling inherent speed and efÏciency
benefits.

Some specific advantages of optical computing include:

• High throughput: Photons can transmit with bandwidths >100 Tb/s using wavelength divi-
sion multiplexing.

• Low latency: Photons interact on femtosecond timescales, millions of times faster than silicon
transistors.

• Parallelism: Multiple data signals can propagate through the same optical medium simulta-
neously.

• Lowpower: Photonic circuits utilizingwaveguides and resonators can achieve complex logic
and memory with only microwatts of power.

However, optical computing currently faces significant challenges:

• Lack of optical memory equivalent to electronic RAM
• Requires conversion between optical and electrical domains.
• Limited set of available optical components compared to rich electronics ecosystem.
• Immature integration methods to combine photonics with traditional CMOS chips.
• Complex programming models required to handle parallelism.

https://lightmatter.co/
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As a result, optical computing is still in the very early research stage despite its promising poten-
tial. But technical breakthroughs could enable it to complement electronics and unlock perfor-
mance gains for AI workloads. Companies like Lightmatter are pioneering early optical AI accel-
erators. Long term, it could represent a revolutionary computing substrate if key challenges are
overcome.

38.8.7. Quantum Computing

Quantum computers leverage unique phenomena of quantum physics like superposition and en-
tanglement to represent and process information in ways not possible classically. Instead of binary
bits, the fundamental unit is the quantum bit or qubit. Unlike classical bits limited to 0 or 1, qubits
can exist in a superposition of both states simultaneously due to quantum effects.

Multiple qubits can also be entangled, leading to exponential information density but introduc-
ing probabilistic results. Superposition enables parallel computation on all possible states, while
entanglement allows nonlocal correlations between qubits.

Quantum algorithms carefully manipulate these inherently quantum mechanical effects to solve
problems like optimization or search more efÏciently than their classical counterparts in theory.

• Faster training of deep neural networks by exploiting quantum parallelism for linear algebra
operations.

• EfÏcient quantum ML algorithms making use of the unique capabilities of qubits.
• Quantum neural networks with inherent quantum effects baked into the model architecture.
• Quantum optimizers leveraging quantum annealing or adiabatic algorithms for combinato-

rial optimization problems.

However, quantum states are fragile and prone to errors that require error-correcting protocols.
The non-intuitive nature of quantum programming also introduces challenges not present in clas-
sical computing.

• Noisy and fragile quantum bits difÏcult to scale up. The largest quantum computer today
has less than 100 qubits.

• Restricted set of available quantum gates and circuits relative to classical programming.
• Lack of datasets and benchmarks to evaluate quantum ML in practical domains.

While meaningful quantum advantage for ML remains far off, active research at companies like
D-Wave, Rigetti, and IonQ is advancing quantum computer engineering and quantum algorithms.
Major technology companies like Google, IBM, andMicrosoft are actively exploring quantum com-
puting. Google recently announced a 72-qubit quantum processor called Bristlecone and plans to
build a 49-qubit commercial quantum system. Microsoft also has an active research program in
topological quantum computing and collaborates with quantum startup IonQ

Quantum techniques may first make inroads for optimization before more generalized ML adop-
tion. Realizing the full potential of quantum ML awaits major milestones in quantum hardware
development and ecosystem maturity.

https://www.dwavesys.com/company/about-d-wave/
https://www.rigetti.com/
https://ionq.com/
https://www.ibm.com/quantum?utm_content=SRCWW&p1=Search&p4C700050385964705&p5=e&gclid=Cj0KCQjw-pyqBhDmARIsAKd9XIPD9U1Sjez_S0z5jeDDE4nRyd6X_gtVDUKJ-HIolx2vOc599KgW8gAaAv8gEALw_wcB&gclsrc=aw.ds
https://blog.research.google/2018/03/a-preview-of-bristlecone-googles-new.html
https://ionq.com/
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38.9. Future Trends

In this chapter, the primary focus has been on the design of specialized hardware optimized forma-
chine learning workloads and algorithms. This discussion encompassed the tailored architectures
of GPUs and TPUs for neural network training and inference. However, an emerging research
direction is the leveraging machine learning in facilitating the hardware design process itself.

The hardware design process involves many complex stages, including specification, high-level
modeling, simulation, synthesis, verification, prototyping, and fabrication. Traditionally, much
of this process requires extensive human expertise, effort, and time. However, recent advances
in machine learning are enabling parts of the hardware design workflow to be automated and
enhanced using ML techniques.

Some examples of how ML is transforming hardware design include:

• Automated circuit synthesis using reinforcement learning: Rather than hand-crafting
transistor-level designs, ML agents such as reinforcement learning can learn to connect logic
gates and generate circuit layouts automatically. This can accelerate the time-consuming
synthesis process.

• ML-based hardware simulation and emulation: Deep neural networkmodels can be trained
to predict how a hardware designwill performunder different conditions. For instance, deep
learning models can be trained to predict cycle count for given workloads. This allows fast
and accurate simulation compared to traditional RTL simulations.

• Automated chip floorplanning using ML algorithms: Chip floorplanning, which involves
optimally placing different components on a die. Evolutionary algorithms like genetic al-
gorithms and other ML algorithms like reinforcement leanring are used explore floorplan
options. This can significantly improve manual floorplanning placements in terms of faster
turnaround time and also quality of placements.

• ML-driven architecture optimization: Novel hardware architectures, like those for efÏcient
ML accelerators, can be automatically generated and optimized by searching the architec-
tural design space. Machine leanring algorithms can be used for effectively searching large
architectural design space.

Applying ML to hardware design automation holds enormous promise to make the process faster,
cheaper, and more efÏcient. It opens up design possibilities that would be extremely difÏcult
through manual design. The use of ML in hardware design is an area of active research and early
deployment, and we will study the techniques involved and their transformative potential.

38.9.1. ML for Hardware Design Automation

A major opportunity for machine learning in hardware design is automating parts of the complex
and tedious design workflow. Hardware design automation (HDA) broadly refers to using ML
techniques like reinforcement learning, genetic algorithms, and neural networks to automate tasks
like synthesis, verification, floorplanning, andmore. A few examples of whereML for HDA shows
real promise:

• Automated circuit synthesis: Circuit synthesis involves converting a high-level description
of desired logic into an optimized gate-level netlist implementation. This complex process
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has many design considerations and tradeoffs. ML agents can be trained through reinforce-
ment learning (Qian et al. (2023),G. Zhou and Anderson (2023)) to explore the design space
and output optimized syntheses automatically. Startups like Symbiotic EDA are bringing
this technology to market.

• Automated chip floorplanning: Floorplanning refers to strategically placing different com-
ponents on a chip die area. Search algorithms like genetic algorithms (Valenzuela and Wang
(2000)), reinforcement learning (Mirhoseini et al. (2021), Agnesina et al. (2023)) can be used
to automate floorplan optimization to minimize wire length, power consumption, and other
objectives. These automated ML-assisted floorplanners are extremely valuable as chip com-
plexity increases.

• ML hardware simulators: Training deep neural network models to predict how hardware
designs will perform as simulators can accelerate the simulation process by over 100x com-
pared to traditional architectural and RTL simulations.

• Automated code translation: Converting hardware description languages like Verilog to op-
timized RTL implementations is critical but time-consuming. ML models can be trained to
act as translator agents and automate parts of this process.

The benefits of HDA using ML are reduced design time, superior optimizations, and exploration
of design spaces too complex for manual approaches. This can accelerate hardware development
and lead to better designs.

Challenges include limits of ML generalization, the black-box nature of some techniques, and ac-
curacy tradeoffs. But research is rapidly advancing to address these issues and make HDA ML
solutions robust and reliable for production use. HDA provides a major avenue for ML to trans-
form hardware design.

38.9.2. ML-Based Hardware Simulation and Verification

Simulating and verifying hardware designs is critical before manufacturing to ensure the design
behaves as intended. Traditional approaches like register-transfer level (RTL) simulation are com-
plex and time-consuming. ML introduces new opportunities to enhance hardware simulation and
verification. Some examples include:

• Surrogate modeling for simulation: Highly accurate surrogate models of a design can be
built using neural networks. Thesemodels predict outputs from inputsmuch faster than RTL
simulation, enabling fast design space exploration. Companies like Ansys use this technique.

• ML simulators: Large neural network models can be trained on RTL simulations to learn to
mimic the functionality of a hardware design. Once trained, theNNmodel can act as a highly
efÏcient simulator to use for regression testing and other tasks. Graphcore has demonstrated
over 100x speedup with this approach.

• Formal verification using ML: Formal verification mathematically proves properties about
a design. ML techniques can help generate verification properties and can learn to solve the
complex formal proofs needed. This automates parts of this challenging process. Startups
like Cortical.io are bringing ML formal verification solutions to market.

• Bug detection: ML models can be trained to process hardware designs and identify poten-
tial issues. This assists human designers in inspecting complex designs and finding bugs.
Facebook has shown bug detection models for their server hardware.

https://www.symbioticeda.com/
https://www.graphcore.ai/posts/ai-for-simulation-how-graphcore-is-helping-transform-traditional-hpc
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The key benefits of applying ML to simulation and verification are faster design validation
turnaround times, more rigorous testing, and reduced human effort. Challenges include verifying
ML model correctness and handling corner cases. ML promises to significantly accelerate testing
workflows.

38.9.3. ML for EfÏcient Hardware Architectures

Designing hardware architectures optimized for performance, power, and efÏciency is a key goal.
ML introduces new techniques to automate and enhance architecture design space exploration for
both general-purpose and specialized hardware like ML accelerators. Some promising examples
include:

• Architecture search for hardware: Search techniques like evolutionary algorithms (Kao and
Krishna (2020)), Bayesian optimization (Reagen et al. (2017), Bhardwaj et al. (2020)), rein-
forcement learning (Kao, Jeong, and Krishna (2020), S. Krishnan et al. (2022)) can automat-
ically generate novel hardware architectures by mutating and mixing design attributes like
cache size, number of parallel units, memory bandwidth, and so on. This allows for efÏcient
navigation of large design spaces.

• Predictive modeling for optimization: - ML models can be trained to predict hardware per-
formance, power, and efÏciency metrics for a given architecture. These become “surrogate
models” (S. Krishnan et al. (2023)) for fast optimization and space exploration by substituting
lengthy simulations.

• Specialized accelerator optimization: - For specialized chips like tensor processing units
for AI, automated architecture search techniques based on ML algorithms (Dan Zhang et al.
(2022)) show promise for finding fast, efÏcient designs.

The benefits of using ML include superior design space exploration, automated optimization, and
reduced manual effort. Challenges include long training times for some techniques and local op-
tima limitations. But ML for hardware architecture holds great potential for unlocking perfor-
mance and efÏciency gains.

38.9.4. ML to Optimize Manufacturing and Reduce Defects

Once a hardware design is complete, it moves tomanufacturing. But variability and defects during
manufacturing can impact yields and quality. ML techniques are now being applied to improve
fabrication processes and reduce defects. Some examples include:

• Predictive maintenance: MLmodels can analyze equipment sensor data over time and iden-
tify signals that predict maintenance needs before failure. This enables proactive upkeep that
can come in very handy in the costly fabrication process.

• Process optimization: Supervised learningmodels can be trained on process data to identify
factors that lead to low yields. The models can then optimize parameters to improve yields,
throughput, or consistency.

• Yield prediction: By analyzing test data from fabricated designs using techniques like re-
gression trees, ML models can predict yields early in production. This allows process adjust-
ments.
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• Defect detection: Computer vision ML techniques can be applied to images of designs to
identify defects invisible to the human eye. This enables precision quality control and root
cause analysis.

• Proactive failure analysis: - By analyzing structured and unstructured process data, ML
models can help predict, diagnose, and prevent issues that lead to downstream defects and
failures.

Applying ML to manufacturing enables process optimization, real-time quality control, predictive
maintenance, and ultimately higher yields. Challenges include managing complex manufacturing
data and variations. But ML is poised to transform semiconductor manufacturing.

38.9.5. Toward Foundation Models for Hardware Design

As we have seen, machine learning is opening up new possibilities across the hardware design
workflow, from specification tomanufacturing. However, currentML techniques are still narrow in
scope and require extensive domain-specific engineering. The long-term vision is the development
of general artificial intelligence systems that can be appliedwith versatility across hardware design
tasks.

To fully realize this vision, investment and research are needed to develop foundation models for
hardware design. These are unified, general-purpose ML models and architectures that can learn
complex hardware design skills with the right training data and objectives.

Realizing foundation models for end-to-end hardware design will require:

• Accumulation of large, high-quality, labeled datasets across hardware design stages to train
foundation models.

• Advances in multi-modal, multi-task ML techniques to handle the diversity of hardware de-
sign data and tasks.

• Interfaces and abstraction layers to connect foundation models to existing design flows and
tools.

• Development of simulation environments and benchmarks to train and test foundation mod-
els on hardware design capabilities.

• Methods to explain and interpret the designdecisions and optimizationsmade byMLmodels
for trust and verification.

• Compilation techniques to optimize foundation models for efÏcient deployment across hard-
ware platforms.

While significant research remains, foundation models represent the most transformative long-
term goal for imbuing AI into the hardware design process. Democratizing hardware design via
versatile, automated ML systems promises to unlock a new era of optimized, efÏcient, and innova-
tive chip design. The journey ahead is filled with open challenges and opportunities.

We encourage you to read Architecture 2.0 if ML-aided computer architecture design (S. Krishnan
et al. 2023) interests you. Alternatively, you can watch the below video.

https://www.youtube.com/watch?v=F5Eieaz7u1I&ab_channel=OpenComputeProject

https://www.sigarch.org/architecture-2-0-why-computer-architects-need-a-data-centric-ai-gymnasium/
https://www.youtube.com/watch?v=F5Eieaz7u1I&ab_channel=OpenComputeProject
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38.10. Conclusion

Specialized hardware acceleration has become indispensable for enabling performant and efÏcient
artificial intelligence applications as models and datasets explode in complexity. In this chapter,
we examined the limitations of general-purpose processors like CPUs for AI workloads. Their
lack of parallelism and computational throughput cannot train or run state-of-the-art deep neural
networks quickly. These motivations have driven innovations in customized accelerators.

We surveyed GPUs, TPUs, FPGAs and ASICs specifically designed for the math-intensive oper-
ations inherent to neural networks. By covering this spectrum of options, we aimed to provide
a framework for reasoning through accelerator selection based on constraints around flexibility,
performance, power, cost, and other factors.

We also explored the role of software in actively enabling and optimizing AI acceleration. This
spans programming abstractions, frameworks, compilers and simulators. We discussed hardware-
software co-design as a proactive methodology for building more holistic AI systems by closely
integrating algorithm innovation and hardware advances.

But there is so much more to come! Exciting frontiers like analog computing, optical neural net-
works, and quantum machine learning represent active research directions that could unlock or-
ders of magnitude improvements in efÏciency, speed, and scale compared to present paradigms.

In the end, specialized hardware acceleration remains indispensable for unlocking the perfor-
mance and efÏciency necessary to fulfill the promise of artificial intelligence from cloud to edge.
We hope this chapter actively provided useful background and insights into the rapid innovation
occurring in this domain.

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.
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39. Slides

Coming soon.
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40. Exercises

Coming soon.
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41. Labs

Coming soon.
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42. Benchmarking AI

Figure 42.1. DALL·E 3 Prompt: Photo of a podium set against a tech-themed backdrop. On each tier
of the podium, there are AI chips with intricate designs. The top chip has a gold medal hanging
from it, the second one has a silver medal, and the third has a bronze medal. Banners with ‘AI
Olympics’ are displayed prominently in the background.

Benchmarking is a critical part of developing and deploying machine learning systems, especially
for TinyML applications. Benchmarks allow developers to measure and compare the performance
of different model architectures, training procedures, and deployment strategies. This provides
key insights into which approaches work best for the problem at hand and the constraints of the
deployment environment.

This chapterwill provide an overview of popularMLbenchmarks, best practices for benchmarking,
and how to use benchmarks to improve model development and system performance. It aims to
provide developerswith the right tools and knowledge to effectively benchmark and optimize their
systems, especially for TinyML systems.
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Learning Objectives

• Understand the purpose and goals of benchmarkingAI systems, including performance
assessment, resource evaluation, validation, and more.

• Learn about the different types of benchmarks - micro, macro, and end-to-end - and
their role in evaluating different aspects of an AI system.

• Become familiarwith the key components of anAI benchmark, includingdatasets, tasks,
metrics, baselines, reproducibility rules, and more.

• Understand the distinction between training and inference, and how each phase war-
rants specialized ML systems benchmarking.

• Learn about system benchmarking concepts like throughput, latency, power, and com-
putational efÏciency.

• Appreciate the evolution ofmodel benchmarking from accuracy tomore holisticmetrics
like fairness, robustness and real-world applicability.

• Recognize the growing role of data benchmarking in evaluating issues like bias, noise,
balance and diversity.

• Understand the limitations of evaluating models, data, and systems in isolation, and
the emerging need for integrated benchmarking.

42.1. Introduction

Benchmarking provides the essential measurements needed to drive progress in machine learn-
ing and to truly understand system performance. As the physicist Lord Kelvin famously said, “To
measure is to know.” Benchmarks give us the ability to know the capabilities of different mod-
els, software, and hardware quantitatively. They allow ML developers to measure the inference
time, memory usage, power consumption, and other metrics that characterize a system. Moreover,
benchmarks create standardized processes for measurement, enabling fair comparisons across dif-
ferent solutions.

When benchmarks are maintained over time, they become instrumental in capturing progress
across generations of algorithms, datasets, and hardware. The models and techniques that set
new records on ML benchmarks from one year to the next demonstrate tangible improvements in
what’s possible for on-device machine learning. By using benchmarks to measure, ML practition-
ers can know the real-world capabilities of their systems and have confidence that each step reflects
genuine progress towards the state-of-the-art.

Benchmarking has several important goals and objectives that guide its implementation for ma-
chine learning systems.

• Performance assessment. This involves evaluating key metrics like the speed, accuracy, and
efÏciency of a given model. For instance, in a TinyML context, it is crucial to benchmark how
quickly a voice assistant can recognize commands, as this evaluates real-time performance.
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• Resource evaluation. This means assessing the model’s impact on critical system resources
including battery life, memory usage, and computational overhead. A relevant example is
comparing the battery drain of twodifferent image recognition algorithms running on awear-
able device.

• Validation and verification. Benchmarking helps ensure the system functions correctly and
meets specified requirements. One way is by checking the accuracy of an algorithm, like a
heart rate monitor on a smartwatch, against readings from medical-grade equipment as a
form of clinical validation.

• Competitive analysis. This enables comparing solutions against competing offerings in
the market. For example, benchmarking a custom object detection model versus common
TinyML benchmarks like MobileNet and Tiny-YOLO.

• Credibility. Accurate benchmarks uphold the credibility of AI solutions and the organiza-
tions that develop them. They demonstrate a commitment to transparency, honesty, and
quality, which is essential in building trust with users and stakeholders.

• Regulation andStandardization. As theAI industry continues to grow, there is an increasing
need for regulation and standardization to ensure that AI solutions are safe, ethical, and
effective. Accurate and reliable benchmarks are an essential component of this regulatory
framework, as they provide the data and evidence needed to assess compliancewith industry
standards and legal requirements.

This chapter will cover the 3 types of benchmarks in AI, the standardmetrics, tools, and techniques
designers use to optimize their systems, and the challenges and trends in benchmarking.

42.2. Historical Context

42.2.1. Standard Benchmarks

The evolution of benchmarks in computing vividly illustrates the industry’s relentless pursuit of
excellence and innovation. In the early days of computing during the 1960s and 1970s, bench-
marks were rudimentary and designed for mainframe computers. For example, the Whetstone
benchmark, named after theWhetstone ALGOL compiler, was one of the first standardized tests to
measure floating-point arithmetic performance of a CPU. These pioneering benchmarks prompted
manufacturers to refine their architectures and algorithms to achieve better benchmark scores.

The 1980s marked a significant shift with the rise of personal computers. As companies like IBM,
Apple, and Commodore competed for market share, and so benchmarks became critical tools to
enable fair competition. The SPECCPUbenchmarks, introduced by the SystemPerformance Evalu-
ation Cooperative (SPEC), established standardized tests allowing objective comparisons between
different machines. This standardization created a competitive environment, pushing silicon man-
ufacturers and system creators to enhance their hardware and software offerings continually.

With the 1990s came the era of graphics-intensive applications and video games. The need for
benchmarks to evaluate graphics card performance led to the creation of 3DMark by Futuremark.
As gamers and professionals sought high-performance graphics cards, companies like NVIDIA

https://en.wikipedia.org/wiki/Whetstone_(benchmark)
https://en.wikipedia.org/wiki/Whetstone_(benchmark)
https://www.spec.org/cpu/
https://www.spec.org/
https://www.spec.org/
https://www.3dmark.com/
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and AMD were driven to rapid innovation, leading to major advancements in GPU technology
like programmable shaders.

The 2000s saw a surge in mobile phones and portable devices like tablets. With portability came
the challenge of balancing performance and power consumption. Benchmarks like MobileMark
by BAPCo evaluated not just speed but also battery life. This drove companies to develop more
energy-efÏcient System-on-Chips (SOCs), leading to the emergence of architectures like ARM that
prioritized power efÏciency.

The recent decade’s focus has shifted towards cloud computing, big data, and artificial intelligence.
Cloud services providers like Amazon Web Services and Google Cloud compete on performance,
scalability, and cost-effectiveness. Tailored cloud benchmarks like CloudSuite have become essen-
tial, driving providers to optimize their infrastructure for better services.

42.2.2. Custom Benchmarks

In addition to industry-standard benchmarks, there are custom benchmarks that are specifically
designed to meet the unique requirements of a particular application or task. They are tailored
to the specific needs of the user or developer, ensuring that the performance metrics are directly
relevant to the intended use of the AImodel or system. Custom benchmarks can be created by indi-
vidual organizations, researchers, or developers, and are often used in conjunction with industry
standard benchmarks to provide a comprehensive evaluation of AI performance.

For example, a hospital could develop a benchmark to assess an AI model for predicting patient
readmission. This benchmark would incorporate metrics relevant to the hospital’s patient popula-
tion like demographics, medical history, and social factors. Similarly, a financial institution’s fraud
detection benchmark could focus on identifying fraudulent transactions accurately while minimiz-
ing false positives. In automotive, an autonomous vehicle benchmark may prioritize performance
in diverse conditions, responding to obstacles, and safety. Retailers could benchmark recommen-
dation systems using click-through rate, conversion rate, and customer satisfaction. Manufactur-
ing companies might benchmark quality control systems on defect identification, efÏciency, and
waste reduction. In each industry, custom benchmarks provide organizations with evaluation cri-
teria tailored to their unique needs and context. This allows for more meaningful assessment of
how well AI systems meet requirements.

The advantage of custom benchmarks lies in their flexibility and relevance. They can be designed
to test specific aspects of performance that are critical to the success of the AI solution in its in-
tended application. This allows for a more targeted and accurate assessment of the AI model or
system’s capabilities. Custom benchmarks also provide valuable insights into the performance of
AI solutions in real-world scenarios, which can be crucial for identifying potential issues and areas
for improvement.

In AI, benchmarks play a crucial role in driving progress and innovation. While benchmarks have
long been used in computing, their application tomachine learning is relatively recent. AI-focused
benchmarks aim to provide standardized metrics to evaluate and compare the performance of
different algorithms, model architectures, and hardware platforms.

https://bapco.com/products/mobilemark-2014/
http://cloudsuite.ch/
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42.2.3. Community Consensus

Akey prerogative for any benchmark to be impactful is that it must reflect the shared priorities and
values of the broader research community. Benchmarks designed in isolation risk failing to gain ac-
ceptance if they overlook key metrics considered important by leading groups. Through collabora-
tive development with open participation from academic labs, companies, and other stakeholders,
benchmarks can incorporate collective input on critical capabilities worth measuring. This helps
ensure the benchmarks evaluate aspects the community agrees are essential to advance the field.
The process of reaching alignment on tasks andmetrics itself supports converging onwhatmatters
most.

Furthermore, benchmarks published with broad co-authorship from respected institutions carry
authority and validity that convinces the community to adopt them as trusted standards. Bench-
marks perceived as biased by particular corporate or institutional interests breed skepticism. Ongo-
ing community engagement throughworkshops and challenges is also key after initial release, and
that is what, for instance, led to the success of ImageNet. As research rapidly progresses, collective
participation enables continual refinement and expansion of benchmarks over time.

Finally, community-developed benchmarks released with open access accelerate adoption and
consistent implementation. Shared open source code, documentation, models and infrastructure
lower barriers for groups to benchmark solutions on an equal footing using standardized imple-
mentations. This consistency is critical for fair comparisons. Without coordination, labs and com-
panies may implement benchmarks differently, reducing result reproducibility.

Community consensus brings benchmarks lasting relevancewhile fragmentation causes confusion.
Through collaborative development and transparent operation, benchmarks can become authori-
tative standards for tracking progress. Several of the benchmarks that we discuss in this chapter
were developed and built by the community, for the community, and that is what ultimately led
to their success.

42.3. AI Benchmarks: System, Model, and Data

As AI systems grow in complexity and ubiquity, the need for comprehensive benchmarking be-
comes paramount. Within this context, benchmarks are often classified into three primary cate-
gories: Hardware, Model, and Data. Let’s delve into why each of these buckets is essential and the
significance of evaluating AI from these three distinct dimensions:

42.3.1. System Benchmarks

AI computations, especially those in deep learning, are resource-intensive. The hardware onwhich
these computations run plays an important role in determining the speed, efÏciency, and scalabil-
ity of AI solutions. Consequently, hardware benchmarks help evaluate the performance of CPUs,
GPUs, TPUs, and other accelerators in the context of AI tasks. By understanding hardware perfor-
mance, developers can make informed choices about which hardware platforms are best suited for
specific AI applications. Furthermore, hardware manufacturers use these benchmarks to identify
areas for improvement, driving innovation in AI-specific chip designs.
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42.3.2. Model Benchmarks

The architecture, size, and complexity of AI models vary widely. Different models have different
computational demands and offer varying levels of accuracy and efÏciency. Model benchmarks
help us assess the performance of various AI architectures on standardized tasks. They provide
insights into the speed, accuracy, and resource demands of different models. By benchmarking
models, researchers can identify best-performing architectures for specific tasks, guiding the AI
community towards more efÏcient and effective solutions. Additionally, these benchmarks aid in
tracking the progress of AI research, showcasing advancements in model design and optimiza-
tion.

42.3.3. Data Benchmarks

AI, particularly machine learning, is inherently data-driven. The quality, size, and diversity of
data influence the training efÏcacy and generalization capability of AI models. Data benchmarks
focus on the datasets used in AI training and evaluation. They provide standardized datasets that
the community can use to train and test models, ensuring a level playing field for comparisons.
Moreover, these benchmarks highlight challenges in data quality, diversity, and representation,
pushing the community to address biases and gaps in AI training data. By understanding data
benchmarks, researchers can also gauge how models might perform in real-world scenarios, en-
suring robustness and reliability.

In the remainder of the sections, we will go through each of these benchmark types. The focus will
be an in-depth exploration of system benchmarks, as these are critical to understanding and ad-
vancing machine learning system performance. We will cover model and data benchmarks briefly
for a comprehensive perspective, but the emphasis and majority of the content will be devoted to
system benchmarks.

42.4. System Benchmarking

42.4.1. Granularity

Machine learning system benchmarking provides a structured and systematic approach to assess
how well a system is performing across various dimensions. Given the complexity of ML systems,
we can dissect their performance through different levels of granularity and obtain a comprehen-
sive view of the system’s efÏciency, identify potential bottlenecks, and pinpoint areas for improve-
ment. To this end, there are various types of benchmarks that have evolved over the years and
continue to persist.

Figure 42.2 illustrates the different layers of granularity of an ML system. At the application level,
end-to-end benchmarks assess the overall system performance, considering factors like data pre-
processing, model training, and inference. While at the model layer, benchmarks focus on assess-
ing the efÏciency and accuracy of specific models. This includes evaluating how well models gen-
eralize to new data and their computational efÏciency during training and inference. Furthermore,
benchmarking can extend to hardware and software infrastructure, examining the performance of
individual components like GPUs or TPUs.
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Figure 42.2. ML system granularity.

42.4.1.1. Micro Benchmarks

Micro-benchmarks in AI are specialized, focusing on the evaluation of distinct components or spe-
cific operations within a broader machine learning process. These benchmarks zero in on individ-
ual tasks, offering insights into the computational demands of a particular neural network layer,
the efÏciency of a unique optimization technique, or the throughput of a specific activation func-
tion. For instance, practitioners might use micro-benchmarks to measure the computational time
required by a convolutional layer in a deep learning model or to evaluate the speed of data prepro-
cessing that feeds data into the model. Such granular assessments are instrumental in fine-tuning
and optimizing discrete aspects of AI models, ensuring that each component operates at its peak
potential.

These types of microbenchmarks include that zoom into very specific operations or components
of the AI pipeline, such as the following:

• Tensor Operations: Libraries like cuDNN (by NVIDIA) often have benchmarks to measure
the performance of individual tensor operations, such as convolutions or matrix multiplica-
tions, which are foundational to deep learning computations.

• Activation Functions: Benchmarks that measure the speed and efÏciency of various activa-
tion functions like ReLU, Sigmoid, or Tanh in isolation.

• Layer Benchmarks: Evaluations of the computational efÏciency of distinct neural network
layers, such as a LSTM layer or a Transformer block, when operating on standardized input
sizes.

Example: DeepBench, introduced by Baidu, is a good example of something that asseses the above.
DeepBench assesses the performance of basic operations in deep learning models, providing in-
sights into how different hardware platforms handle neural network training and inference.

42.4.1.2. Macro Benchmarks

Macro-benchmarks provide a holistic view, assessing the end-to-end performance of entire ma-
chine learning models or comprehensive AI systems. Rather than focusing on individual opera-
tions, macro-benchmarks evaluate the collective efÏcacy of models under real-world scenarios or
tasks. For example, a macro-benchmark might assess the complete performance of a deep learn-
ing model undertaking image classification on a dataset like ImageNet. This includes gauging

https://developer.nvidia.com/cudnn
https://github.com/baidu-research/DeepBench
https://www.image-net.org/
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accuracy, computational speed, and resource consumption. Similarly, one might measure the cu-
mulative time and resources needed to train a natural language processingmodel on extensive text
corpora or evaluate the performance of an entire recommendation system, from data ingestion to
final user-specific outputs.

Examples: These benchmarks evaluate the AI model:

• MLPerf Inference(Reddi et al. (2020)): An industry-standard set of benchmarks for measur-
ing the performance of machine learning software and hardware. MLPerf has a suite of ded-
icated benchmarks for specific scales, such as MLPerf Mobile for mobile class devices and
MLPerf Tiny, which focuses on microcontrollers and other resource-constrained devices.

• EEMBC’s MLMark: A benchmarking suite for evaluating the performance and power efÏ-
ciency of embedded devices runningmachine learningworkloads. This benchmark provides
insights into how different hardware platforms handle tasks like image recognition or audio
processing.

• AI-Benchmark(Ignatov et al. (2018)): A benchmarking tool designed for Android devices, it
valuates the performance of AI tasks on mobile devices, encompassing various real-world
scenarios like image recognition, face parsing, and optical character recognition.

42.4.1.3. End-to-end Benchmarks

End-to-End Benchmarks provide an all-inclusive evaluation that extends beyond the boundaries
of the AI model itself. Instead of focusing solely on the computational efÏciency or accuracy of a
machine learning model, these benchmarks encompass the entire pipeline of an AI system. This
includes initial data pre-processing, the core model’s performance, post-processing of the model’s
outputs, and even other integral components like storage and network interactions.

Data pre-processing is the first stage in many AI systems, transforming raw data into a format
suitable for model training or inference. The efÏciency, scalability, and accuracy of these pre-
processing steps are vital for the overall system’s performance. End-to-end benchmarks assess
this phase, ensuring that data cleaning, normalization, augmentation, or any other transformation
process doesn’t become a bottleneck.

The post-processing phase also takes center stage. This involves interpreting the model’s raw out-
puts, possibly converting scores into meaningful categories, filtering results, or even integrating
with other systems. In real-world applications, this phase is crucial for delivering actionable in-
sights, and end-to-end benchmarks ensure it’s both efÏcient and effective.

Beyond the core AI operations, other system components play an important role in the overall
performance and user experience. Storage solutions, be it cloud-based, on-premises, or hybrid,
can significantly impact data retrieval and storage times, especially with vast AI datasets. Simi-
larly, network interactions, vital for cloud-based AI solutions or distributed systems, can become
performance bottlenecks if not optimized. End-to-end benchmarks holistically evaluate these com-
ponents, ensuring that the entire system, from data retrieval to final output delivery, operates
seamlessly.

To date, there are no public, end to end benchmarks that take into account the role of data storage,
network and compute performance. Arguably, MLPerf Training and Inference, come close to the
idea of an end to end benchmark but they are exclusively focused on ML model performance and

https://github.com/mlcommons/inference
https://github.com/mlcommons/mobile_app_open
https://github.com/mlcommons/tiny
https://github.com/eembc/mlmark
https://ai-benchmark.com/
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do not represent realworld deployment scenarios of howmodels are used in the field. Nonetheless,
they provide a very useful signal that helps assess AI system performance.

Given the inherent specificity of end-to-end benchmarking, it is typically performed internally at
a company by instrumenting real production deployments of AI. This allows engineers to have a
realistic understanding and breakdownof the performance, but given the sensitivity and specificity
of the information, it is rarely reported outside of the company.

42.4.1.4. Understanding the Trade-offs

Different issues arise at different stages of an AI system. Micro-benchmarks help in fine-tuning
individual components, macro-benchmarks aid in refining model architectures or algorithms, and
end-to-end benchmarks guide the optimization of the entire workflow. By understanding where a
problem lies, developers can apply targeted optimizations.

Moreover, while individual components of an AI systemmight perform optimally in isolation, bot-
tlenecks can emerge when they interact. End-to-end benchmarks, in particular, are crucial to en-
sure that the entire system, when operating collectively, meets desired performance and efÏciency
standards.

Finally, by discerning where performance bottlenecks or inefÏciencies lie, organizations can make
informed decisions on where to allocate resources. For instance, if micro-benchmarks reveal inefÏ-
ciencies in specific tensor operations, investments can be directed towards specialized hardware ac-
celerators. Conversely, if end-to-end benchmarks indicate data retrieval issues, investments might
be channeled towards better storage solutions.

42.4.2. Benchmark Components

At its core, an AI benchmark is more than just a test or a score; it’s a comprehensive evaluation
framework. To understand this in-depth, let’s break down the typical components that go into an
AI benchmark.

42.4.2.1. Standardized Datasets

Datasets serve as the foundation for most AI benchmarks. They provide a consistent set of data on
which models are trained and evaluated, ensuring a level playing field for comparisons.

Example: ImageNet, a large-scale dataset containing millions of labeled images spanning thou-
sands of categories, is a popular benchmarking standard for image classification tasks.

42.4.2.2. Pre-defined Tasks

A benchmark should have a clear objective or task that models aim to achieve. This task defines
the problem the AI system is trying to solve.

Example: For natural language processing benchmarks, tasks might include sentiment analysis,
named entity recognition, or machine translation.
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42.4.2.3. Evaluation Metrics

Once a task is defined, benchmarks require metrics to quantify performance. These metrics offer
objective measures to compare different models or systems.

In classification tasks, metrics like accuracy, precision, recall, and F1 score are commonly used. For
regression tasks, mean squared error or mean absolute error might be employed.

42.4.2.4. Baseline Models

Benchmarks often include baseline models or reference implementations. These serve as starting
points or minimum performance standards against which new models or techniques can be com-
pared.

Example: Inmany benchmark suites, simplemodels like linear regression or basic neural networks
serve as baselines to provide context for more complex model evaluations.

42.4.2.5. Hardware and Software Specifications

Given the variability introduced by different hardware and software configurations, bench-
marks often specify or document the hardware and software environments in which tests are
conducted.

Example: AnAI benchmarkmight note that evaluationswere conducted on anNVIDIA Tesla V100
GPU using TensorFlow v2.4.

42.4.2.6. Environmental Conditions

As external factors can influence benchmark results, it’s essential to either control or document
conditions like temperature, power source, or system background processes.

Example: Mobile AI benchmarks might specify that tests were conducted at room temperature
with devices plugged into a power source to eliminate battery-level variances.

42.4.2.7. Reproducibility Rules

To ensure benchmarks are credible and can be replicated by others in the community, they often
include detailed protocols, covering everything from random seeds used to exact hyperparame-
ters.

Example: A benchmark for a reinforcement learning task might detail the exact training episodes,
exploration-exploitation ratios, and reward structures used.

https://en.wikipedia.org/wiki/F-score
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42.4.2.8. Result Interpretation Guidelines

Beyond raw scores or metrics, benchmarks often provide guidelines or context to interpret results,
helping practitioners understand the broader implications.

Example: A benchmark might highlight that while Model A scored higher than Model B in ac-
curacy, Model B offers better real-time performance, making it more suitable for time-sensitive
applications.

42.4.3. Training vs. Inference

The development life cycle of a machine learning model involves two critical phases - training
and inference. Training is the process of learning patterns from data to create the model. Inference
refers to themodel making predictions on new unlabeled data. Both phases play indispensable yet
distinct roles. Consequently, each phase warrants rigorous benchmarking to evaluate performance
metrics like speed, accuracy, and computational efÏciency.

Benchmarking the training phase provides insights into how different model architectures, hyper-
parameter values, and optimization algorithms impact the time and resources needed to train the
model. For instance, benchmarking shows how neural network depth affects training time on a
given dataset. Benchmarking also reveals how hardware accelerators like GPUs and TPUs can
speed up training.

On the other hand, benchmarking inference evaluatesmodel performance in real-world conditions
after deployment. Key metrics include latency, throughput, memory footprint, and power con-
sumption. Inference benchmarking determines if an model meets the requirements of its target
application regarding response time and device constraints, which is typically the focus of TinyML
but we will discuss these broadly to make sure we have a general understanding.

42.4.4. Training Benchmarks

Training represents the phasewhere rawdata is processed and ingested by the system to adjust and
refine its parameters. Therefore, it is not just an algorithmic activity but also involves system-level
considerations, including data pipelines, storage, computing resources, and orchestration mecha-
nisms. The goal is to ensure that the ML system can efÏciently learn from data, optimizing both
the model’s performance and the system’s resource utilization.

42.4.4.1. Purpose

From an ML systems perspective, training benchmarks evaluate how well the system scales with
increasing data volumes and computational demands. It’s about understanding the interplay be-
tween hardware, software, and the data pipeline in the training process.

Consider a distributed ML system designed to train on vast datasets, like those used in large-scale
e-commerce product recommendations. A training benchmark would assess how efÏciently the
system scales across multiple nodes, how it manages data sharding, and how it handles failures or
node drop-offs during the training process.



398 Chapter 42. Benchmarking AI

Training benchmarks evaluate CPU, GPU, memory, and network utilization during the training
phase, guiding system optimizations. When training a model in a cloud-based ML system, it’s
crucial to understand how resources are being utilized. Are GPUs being fully leveraged? Is there
unnecessarymemory overhead? Benchmarks can highlight bottlenecks or inefÏciencies in resource
utilization, leading to cost savings and performance improvements.

Training anMLmodel is contingent on the timely and efÏcient delivery of data. Benchmarks in this
context would also assess the efÏciency of data pipelines, data preprocessing speed, and storage
retrieval times. For real-time analytics systems, like those used in fraud detection, the speed at
which training data is ingested, preprocessed, and fed into the model can be critical. Benchmarks
would evaluate the latency of data pipelines, the efÏciency of storage systems (like SSDs vs. HDDs),
and the speed of data augmentation or transformation tasks.

42.4.4.2. Metrics

Trainingmetrics, when viewed froma systems perspective, offer insights that transcend the conven-
tional algorithmic performance indicators. These metrics not only measure the model’s learning
efÏcacy but also gauge the efÏciency, scalability, and robustness of the entire ML system during
the training phase. Let’s delve deeper into these metrics and their significance.

The following metrics are often considered important:

1. Training Time: The time taken to train a model from scratch until it reaches a satisfactory
performance level. It is a direct measure of the computational resources required to train a
model. For example, Google’s BERT(Devlin et al. (2019))model is a natural language process-
ing model that requires several days to train on a massive corpus of text data using multiple
GPUs. The long training time is a significant challenge in terms of resource consumption and
cost.

2. Scalability: How well the training process can handle increases in data size or model com-
plexity. Scalability can be assessed by measuring training time, memory usage, and other
resource consumption as data size or model complexity increases. OpenAI’s GPT-3(Brown
et al. (2020)) model has 175 billion parameters, making it one of the largest language models
in existence. Training GPT-3 required extensive engineering efforts to scale up the training
process to handle the massive model size. This involved the use of specialized hardware, dis-
tributed training, and other techniques to ensure that the model could be trained efÏciently.

3. Resource Utilization: The extent to which the training process utilizes available computa-
tional resources such as CPU, GPU, memory, and disk I/O. High resource utilization can
indicate an efÏcient training process, while low utilization can suggest bottlenecks or inefÏ-
ciencies. For instance, training a convolutional neural network (CNN) for image classification
requires significant GPU resources. Utilizing multi-GPU setups and optimizing the training
code for GPU acceleration can greatly improve resource utilization and training efÏciency.

4. Memory Consumption: The amount of memory used by the training process. Memory
consumption can be a limiting factor for training large models or datasets. As an example,
Google researchers faced significant memory consumption challenges when training BERT.
The model has hundreds of millions of parameters, which require large amounts of memory
to store. The researchers had to develop techniques to reduce memory consumption, such as
gradient checkpointing and model parallelism.

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165
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5. Energy Consumption: The amount of energy consumed during the training process. As
machine learningmodels become larger andmore complex, energy consumption has become
an important consideration. Training largemachine learningmodels can consume significant
amounts of energy, leading to a large carbon footprint. For instance, the training of OpenAI’s
GPT-3 was estimated to have a carbon footprint equivalent to traveling by car for 700,000
kilometers.

6. Throughput: The number of training samples processed per unit time. Higher throughput
generally indicates a more efÏcient training process. When training a recommendation sys-
tem for an e-commerce platform, the throughput is an important metric to consider. A high
throughput ensures that the model can process large volumes of user interaction data in a
timely manner, which is crucial for maintaining the relevance and accuracy of the recom-
mendations. But it’s also important to understand how to balance throughput with latency
bounds. Therefore, often there is a latency-bounded throughput constraint that’s imposed
on service-level agreements for datacenter application deployments.

7. Cost: The cost of training a model, which can include both computational and human re-
sources. Cost is an important factor when considering the practicality and feasibility of train-
ing large or complex models. The cost of training large language models like GPT-3 is esti-
mated to be in the range of millions of dollars. This cost includes computational resources,
electricity, and human resources required for model development and training.

8. Fault Tolerance and Robustness: The ability of the training process to handle failures or
errors without crashing or producing incorrect results. This is important for ensuring the
reliability of the training process. In a real-world scenario, where a machine learning model
is being trained on a distributed system, network failures or hardwaremalfunctions can occur.
In recent years, for instance, it has become abundantly clear that faults that arise from silent
data corruption have emerged as a major issue. A fault-tolerant and robust training process
can recover from such failures without compromising the integrity of the model.

9. Ease of Use and Flexibility: The ease with which the training process can be set up and
used, as well as its flexibility in handling different types of data and models. In companies
like Google, efÏciency can sometimes be measured in terms of the number of Software En-
gineer (SWE) years saved since that translates directly to impact. Ease of use and flexibility
can reduce the time and effort required to train a model. TensorFlow and PyTorch are popu-
lar machine learning frameworks that provide user-friendly interfaces and flexible APIs for
building and training machine learning models. These frameworks support a wide range of
model architectures and are equipped with tools that simplify the training process.

10. Reproducibility: The ability to reproduce the results of the training process. Reproducibility
is important for verifying the correctness and validity of a model. However, there are often
variations due to stochastic network characteristics and this makes it hard to reproduce the
precise behavior of applications being trained, and this can present a challenge for bench-
marking.

By benchmarking for these types of metrics, we can obtain a comprehensive view of the perfor-
mance and efÏciency of the training process from a systems’ perspective, which can help identify
areas for improvement and ensure that resources are used effectively.
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42.4.4.3. Tasks

Selecting a handful of representative tasks for benchmarkingmachine learning systems is challeng-
ing because machine learning is applied to a diverse range of domains, each with its own unique
characteristics and requirements. Here are some of the challenges faced in selecting representative
tasks:

1. Diversity of Applications: Machine learning is used in numerous fields such as healthcare,
finance, natural language processing, computer vision, and many more. Each field has spe-
cific tasks that may not be representative of other fields. For example, image classification
tasks in computer vision may not be relevant to financial fraud detection.

2. Variability inData Types andQuality: Different tasks require different types of data, such as
text, images, videos, or numerical data. The quality and availability of data can vary greatly
between tasks, making it difÏcult to select tasks that are representative of the general chal-
lenges faced in machine learning.

3. Task Complexity and DifÏculty: The complexity of tasks varies greatly, with some tasks
being relatively straightforward, while others are highly complex and require sophisticated
models and techniques. Selecting representative tasks that cover the range of complexities
encountered in machine learning is a challenge.

4. Ethical and Privacy Concerns: Some tasks may involve sensitive or private data, such as
medical records or personal information. These tasks may have ethical and privacy concerns
that need to be addressed, which can make them less suitable as representative tasks for
benchmarking.

5. Scalability and Resource Requirements: Different tasks may have different scalability and
resource requirements. Some tasks may require extensive computational resources, while
others can be performed with minimal resources. Selecting tasks that are representative of
the general resource requirements in machine learning is difÏcult.

6. EvaluationMetrics: Themetrics used to evaluate the performance of machine learningmod-
els vary between tasks. Some tasks may have well-established evaluation metrics, while oth-
ers may lack clear or standardized metrics. This can make it challenging to compare perfor-
mance across different tasks.

7. Generalizability of Results: The results obtained from benchmarking on a specific task may
not be generalizable to other tasks. This means that the performance of a machine learning
system on a selected task may not be indicative of its performance on other tasks.

It is important to carefully consider these factors when designing benchmarks to ensure that they
are meaningful and relevant to the diverse range of tasks encountered in machine learning.

42.4.4.4. Benchmarks

Here are some original works that laid the fundamental groundwork for developing systematic
benchmarks for training machine learning systems.

MLPerf Training Benchmark

MLPerf is a suite of benchmarks designed to measure the performance of machine learning hard-
ware, software, and services. The MLPerf Training benchmark (Mattson et al. 2020a) focuses on

https://github.com/mlcommons/training
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the time it takes to train models to a target quality metric. It includes a diverse set of workloads,
such as image classification, object detection, translation, and reinforcement learning.

Metrics:

• Training time to target quality
• Throughput (examples per second)
• Resource utilization (CPU, GPU, memory, disk I/O)

DAWNBench

DAWNBench (Coleman et al. 2019) is a benchmark suite that focuses on end-to-end deep learning
training time and inference performance. It includes common tasks such as image classification
and question answering.

Metrics:

• Time to train to target accuracy
• Inference latency
• Cost (in terms of cloud compute and storage resources)

Fathom

Fathom (Adolf et al. 2016) is a benchmark from Harvard University that includes a diverse set of
workloads to evaluate the performance of deep learning models. It includes common tasks such
as image classification, speech recognition, and language modeling.

Metrics:

• Operations per second (to measure computational efÏciency)
• Time to completion for each workload
• Memory bandwidth

Example Use Case

Consider a scenario where we want to benchmark the training of an image classification model on
a specific hardware platform.

1. Task: The task is to train a convolutional neural network (CNN) for image classification on
the CIFAR-10 dataset.

2. Benchmark: We can use the MLPerf Training benchmark for this task. It includes an image
classification workload that is relevant to our task.

3. Metrics: We will measure the following metrics:

• Training time to reach a target accuracy of 90%.
• Throughput in terms of images processed per second.
• GPU and CPU utilization during training.

Bymeasuring thesemetrics, we can assess the performance and efÏciency of the training process on
the selected hardware platform. This information can then be used to identify potential bottlenecks
or areas for improvement.

https://dawn.cs.stanford.edu/benchmark/
https://github.com/rdadolf/fathom
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42.4.5. Inference Benchmarks

Inference in machine learning refers to the process of using a trained model to make predictions
on new, unseen data. It is the phase where the model applies its learned knowledge to solve the
problem it was designed for, such as classifying images, recognizing speech, or translating text.

42.4.5.1. Purpose

Whenwe buildmachine learningmodels, our ultimate goal is to deploy them in real-world applica-
tions where they can provide accurate and reliable predictions on new, unseen data. This process
of using a trained model to make predictions is known as inference. The real-world performance
of a machine learning model can differ significantly from its performance on training or validation
datasets, which makes benchmarking inference a crucial step in the development and deployment
of machine learning models.

Benchmarking inference allows us to evaluate how well a machine learning model performs in
real-world scenarios. This evaluation ensures that the model is practical and reliable when de-
ployed in applications, providing a more comprehensive understanding of the model’s behavior
with real data. Additionally, benchmarking can help identify potential bottlenecks or limitations
in the model’s performance. For example, if a model takes too long to make a prediction, it may
be impractical for real-time applications such as autonomous driving or voice assistants.

Resource efÏciency is another critical aspect of inference, as it can be computationally intensive and
require significant memory and processing power. Benchmarking helps ensure that the model is
efÏcient in terms of resource usage, which is particularly important for edge devices with limited
computational capabilities, such as smartphones or IoT devices. Moreover, benchmarking allows
us to compare the performance of our model with competing models or previous versions of the
same model. This comparison is essential for making informed decisions about which model to
deploy in a specific application.

Finally, ensuring that themodel’s predictions are not only accurate but also consistent across differ-
ent data points is vital. Benchmarking helps verify the model’s accuracy and consistency, ensuring
that it meets the application’s requirements. It also assesses the robustness of the model, ensuring
that it can handle real-world data variability and still make accurate predictions.

42.4.5.2. Metrics

1. Accuracy: Accuracy is one of the most vital metrics when benchmarking machine learning
models, quantifying the proportion of correct predictions made by the model compared to
the true values or labels. For example, in the case of a spamdetectionmodel that can correctly
classify 95 out of 100 email messages as spam or not spam, the accuracy of this model would
be calculated as 95%.

2. Latency: Latency is a performance metric that calculates the time lag or delay occurring be-
tween the receipt of an input and the production of the corresponding output by themachine
learning system. An example that clearly depicts latency is a real-time translation applica-
tion; if there exists a half-second delay from the moment a user inputs a sentence to the time
the translated text is displayed by the app, then the system’s latency is 0.5 seconds.
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3. Latency-Bounded Throughput: Latency-bounded throughput is a valuable metric that com-
bines the aspects of latency and throughput, measuring the maximum throughput of a sys-
temwhile stillmeeting a specified latency constraint. For example, in a video streaming appli-
cation that utilizes a machine learning model to automatically generate and display subtitles,
latency-bounded throughputwouldmeasure howmany video frames the system can process
per second (throughput) while ensuring that the subtitles are displayed with no more than
a 1-second delay (latency). This metric is particularly important in real-time applications
where meeting latency requirements is crucial to the user experience.

4. Throughput: Throughput assesses the system’s capacity by measuring the total number of
inferences or predictions a machine learning model can handle within a specific unit of time.
Consider a speech recognition system that employs a Recurrent Neural Network (RNN) as
its underlying model; if this system is capable of processing and understanding 50 different
audio clips in a minute, then its throughput rate stands at 50 clips per minute.

5. Inference Time: Inference time is a crucial metric that measures the duration a machine
learning system, such as a Convolutional Neural Network (CNN) used in image recognition
tasks, takes to process an input and generate a prediction or output. For instance, if a CNN
takes approximately 2milliseconds to accurately identify and label a cat within a given photo,
then its inference time is said to be 2 milliseconds.

6. Energy EfÏciency: Energy efÏciency is a metric that determines the amount of energy con-
sumed by themachine learningmodel to perform a single inference. A prime example of this
would be a natural language processing model built on a Transformer network architecture;
if it utilizes 0.1 Joules of energy to translate a sentence from English to French, its energy
efÏciency is measured at 0.1 Joules per inference.

7. MemoryUsage: Memory usage quantifies the volume of RAMneeded by amachine learning
model to carry out inference tasks. A relevant example to illustrate this would be a face
recognition system that is based on a CNN; if such a system requires 150 MB of RAM to
process and recognize faces within an image, then its memory usage is 150 MB.

42.4.5.3. Tasks

By and large, the challenges in picking representative tasks for benchmarking inference machine
learning systems are somewhat of the same taxonomy as what we have provided for training. Nev-
ertheless, to be pedantic, let’s discuss those in the context of inference machine learning systems.

1. Diversity of Applications: Inference machine learning is employed across numerous do-
mains such as healthcare, finance, entertainment, security, and more. Each domain has its
unique tasks, and what’s representative in one domain might not be in another. For example,
an inference task for predicting stock prices in the financial domain might not be representa-
tive of image recognition tasks in the medical domain.

2. Variability in Data Types: Different inference tasks require different types of data – text,
images, videos, numerical data, etc. Ensuring that benchmarks address the wide variety of
data types used in real-world applications is challenging. For example, voice recognition
systems process audio data, which is vastly different from the visual data processed by facial
recognition systems.
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3. Task Complexity: The complexity of inference tasks can differ immensely, from basic classi-
fication tasks to intricate tasks requiring state-of-the-art models. For example, differentiating
between two categories (binary classification) is typically simpler than detecting hundreds
of object types in a crowded scene.

4. Real-time Requirements: Some applications demand immediate or real-time responses,
while others may allow for some delay. In autonomous driving, real-time object detection
and decision-making are paramount, whereas a recommendation engine for a shopping
website might tolerate slight delays.

5. Scalability Concerns: Given the varied scale of applications, from edge devices to cloud-
based servers, tasksmust represent the diverse computational environmentswhere inference
occurs. For example, an inference task running on a smartphone’s limited resources is quite
different from one running on a powerful cloud server.

6. Evaluation Metrics Diversity: Depending on the task, the metrics to evaluate performance
can differ significantly. Finding a common ground or universally accepted metric for diverse
tasks is a challenge. For example, precision and recall might be vital for a medical diagnosis
task, whereas throughput (inferences per second)might bemore crucial for video processing
tasks.

7. Ethical and PrivacyConcerns: Especially in sensitive areas like facial recognition or personal
data processing, there are concerns related to ethics and privacy. These concerns can impact
the selection and nature of tasks used for benchmarking. For example, using real-world facial
data for benchmarking can raise privacy issues, whereas synthetic data might not replicate
real-world challenges.

8. HardwareDiversity: With awide range of devices fromGPUs, CPUs, TPUs, to customASICs
used for inference, ensuring that tasks are representative across varied hardware is challeng-
ing. For example, a task optimized for inference on a GPU might perform sub-optimally on
an edge device.

42.4.5.4. Benchmarks

Here are some original works that laid the fundamental groundwork for developing systematic
benchmarks for inference machine learning systems.

MLPerf Inference Benchmark

MLPerf Inference is a comprehensive suite of benchmarks that assess the performance of machine
learning models during the inference phase. It encompasses a variety of workloads including im-
age classification, object detection, and natural language processing, aiming to provide standard-
ized and insightful metrics for evaluating different inference systems.

Metrics:

• Inference time
• Latency
• Throughput
• Accuracy
• Energy consumption

https://github.com/mlcommons/inference
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AI Benchmark

AI Benchmark is a benchmarking tool that evaluates the performance of AI and machine learning
models on mobile devices and edge computing platforms. It includes tests for image classifica-
tion, object detection, and natural language processing tasks, providing a detailed analysis of the
inference performance on different hardware platforms.

Metrics:

• Inference time
• Latency
• Energy consumption
• Memory usage
• Throughput

OpenVINO toolkit

OpenVINO toolkit provides a benchmark tool tomeasure the performance of deep learningmodels
for a variety of tasks such as image classification, object detection, and facial recognition on Intel
hardware. It offers detailed insights into the inference performance of the models on different
hardware configurations.

Metrics:

• Inference time
• Throughput
• Latency
• CPU and GPU utilization

Example Use Case

Consider a scenario where we want to evaluate the inference performance of an object detection
model on a specific edge device.

Task: The task is to perform real-time object detection on video streams, detecting and identifying
objects such as vehicles, pedestrians, and trafÏc signs.

Benchmark: We can use the AI Benchmark for this task as it focuses on evaluating inference per-
formance on edge devices, which is suitable for our scenario.

Metrics: We will measure the following metrics:

• Inference time to process each video frame
• Latency to generate the bounding boxes for detected objects
• Energy consumption during the inference process
• Throughput in terms of video frames processed per second

By measuring these metrics, we can assess the performance of the object detection model on the
edge device and identify any potential bottlenecks or areas for optimization to enhance real-time
processing capabilities.

https://ai-benchmark.com/
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
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42.4.6. Benchmark Example

In order to properly illustrate the components of a systems benchmark, we can look at the keyword
spotting benchmark in MLPerf Tiny and explain the motivation behind each decision.

42.4.6.1. Task

Keyword spotting was selected as a task because it is a common usecase in TinyML that has been
well established for years. Additionally the typical hardware used for keyword spotting differs
substantially from the offerings of other benchmarks such asMLPerf Inference’s speech recognition
task.

42.4.6.2. Dataset

Google Speech Commands(Warden (2018)) was selected as the best dataset to represent the task.
The dataset is well established in the research community and has permissive licensing which
allows it to be easily used in a benchmark.

42.4.6.3. Model

The next core component is the model which will act as the primary workload for the benchmark.
Themodel should be well established as a solution to the selected task and not necessarily the state
of the art solution. The model selected is a simple depthwise seperable convolution model. This
architecture is not the state of the art solution to the task, but it is well established and not designed
for a specific hardware platform like many of the state of the art solutions. The benchmark also
establishes a reference training recipe, despite being an inference benchmark, in order to be fully
reproducible and transparent.

42.4.6.4. Metrics

Latency was selected as the primary metric for the benchmark, as keyword spotting systems need
to react quickly to maintain user satisfaction. Additionally, given that TinyML systems are often
battery powered, energy consumption is measured to ensure the hardware platform is efÏcient.
The accuracy of the model is also measure to ensure that the optimizations applied by a submitter,
such as quantization, don’t degrade the accuracy beyond a threshold.

42.4.6.5. Benchmark Harness

MLPerf Tiny uses EEMBCs EnergyRunner benchmark harness to load the inputs to the model and
to isolate and measure the energy consumption of the device. When measuring energy consump-
tion it’s critical to select a harness that is accurate at the expected power levels of the devices under
test, and simple enough to not become a burden for participants of the benchmark.

https://www.tensorflow.org/datasets/catalog/speech_commands
https://github.com/eembc/energyrunner
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42.4.6.6. Baseline Submission

Baseline submissions are critical for contextualizing results and acting as a reference point to help
participants get started. The baseline submission should prioritize simplicity and readability over
state of the art performance. The keyword spotting baseline uses a standard STM microcontroller
as it’s hardware and TensorFlow Lite for Microcontrollers(David et al. (2021)) as it’s inference
framework.

42.4.7. Challenges and Limitations

While benchmarking provides a structured methodology for performance evaluation in complex
domains like artificial intelligence and computing, the process also poses several challenges. If not
properly addressed, these challenges can undermine the credibility and accuracy of benchmarking
results. Some of the predominant difÏculties faced in benchmarking include the following:

• Incomplete problem coverage - Benchmark tasks may not fully represent the problem space.
For instance, common image classification datasets like CIFAR-10 have limited diversity in
image types. Algorithms tuned for such benchmarksmay fail to generalize well to real-world
datasets.

• Statistical insignificance - Benchmarks must have enough trials and data samples to produce
statistically significant results. For example, benchmarking an OCRmodel on only a few text
scans may not adequately capture its true error rates.

• Limited reproducibility - Varying hardware, software versions, codebases and other factors
can reduce reproducibility of benchmark results. MLPerf addresses this by providing refer-
ence implementations and environment specification.

• Misalignment with end goals - Benchmarks focusing only on speed or accuracy metrics may
misalign with real-world objectives like cost and power efÏciency. Benchmarks must reflect
all critical performance axes.

• Rapid staleness - Due to the fast pace of advancements in AI and computing, benchmarks
and their datasets can become outdated quickly. Maintaining up-to-date benchmarks is thus
a persistent challenge.

But of all these, perhaps the most important challenge is dealing with benchmark engineering.

42.4.7.1. Hardware Lottery

The “hardware lottery” in benchmarking machine learning systems refers to the situation where
the success or efÏciency of a machine learning model is significantly influenced by the compatibil-
ity of the model with the underlying hardware (Chu et al. 2021). In other words, some models per-
form exceptionally well because they are a good fit for the particular characteristics or capabilities
of the hardware on which they are run, rather than because they are intrinsically superior mod-
els. Figure 42.3 demonstrates the performance of different models on different hardware: notice
how (follow the big yellow arrow) the Mobilenet V3 Large model (in green) has the lowest latency
among all models when run unquantized on the Pixel4 CPU while it performs the worst on Pixel4
DSP Qualcomm Snapdragon 855. Unfortunately, the hardware used is often omitted from papers
or given only brief mentions, making reproducing results difÏcult if not impossible.

https://www.st.com/en/microcontrollers-microprocessors.html
https://www.tensorflow.org/lite/microcontrollers
https://www.cs.toronto.edu/~kriz/cifar.html
https://arxiv.org/abs/2009.06489
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Figure 42.3. Hardware Lottery.

For instance, certain machine learning models may be designed and optimized to take advantage
of parallel processing capabilities of specific hardware accelerators, such as Graphics Processing
Units (GPUs) or Tensor Processing Units (TPUs). As a result, these models might show superior
performance when benchmarked on such hardware, compared to other models that are not opti-
mized for the hardware.

For example, a 2018 paper introduced a new convolutional neural network architecture for image
classification that achieved state-of-the-art accuracy on ImageNet. However, the paper only men-
tioned that themodel was trained on 8 GPUs, without specifying themodel, memory size, or other
relevant details. A follow-up study tried to reproduce the results but found that training the same
model on commonly available GPUs achieved 10% lower accuracy, even after hyperparameter tun-
ing. The original hardware likely had far higher memory bandwidth and compute power. As
another example, training times for large language models can vary drastically based on the GPUs
used.

The “hardware lottery” can introduce challenges and biases in benchmarking machine learning
systems, as the performance of the model is not solely dependent on the model’s architecture or
algorithm, but also on the compatibility and synergies with the underlying hardware. This can
make it difÏcult to fairly compare different models and to identify the best model based on its
intrinsic merits. It can also lead to a situation where the community converges on models that are
a good fit for the popular hardware of the day, potentially overlooking other models that might be
superior but are not compatible with the current hardware trends.

42.4.7.2. Benchmark Engineering

Hardware lottery occurs when a machine learning model unintentionally performs exceptionally
well or poorly on a specific hardware setup due to unforeseen compatibility or incompatibility.
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The model is not explicitly designed or optimized for that particular hardware by the developers
or engineers; rather, it happens to align or (mis)alignwith the hardware’s capabilities or limitations.
In this case, the performance of the model on the hardware is a byproduct of coincidence rather
than design.

In contrast to the accidental hardware lottery, benchmark engineering involves deliberately opti-
mizing or designing a machine learning model to perform exceptionally well on specific hardware,
often to win benchmarks or competitions. This intentional optimization might include tweaking
the model’s architecture, algorithms, or parameters to take full advantage of the hardware’s fea-
tures and capabilities.

42.4.7.3. Problem

Benchmark engineering refers to the process of tweaking or modifying an AI system to optimize
its performance on specific benchmark tests, often at the expense of generalizability or real-world
performance. This can include adjusting hyperparameters, training data, or other aspects of the
system specifically to achieve high scores on benchmark metrics, without necessarily improving
the overall functionality or utility of the system.

The motivation behind benchmark engineering often stems from the desire to achieve high per-
formance scores for marketing or competitive purposes. High benchmark scores can be used to
demonstrate the superiority of an AI system compared to competitors, and can be a key selling
point for potential users or investors. This pressure to performwell on benchmarks can sometimes
lead to the prioritization of benchmark-specific optimizations over more holistic improvements to
the system.

It can lead to a number of risks and challenges. One of the primary risks is that the AI system may
not perform as well in real-world applications as the benchmark scores suggest. This can lead to
user dissatisfaction, reputational damage, and potential safety or ethical concerns. Furthermore,
benchmark engineering can contribute to a lack of transparency and accountability in the AI com-
munity, as it can be difÏcult to discern how much of an AI system’s performance is due to genuine
improvements versus benchmark-specific optimizations.

To mitigate the risks associated with benchmark engineering, it is important for the AI community
to prioritize transparency and accountability. This can include clearly disclosing any optimizations
or adjustments made specifically for benchmark tests, as well as providing more comprehensive
evaluations of AI systems that include real-world performance metrics in addition to benchmark
scores. Additionally, it is important for researchers and developers to prioritize holistic improve-
ments to AI systems that improve their generalizability and functionality across a range of appli-
cations, rather than focusing solely on benchmark-specific optimizations.

42.4.7.4. Issues

One of the primary problemswith benchmark engineering is that it can compromise the real-world
performance of AI systems. When developers focus on optimizing their systems to achieve high
scores on specific benchmark tests, they may neglect other important aspects of system perfor-
mance that are crucial in real-world applications. For example, an AI system designed for image
recognition might be engineered to perform exceptionally well on a benchmark test that includes
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a specific set of images, but struggle to accurately recognize images that are slightly different from
those in the test set.

Another issue with benchmark engineering is that it can result in AI systems that lack generaliz-
ability. In other words, while the system may perform well on the benchmark test, it may not be
able to handle a diverse range of inputs or scenarios. For instance, an AI model developed for
natural language processing might be engineered to achieve high scores on a benchmark test that
includes a specific type of text, but fail to accurately process text that falls outside of that specific
type.

It can also lead to misleading results. When AI systems are engineered to perform well on bench-
mark tests, the results may not accurately reflect the true capabilities of the system. This can be
problematic for users or investors who rely on benchmark scores tomake informed decisions about
whichAI systems to use or invest in. For example, anAI system that has been engineered to achieve
high scores on a benchmark test for speech recognition might not actually be capable of accurately
recognizing speech in real-world situations, leading users or investors to make decisions based on
inaccurate information.

42.4.7.5. Mitigation

There are several ways to mitigate benchmark engineering. Transparency in the benchmarking
process is crucial to maintaining the accuracy and reliability of benchmarks. This involves clearly
disclosing the methodologies, data sets, and evaluation criteria used in benchmark tests, as well as
any optimizations or adjustments made to the AI system for the purpose of the benchmark.

One way to achieve transparency is through the use of open-source benchmarks. Open-source
benchmarks are made publicly available, allowing researchers, developers, and other stakeholders
to review, critique, and contribute to the benchmark, thereby ensuring its accuracy and reliability.
This collaborative approach also facilitates the sharing of best practices and the development of
more robust and comprehensive benchmarks.

One example is the MLPerf Tiny. It’s an open-source framework designed to make it easy to
compare different solutions in the world of TinyML. Its modular design allows components to
be swapped out for comparison or improvement. The reference implementations, shown in green
and orange in Figure 42.4, act as the baseline for results. TinyML often needs optimization across
the entire system, and users can contribute by focusing on specific parts, like quantization. The
modular benchmark design allows users to showcase their contributions’ competitive advantage
bymodifying a reference implementation. In short, MLPerf Tiny offers a flexible andmodular way
to assess and enhance TinyML applications, making it easier to compare and improve different as-
pects of the technology.

Another method for achieving transparency is through peer review of benchmarks. This involves
having independent experts review and validate the benchmark’s methodology, data sets, and
results to ensure their credibility and reliability. Peer review can provide a valuable means of
verifying the accuracy of benchmark tests and can help to build confidence in the results.

Standardization of benchmarks is another important solution to mitigate benchmark engineer-
ing. Standardized benchmarks provide a common framework for evaluating AI systems, ensur-
ing consistency and comparability across different systems and applications. This can be achieved
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Figure 42.4. MLPerf Tiny modular design. Credit: Mattson et al. (2020a).
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through the development of industry-wide standards and best practices for benchmarking, as well
as through the use of common metrics and evaluation criteria.

Third-party verification of results can also be a valuable tool in mitigating benchmark engineering.
This involves having an independent third party verify the results of a benchmark test to ensure
their credibility and reliability. Third-party verification can help to build confidence in the results
and can provide a valuable means of validating the performance and capabilities of AI systems.

42.5. Model Benchmarking

Benchmarking machine learning models is important for determining the effectiveness and efÏ-
ciency of various machine learning algorithms in solving specific tasks or problems. By analyzing
the results obtained frombenchmarking, developers and researchers can identify the strengths and
weaknesses of their models, leading to more informed decisions on model selection and further
optimization.

The evolution and progress of machine learning models are intrinsically linked to the availability
and quality of data sets. In theworld ofmachine learning, data acts as the rawmaterial that powers
the algorithms, allowing them to learn, adapt, and ultimately perform tasks that were traditionally
the domain of humans. Therefore, it is important to understand this history.

42.5.1. Historical Context

Machine learning datasets have a rich history and have evolved significantly over the years, grow-
ing in size, complexity, and diversity to meet the ever-increasing demands of the field. Let’s take a
closer look at this evolution, starting from one of the earliest and most iconic datasets – MNIST.

42.5.1.1. MNIST (1998)

The MNIST dataset, created by Yann LeCun, Corinna Cortes, and Christopher J.C. Burges in 1998,
can be considered a cornerstone in the history of machine learning datasets. It consists of 70,000
labeled 28x28 pixel grayscale images of handwritten digits (0-9). MNIST has been widely used for
benchmarking algorithms in image processing and machine learning, serving as a starting point
for many researchers and practitioners in the field. Figure 42.5 shows some examples of the hand-
written digits.

42.5.1.2. ImageNet (2009)

Fast forward to 2009, and we see the introduction of the ImageNet dataset, which marked a sig-
nificant leap in the scale and complexity of datasets. ImageNet consists of over 14 million labeled
images spanning more than 20,000 categories. It was developed by Fei-Fei Li and her team with
the goal of advancing research in object recognition and computer vision. The dataset became
synonymous with the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), an annual
competition that played a crucial role in the development of deep learning models, including the
famous AlexNet in 2012.

https://www.tensorflow.org/datasets/catalog/mnist
https://www.tensorflow.org/datasets/catalog/imagenet2012
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Figure 42.5. MNIST handwritten digits. Credit: Suvanjanprasai.

42.5.1.3. COCO (2014)

The Common Objects in Context (COCO) dataset(T.-Y. Lin et al. (2014)), released in 2014, further
expanded the landscape of machine learning datasets by introducing a richer set of annotations.
COCO consists of images containing complex scenes with multiple objects, and each image is an-
notated with object bounding boxes, segmentation masks, and captions. This dataset has been
instrumental in advancing research in object detection, segmentation, and image captioning.

https:
//cocodataset.org/images/jpg/coco-examples.jpg

https://en.wikipedia.org/wiki/File:MnistExamplesModified.png
https://cocodataset.org/
https://cocodataset.org/images/jpg/coco-examples.jpg
https://cocodataset.org/images/jpg/coco-examples.jpg
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42.5.1.4. GPT-3 (2020)

While the above examples primarily focus on image datasets, there have been significant devel-
opments in text datasets as well. One notable example is GPT-3 (Brown et al. 2020), developed
by OpenAI. GPT-3 is a language model trained on a diverse range of internet text. Although the
dataset used to train GPT-3 is not publicly available, the model itself, consisting of 175 billion pa-
rameters, is a testament to the scale and complexity of modern machine learning datasets and
models.

42.5.1.5. Present and Future

Today, we have a plethora of datasets spanning various domains, including healthcare, finance,
social sciences, and more. The following characteristics are how we can taxonomize the space and
growth of machine learning datasets that fuel model development.

1. Diversity of Data Sets: The variety of data sets available to researchers and engineers has
expanded dramatically over the years, covering a wide range of fields, including natural lan-
guage processing, image recognition, and more. This diversity has fueled the development
of specialized machine learning models tailored to specific tasks, such as translation, speech
recognition, and facial recognition.

2. Volume of Data: The sheer volume of data that has become available in the digital age has
also played a crucial role in advancing machine learning models. Large data sets enable
models to capture the complexity and nuances of real-world phenomena, leading to more
accurate and reliable predictions.

3. Quality and Cleanliness of Data: The quality of data is another critical factor that influences
the performance ofmachine learningmodels. Clean, well-labeled, and unbiased data sets are
essential for training models that are robust and fair.

4. Open Access to Data: The availability of open-access data sets has also contributed signifi-
cantly to the progress in machine learning. Open data allows researchers from around the
world to collaborate, share insights, and build upon each other’s work, leading to faster inno-
vation and development of more advanced models.

5. Ethics and Privacy Concerns: As data sets continue to grow in size and complexity, ethical
considerations and privacy concerns become increasingly important. There is an ongoing
debate about the balance between leveraging data for machine learning advancements and
protecting individuals’ privacy rights.

The development of machine learning models is heavily reliant on the availability of diverse, large,
high-quality, and open-access data sets. As we move forward, addressing the ethical considera-
tions and privacy concerns associated with the use of large data sets is crucial to ensure that ma-
chine learning technologies benefit society as a whole. There is a growing awareness that data acts
as the rocket fuel for machine learning, driving and fueling the development of machine learning
models. Consequently, an increasing amount of focus is being placed on the development of the
data sets themselves. We will explore this in further detail in the data benchmarking section.
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42.5.2. Model Metrics

The evolution of machine learning model evaluation has witnessed a transition from a narrow
focus on accuracy to a more comprehensive approach that takes into account a range of factors,
from ethical considerations and real-world applicability to practical constraints likemodel size and
efÏciency. This shift reflects thematuration of the field asmachine learningmodels are increasingly
applied in diverse and complex real-world scenarios.

42.5.2.1. Accuracy

Accuracy is one of the most intuitive and commonly used metrics for evaluating machine learning
models. At its core, accuracy measures the proportion of correct predictions made by the model
out of all predictions. As an example, imagine we have developed a machine learning model to
classify images as either containing a cat or not. If we test this model on a dataset of 100 images,
and it correctly identifies 90 of them, we would calculate its accuracy as 90%.

In the initial stages of machine learning, accuracy was often the primary, if not the only, metric con-
sidered when evaluating model performance. This is perhaps understandable, given its straight-
forward nature and ease of interpretation. However, as the field has progressed, the limitations of
relying solely on accuracy have become more apparent.

Consider the example of a medical diagnosis model that has an accuracy of 95%. While at first
glance this may seem impressive, we must delve deeper to fully assess the model’s performance.
If the model fails to accurately diagnose severe conditions that, while rare, can have severe con-
sequences, its high accuracy may not be as meaningful. A pertinent example of this is Google’s
retinopathy machine learning model, which was designed to diagnose diabetic retinopathy and
diabetic macular edema from retinal photographs.

The Google model demonstrated impressive accuracy levels in lab settings, but when deployed
in real-world clinical environments in Thailand, it faced significant challenges. In the real-world
setting, the model encountered diverse patient populations, varying image quality, and a range of
different medical conditions that it had not been exposed to during its training. Consequently, its
performance was compromised, and it struggled to maintain the same levels of accuracy that had
been observed in lab settings. This example serves as a clear reminder that while high accuracy
is an important and desirable attribute for a medical diagnosis model, it must be evaluated in
conjunction with other factors, such as the model’s ability to generalize to different populations
and handle diverse and unpredictable real-world conditions, to truly understand its value and
potential impact on patient care.

Similarly, if the model performs well on average but exhibits significant disparities in performance
across different demographic groups, this too would be a cause for concern.

The evolution of machine learning has thus seen a shift towards a more holistic approach to model
evaluation, taking into account not just accuracy, but also other crucial factors such as fairness,
transparency, and real-world applicability. A prime example of this is the Gender Shades project
at MIT Media Lab, led by Joy Buolamwini, which highlighted significant racial and gender biases
in commercial facial recognition systems. The project evaluated the performance of three facial

https://about.google/intl/ALL_us/stories/seeingpotential/
https://about.google/intl/ALL_us/stories/seeingpotential/
https://www.technologyreview.com/2020/04/27/1000658/google-medical-ai-accurate-lab-real-life-clinic-covid-diabetes-retina-disease/
http://gendershades.org/


416 Chapter 42. Benchmarking AI

recognition technologies developed by IBM, Microsoft, and Face++ and found that they all exhib-
ited biases, performing better on lighter-skinned and male faces compared to darker-skinned and
female faces.

While accuracy remains a fundamental and valuable metric for evaluating machine learning mod-
els, it is clear that amore comprehensive approach is required to fully assess amodel’s performance.
This means considering additional metrics that account for fairness, transparency, and real-world
applicability, as well as conducting rigorous testing across diverse datasets to uncover and miti-
gate any potential biases. The move towards a more holistic approach to model evaluation reflects
the maturation of the field and its increasing recognition of the real-world implications and ethical
considerations associated with deploying machine learning models.

42.5.2.2. Fairness

Fairness in machine learning models is a multifaceted and critical aspect that requires careful at-
tention, particularly in high-stakes applications that significantly affect people’s lives, such as in
loan approval processes, hiring, and criminal justice. It refers to the equitable treatment of all
individuals, irrespective of their demographic or social attributes such as race, gender, age, or so-
cioeconomic status.

When evaluating models, simply relying on accuracy can be insufÏcient and potentially mislead-
ing. For instance, consider a loan approval model that boasts a 95% accuracy rate. While this
figure may appear impressive at first glance, it does not reveal how the model performs across
different demographic groups. If this model consistently discriminates against a particular group,
its accuracy is less commendable, and its fairness comes into question.

Discrimination can manifest in various forms, such as direct discrimination, where a model explic-
itly uses sensitive attributes like race or gender in its decision-making process, or indirect discrimi-
nation, where seemingly neutral variables correlate with sensitive attributes, indirectly influencing
themodel’s outcomes. An infamous example of the latter is the COMPAS tool used in the US crimi-
nal justice system,which exhibited racial biases in predicting recidivism rates, despite not explicitly
using race as a variable.

Addressing fairness involves careful examination of the model’s performance across diverse
groups, identification of potential biases, and rectification of disparities through corrective
measures such as re-balancing datasets, adjusting model parameters, and implementing fairness-
aware algorithms. Researchers and practitioners are continuously developing metrics and
methodologies tailored to specific use cases to evaluate fairness in real-world scenarios. For
example, disparate impact analysis, demographic parity, and equal opportunity are some of the
metrics employed to assess fairness.

Additionally, transparency and interpretability of models are fundamental to achieving fairness.
Understanding how a model makes decisions can reveal potential biases and enable stakeholders
to hold developers accountable. Open-source tools like AI Fairness 360 by IBM and Fairness Indica-
tors by TensorFlow are being developed to facilitate fairness assessments and mitigation of biases
in machine learning models.

Ensuring fairness in machine learning models particularly in applications that significantly im-
pact people’s lives. It requires rigorous evaluation of the model’s performance across diverse
groups, careful identification and mitigation of biases, and implementation of transparency and

https://ai-fairness-360.org/
https://www.tensorflow.org/tfx/guide/fairness_indicators
https://www.tensorflow.org/tfx/guide/fairness_indicators
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interpretability measures. By addressing fairness in a comprehensive manner, we can work to-
wards developing machine learning models that are equitable, just, and beneficial for society as a
whole.

42.5.2.3. Complexity

42.5.2.3.1. Parameters*

In the initial stages of machine learning, model benchmarking often relied on parameter counts
as a proxy for model complexity. The rationale was that more parameters typically lead to a more
complex model, which should, in turn, deliver better performance. However, this approach has
proven to be inadequate as it doesn’t account for the computational cost associatedwith processing
a large number of parameters.

For example, GPT-3, developed by OpenAI, is a language model that boasts an astounding 175
billion parameters. While it achieves state-of-the-art performance on a variety of natural language
processing tasks, its size and the computational resources required to run it make it impractical
for deployment in many real-world scenarios, especially those with limited computational capabil-
ities.

The reliance on parameter counts as a proxy for model complexity also fails to consider the efÏ-
ciency of the model. A model with fewer parameters might be just as effective, if not more so, than
a model with a higher parameter count if it is optimized for efÏciency. For instance, MobileNets,
developed by Google, are a family of models designed specifically for mobile and edge devices.
They utilize depth-wise separable convolutions to reduce the number of parameters and computa-
tional cost, while still achieving competitive performance.

In light of these limitations, the field has moved towards a more holistic approach to model bench-
marking that considers not just parameter counts, but also other crucial factors such as floating-
point operations per second (FLOPs), memory consumption, and latency. FLOPs, in particular,
have emerged as an important metric as they provide a more accurate representation of the com-
putational load a model imposes. This shift towards a more comprehensive approach to model
benchmarking reflects a recognition of the need to balance performance with practicality, ensur-
ing that models are not just effective, but also efÏcient and deployable in real-world scenarios.

42.5.2.3.2. FLOPS

The size of a machine learning model is an essential aspect that directly impacts its usability in
practical scenarios, especiallywhen computational resources are limited. Traditionally, the number
of parameters in a model was often used as a proxy for its size, with the underlying assumption
being that more parameters would translate to better performance. However, this simplistic view
does not consider the computational cost associated with processing these parameters. This is
where the concept of floating-point operations per second (FLOPs) comes into play, providing a
more accurate representation of the computational load a model imposes.

FLOPsmeasure the number of floating-point operations amodel performs to generate a prediction.
For example, a model with a high number of FLOPs requires substantial computational resources
to process the vast number of operations, which may render it impractical for certain applications.
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Conversely, a model with a lower FLOP count is more lightweight and can be easily deployed in
scenarios where computational resources are limited.

Let’s consider an example. BERT Bidirectional Encoder Representations from Transformers, a pop-
ular natural language processing model, has over 340 million parameters, making it a large model
with high accuracy and impressive performance across a range of tasks. However, the sheer size of
BERT, coupled with its high FLOP count, makes it a computationally intensive model that may not
be suitable for real-time applications or deployment on edge devices with limited computational
capabilities.

In light of this, there has been a growing interest in developing smaller models that can achieve
similar performance levels as their larger counterparts while being more efÏcient in terms of com-
putational load. DistilBERT, for instance, is a smaller version of BERT that retains 97% of its perfor-
mance while being 40% smaller in terms of parameter count. The reduction in size also translates
to a lower FLOP count, making DistilBERT amore practical choice for resource-constrained scenar-
ios.

To sum up, while parameter count provides a useful indication of model size, it is not a compre-
hensive metric as it does not consider the computational cost associated with processing these
parameters. FLOPs, on the other hand, offer a more accurate representation of a model’s compu-
tational load and are thus an essential consideration when deploying machine learning models in
real-world scenarios, particularly when computational resources are limited. The evolution from
relying solely on parameter count to also considering FLOPs signifies a maturation in the field, re-
flecting a greater awareness of the practical constraints and challenges associated with deploying
machine learning models in diverse settings.

42.5.2.3.3. EfÏciency

EfÏciencymetrics, such asmemory consumption and latency/throughput, have also gained promi-
nence. These metrics are particularly crucial when deploying models on edge devices or in real-
time applications, as they measure how quickly a model can process data and how much memory
it requires. In this context, Pareto curves are often used to visualize the trade-off between different
metrics, helping stakeholders make informed decisions about which model is best suited to their
needs.

42.5.3. Lessons Learned

Model benchmarking has offered us several valuable insights that can be leveraged to drive inno-
vation in system benchmarks. The progression of machine learning models has been profoundly
influenced by the advent of leaderboards and the open-source availability of models and datasets.
These elements have served as significant catalysts, propelling innovation and accelerating the in-
tegration of cutting-edge models into production environments. However, these are not the only
contributors to the development of machine learning benchmarks, as we will explore further.

Leaderboards play a vital role in providing an objective and transparent method for researchers
and practitioners to evaluate the efÏcacy of different models, ranking them based on their per-
formance in benchmarks. This system fosters a competitive environment, encouraging the devel-
opment of models that are not only accurate but also efÏcient. The ImageNet Large Scale Visual
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Recognition Challenge (ILSVRC) is a prime example of this, with its annual leaderboard signifi-
cantly contributing to the development of groundbreaking models such as AlexNet.

Open-source access to state-of-the-art models and datasets further democratizes the field of ma-
chine learning, facilitating collaboration among researchers and practitioners worldwide. This
open access accelerates the process of testing, validation, and deployment of new models in pro-
duction environments, as evidenced by the widespread adoption of models like BERT and GPT-3
in various applications, from natural language processing to more complex, multi-modal tasks.

Community collaboration platforms like Kaggle have revolutionized the field by hosting compe-
titions that unite data scientists from across the globe to solve intricate problems, with specific
benchmarks serving as the goalposts for innovation and model development.

Moreover, the availability of diverse and high-quality datasets is paramount in training and testing
machine learning models. Datasets such as ImageNet have played an instrumental role in the
evolution of image recognitionmodels, while extensive text datasets have facilitated advancements
in natural language processing models.

Lastly, the contributions of academic and research institutions cannot be overstated. Their role in
publishing research papers, sharing findings at conferences, and fostering collaboration between
various institutions has significantly contributed to the advancement of machine learning models
and benchmarks.

42.5.3.1. Emerging Trends

As machine learning models become more sophisticated, so do the benchmarks required to accu-
rately assess them. There are several emerging benchmarks and datasets that are gaining popular-
ity due to their ability to evaluate models in more complex and realistic scenarios:

Multimodal Datasets: These datasets contain multiple types of data, such as text, images, and au-
dio, to better represent real-world situations. An example is the VQA (Visual QuestionAnswering)
dataset (Antol et al. 2015), where models are tested on their ability to answer text-based questions
about images.

Fairness and Bias Evaluation: There is an increasing focus on creating benchmarks that assess the
fairness and bias of machine learning models. Examples include the AI Fairness 360 toolkit, which
offers a comprehensive set of metrics and datasets for evaluating bias in models.

Out-of-Distribution Generalization: Testing how well models perform on data that is different
from the original training distribution. This evaluates the model’s ability to generalize to new,
unseen data. Example benchmarks are Wilds (Koh et al. 2021), RxRx, and ANC-Bench.

Adversarial Robustness: Evaluating model performance under adversarial attacks or perturba-
tions to the input data. This tests the model’s robustness. Example benchmarks are ImageNet-A
(Hendrycks et al. 2021), ImageNet-C (C. Xie et al. 2020), and CIFAR-10.1.

Real-World Performance: Testing models on real-world datasets that closely match end tasks,
rather than just canned benchmark datasets. Examples are medical imaging datasets for health-
care tasks or actual customer support chat logs for dialogue systems.

https://ai-fairness-360.org/
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Energy and Compute EfÏciency: Benchmarks that measure the computational resources required
to achieve a particular accuracy. This evaluates the model’s efÏciency. Examples are MLPerf and
Greenbench, and these were already discussed in the Systems benchmarking section.

Interpretability and Explainability: Benchmarks that assess how easy it is to understand and ex-
plain a model’s internal logic and predictions. Example metrics are faithfulness to input gradients
and coherence of explanations.

42.5.4. Limitations and Challenges

While model benchmarks are an essential tool in the assessment of machine learningmodels, there
are several limitations and challenges that should be addressed to ensure that they accurately re-
flect a model’s performance in real-world scenarios.

Dataset does notCorrespond toReal-World Scenarios: Often, the data used inmodel benchmarks
is cleaned and preprocessed to such an extent that it may not accurately represent the data that a
model would encounter in real-world applications. This idealized version of the data can lead to
overestimations of a model’s performance. In the case of the ImageNet dataset, the images are
well-labeled and categorized, but in a real-world scenario, a model may need to deal with images
that are blurry, poorly lit, or taken from awkward angles. This discrepancy can significantly affect
the model’s performance.

Sim2Real Gap: The Sim2Real gap refers to the difference in performance of a model when transi-
tioning from a simulated environment to a real-world environment. This gap is often observed in
robotics, where a robot trained in a simulated environment struggles to perform tasks in the real
world due to the complexity and unpredictability of real-world environments. A robot trained to
pick up objects in a simulated environmentmay struggle to perform the same task in the real world
because the simulated environment does not accurately represent the complexities of real-world
physics, lighting, and object variability.

Challenges in CreatingDatasets: Creating a dataset formodel benchmarking is a challenging task
that requires careful consideration of various factors such as data quality, diversity, and represen-
tation. As discussed in the data engineering section, ensuring that the data is clean, unbiased, and
representative of the real-world scenario is crucial for the accuracy and reliability of the benchmark.
For example, when creating a dataset for a healthcare-related task, it is important to ensure that the
data is representative of the entire population and not biased towards a particular demographic.
This ensures that the model performs well across diverse patient populations.

Model benchmarks are essential in measuring the capability of a model architecture in solving
a fixed task, but it is important to address the limitations and challenges associated with them.
This includes ensuring that the dataset accurately represents real-world scenarios, addressing the
Sim2Real gap, and overcoming the challenges associated with creating unbiased and representa-
tive datasets. By addressing these challenges, and many others, we can ensure that model bench-
marks provide a more accurate and reliable assessment of a model’s performance in real-world
applications.

The Speech Commands dataset, and its successor MSWC, are common benchmarks for one of the
quintessential TinyML applications, keyword spotting. Speech Commands establish streaming er-
rormetrics beyond the standard top-1 classification accuracy that aremore relevant to the keyword
spotting use case. Use case relevant metrics are what elevates a dataset to a model benchmark.

https://arxiv.org/pdf/1804.03209.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/fe131d7f5a6b38b23cc967316c13dae2-Paper-round2.pdf
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42.6. Data Benchmarking

For the past several years, the field of AI has been focused on developing increasingly sophisticated
machine learning models like large language models. The goal has been to create models capable
of human-level or superhuman performance on a wide range of tasks by training them onmassive
datasets. This model-centric approach produced rapid progress, with models attaining state-of-
the-art results on many established benchmarks. Figure 42.6 shows the performance of AI systems
relative to human performance (marked by the horizontal line at 0) across five applications: hand-
writing recognition, speech recognition, image recognition, reading comprehension, and language
udnerstanding. Over the past decade, the AI performance has surpassed that of humans.

However, there are growing concerns about issues like bias, safety, and robustness that persist
even in models that achieve high accuracy on standard benchmarks. Additionally, some popular
datasets used for evaluating models are beginning to saturate, with models reaching near perfect
performance on existing test splits (Kiela et al. 2021). As a simple example, there are test images in
the classic MNIST handwritten digit dataset which may look indecipherable to most human evalu-
ators, but nonetheless were assigned a label when the dataset was created - models which happen
to agree with those labels may appear to exhibit superhuman performance but insteadmay only be
capturing idiosyncrasies of the labeling and acquisition process from the dataset’s creation in 1994.
In the same spirit, computer vision researchers now ask “Are we done with ImageNet?” (Beyer
et al. 2020). This highlights limitations in the conventional model-centric approach of optimizing
accuracy on fixed datasets through architectural innovations.

Figure 42.6. AI vs human performane. Credit: Kiela et al. (2021).

An alternative paradigm is emerging called data-centric AI. Rather than treating data as static
and focusing narrowly on model performance, this approach recognizes that models are only as
good as their training data. So the emphasis shifts to curating high-quality datasets that better
reflect real-world complexity, developing more informative evaluation benchmarks, and carefully
considering how data is sampled, preprocessed, and augmented. The goal is to optimize model
behavior by improving the data, rather than just optimizing metrics on flawed datasets. Data-
centric AI critically examines and enhances the data itself to produce beneficial AI. This reflects an
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important evolution inmindset as the field addresses the shortcomings of narrow benchmarking.

In this section, we will explore the key differences between model-centric and data-centric ap-
proaches to AI. This distinction has important implications for how we benchmark AI systems.
Specifically, we will see how a focus on data quality and efÏciency can directly improve machine
learning performance, as an alternative to solely optimizing model architectures. The data-centric
approach recognizes that models are only as good as their training data. So enhancing data cura-
tion, evaluation benchmarks, and data handling processes can produce AI systems that are safer,
fairer, and more robust. Rethinking benchmarking to prioritize data alongside models represents
an important evolution as the field aims to deliver trustworthy real-world impact.

42.6.1. Limitations of Model-Centric AI

In the model-centric AI era, a prominent characteristic was the development of complex model ar-
chitectures. Researchers and practitioners dedicated substantial effort to devise sophisticated and
intricate models in the quest for superior performance. This frequently involved the incorporation
of additional layers and the fine-tuning of a multitude of hyperparameters to achieve incremental
improvements in accuracy. Concurrently, there was a significant emphasis on leveraging advanced
algorithms. These algorithms, often at the forefront of the latest research, were employed to en-
hance the performance of AI models. The primary aim of these algorithms was to optimize the
learning process of models, thereby extracting maximal information from the training data.

While the model-centric approach has been central to many advancements in AI, it has several
shortcomings. First, the development of complex model architectures can often lead to overfitting.
This is where the model performs well on the training data but fails to generalize to new, unseen
data. The additional layers and complexity can capture noise in the training data as if it were a real
pattern, which harms the model’s performance on new data.

Second, the reliance on advanced algorithms can sometimes obscure the real understanding of a
model’s functioning. These algorithms often act as a black box, making it difÏcult to interpret how
the model is making decisions. This lack of transparency can be a significant hurdle, especially
in critical applications such as healthcare and finance, where understanding the model’s decision-
making process is crucial.

Third, the emphasis on achieving state-of-the-art results on benchmark datasets can sometimes be
misleading. These datasets are often not fully representative of the complexities and variability
found in real-world data. A model that performs well on a benchmark dataset may not necessarily
generalize well to new, unseen data in a real-world application. This discrepancy can lead to a false
sense of confidence in the model’s capabilities and hinder its practical applicability.

Lastly, the model-centric approach often relies on large labeled datasets for training. However, in
many real-world scenarios, obtaining such datasets is difÏcult and costly. This reliance on large
datasets also limits the applicability of AI in domains where data is scarce or expensive to label.

As a result of the above reasons, and many more, the AI community is shifting to a more data-
centric approach. Rather than focusing just onmodel architecture, researchers are nowprioritizing
curating high-quality datasets, developing better evaluation benchmarks, and considering how
data is sampled and preprocessed. The key idea is that models are only as good as their training
data. So focusing on getting the right data will allow us to develop AI systems that are more fair,
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safe, and aligned with human values. This data-centric shift represents an important change in
mindset as AI progresses.

42.6.2. The Shift Toward Data-centric AI

Data-centric AI is a paradigm that emphasizes the importance of high-quality, well-labeled, and di-
verse datasets in the development of AI models. In contrast to the model-centric approach, which
focuses on refining and iterating on themodel architecture and algorithm to improve performance,
data-centric AI prioritizes the quality of the input data as the primary driver of improved model
performance. High-quality data is clean, well-labeled, and representative of the real-world scenar-
ios the model will encounter. In contrast, low-quality data can lead to poor model performance,
regardless of the complexity or sophistication of the model architecture.

Data-centric AI puts a strong emphasis on the cleaning and labeling of data. Cleaning involves
the removal of outliers, handling missing values, and addressing other data inconsistencies. La-
beling, on the other hand, involves assigning meaningful and accurate labels to the data. Both
these processes are crucial in ensuring that the AI model is trained on accurate and relevant data.
Another important aspect of the data-centric approach is data augmentation. This involves artifi-
cially increasing the size and diversity of the dataset by applying various transformations to the
data, such as rotation, scaling, and flipping training images. Data augmentation helps in improv-
ing the model’s robustness and generalization capabilities.

There are several benefits to adopting a data-centric approach to AI development. First and fore-
most, it leads to improved model performance and generalization capabilities. By ensuring that
the model is trained on high-quality, diverse data, the model is better able to generalize to new,
unseen data (Mattson et al. 2020b).

Additionally, a data-centric approach can often lead to simpler models that are easier to interpret
and maintain. This is because the emphasis is on the data, rather than the model architecture,
meaning that simpler models can achieve high performance when trained on high-quality data.

The shift towards data-centric AI represents a significant paradigm shift. By prioritizing the quality
of the input data, this approach aims to improve model performance and generalization capabili-
ties, ultimately leading to more robust and reliable AI systems. As we continue to advance in our
understanding and application of AI, the data-centric approach is likely to play an important role
in shaping the future of this field.

42.6.3. Benchmarking Data

Data benchmarking aims to evaluate common issues in datasets, such as identifying label errors,
noisy features, representation imbalance (for example, out of the 1000 classes in Imagenet-1K, there
are over 100 categories which are just types of dogs), class imbalance (where some classes have
many more samples than others), whether models trained on a given dataset can generalize to out-
of-distribution features, orwhat types of biasesmight exist in a given dataset (Mattson et al. 2020b).
In its simplest form, data benchmarking aims to improve accuracy on a test set by removing noisy
or mislabeled training samples while keeping the model architecture fixed. Recent competitions in
data benchmarking have invited participants to submit novel augmentation strategies and active
learning techniques.

https://landing.ai/blog/tips-for-a-data-centric-ai-approach/
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Data-centric techniques continue to gain attention in benchmarking, especially as foundation
models are increasingly trained on self-supervised objectives. Compared to smaller datasets like
Imagenet-1K, massive datasets commonly used in self-supervised learning such as Common
Crawl, OpenImages, and LAION-5B contain an order of magnitude higher amounts of noise,
duplicates, bias, and potentially offensive data.

DataComp is a recently-launched dataset competition which targets evaluation of large corpora.
DataComp focuses on language-image pairs used to train CLIPmodels. The introductory whitepa-
per finds that, when the total compute budget for training is held constant, the best-performing
CLIP models on downstream tasks such as ImageNet classification are trained on just 30% of the
available training sample pool. This suggests that proper filtering of large corpora is critical to im-
proving the accuracy of foundation models. Similarly, Demystifying CLIP Data (H. Xu et al. 2023)
asks whether the success of CLIP is attributable to the architecture or the dataset.

DataPerf is another recent effortwhich focuses on benchmarking data in awide range ofmodalities.
DataPerf provides rounds of online competition to spur improvement in datasets. The inaugural
offering launched with challenges in vision, speech, acquisition, debugging, and text prompting
for image generation.

42.6.4. Data EfÏciency

Asmachine learningmodels grow larger andmore complex and compute resources more scarce in
the face of rising demand, it becomes challenging to meet the requirements for computation even
with the largest machine learning fleets. To overcome these challenges and ensure machine learn-
ing system scalability, it is necessary to explore novel opportunities that augment conventional
approaches to resource scaling.

Improving data quality can be a useful method to significantly impact machine learning system
performance. One of the primary benefits of enhancing data quality is the potential to reduce the
size of the training dataset while still maintaining, or even improving, model performance. This
reduction in data size has a direct relationship to the amount of training time required, thereby
allowing models to converge more quickly and efÏciently. But achieving this balance between
data quality and dataset size is a challenging task that requires the development of sophisticated
methods, algorithms, and techniques.

There are several approaches that can be taken to improve data quality. These methods include
and are not limited to the following:

• Data Cleaning: This involves handling missing values, correcting errors, and removing out-
liers. Clean data ensures that the model is not learning from noise or inaccuracies.

• Data Interpretability and Explainability: Common techniques include LIME (Ribeiro,
Singh, and Guestrin 2016) which provides insight into the decision boundaries of classifiers,
and Shapley values (Lundberg and Lee 2017) which estimate the importance of individual
samples in contributing to a model’s predictions.

• Feature Engineering: Transforming or creating new features can significantly improve
model performance by providing more relevant information for learning.

• Data Augmentation: Augmenting data by creating new samples through various transfor-
mations can help improve model robustness and generalization.

https://www.datacomp.ai/
https://www.dataperf.org/
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• Active Learning: This is a semi-supervised learning approach where the model actively
queries a human oracle to label the most informative samples (Coleman et al. 2022). This
ensures that the model is trained on the most relevant data.

• Dimensionality Reduction: Techniques like PCAcan beused to reduce the number of features
in a dataset, thereby reducing complexity and training time.

There are many other methods in the wild. But the goal is the same. By refining the dataset and
ensuring it is of the highest quality, we can directly reduce the training time required for models to
converge. However, achieving this requires the development and implementation of sophisticated
methods, algorithms, and techniques that can clean, preprocess, and augment datawhile retaining
the most informative samples. This is an ongoing challenge that will require continued research
and innovation in the field of machine learning.

42.7. The Trifecta

While system, model, and data benchmarks have traditionally been studied in isolation, there is a
growing recognition that to fully understand and advance AI we must take a more holistic view.
By iterating between benchmarking systems, models, and datasets together, novel insights may
emerge that are not apparent when these components are analyzed separately. System perfor-
mance impacts model accuracy, model capabilities drive data needs, and data characteristics shape
system requirements.

Benchmarking the triad of system, model, and data in an integrated fashion will likely lead to new
discoveries about the co-design of AI systems, the generalization properties of models, and the
role of data curation and quality in enabling performance. Rather than narrow benchmarks of
individual components, the future of AI requires benchmarks that evaluate the symbiotic relation-
ship between computing platforms, algorithms, and training data. This systems-level perspective
will be critical to overcoming current limitations and unlocking the next level of AI capabilities.

Figure 42.7 illustrates the many potential ways to interplay data benchmarking, model benchmark-
ing, and system infrastructure benchmarking together. Through exploring these intricate inter-
actions, we are likely to uncover new optimization opportunities and capabilities for enhance-
ment. The triad of data, model, and system benchmarks offers a rich space for co-design and
co-optimization.

While this integrated perspective represents an emerging trend, the field has much more to dis-
cover about the synergies and trade-offs between these different components. As we iteratively
benchmark combinations of data, models, and systems, entirely new insights will emerge that
remain hidden when these elements are studied in isolation. This multi-faceted benchmarking
approach charting the intersections of data, algorithms, and hardware promises to be a fruitful
avenue for major progress in AI, even though it is still in its early stages.

42.8. Benchmarks for Emerging Technologies

Emerging technologies can be particularly challenging to design benchmarks for given their sig-
nificant differences from existing techniques. Standard benchmarks used for existing technologies
may not highlight the key features of the new approach, while completely new benchmarks may
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Figure 42.7. Benchmarking trifecta.
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be seen as contrived to favor the emerging technology over others, or yet may be so different from
existing benchmarks that they cannot be understood and lose insightful value. Thus, benchmarks
for emerging technologies must balance around fairness, applicability, and ease of comparison
with existing benchmarks.

An example emerging technology where benchmarking has proven to be especially difÏcult is in
Neuromorphic Computing. Using the brain as a source of inspiration for scalable, robust, and
energy-efÏcient general intelligence, neuromorphic computing (Schuman et al. 2022) directly in-
corporates biologically realistic mechanisms in both computing algorithms and hardware, such as
spiking neural networks (Maass 1997) and non-von Neumann architectures for executing them (M.
Davies et al. 2018; Modha et al. 2023). From a full-stack perspective of models, training techniques,
and hardware systems, neuromorphic computing differs from conventional hardware andAI, thus
there is a key challenge towards developing benchmarks which are fair and useful for guiding the
technology.

An ongoing initiative towards developing standard neuromorphic benchmarks is NeuroBench
(Yik et al. 2023). In order to suitably benchmark neuromorphics, NeuroBench follows high-level
principles of inclusiveness through task and metric applicability to both neuromorphic and non-
neuromorphic solutions, actionability of implementation using common tooling, and iterative up-
dates to continue to ensure relevance as the field rapidly grows. NeuroBench and other bench-
marks for emerging technologies provide critical guidance for future techniques which may be
necessary as the scaling limits of existing approaches draw nearer.

42.9. Conclusion

What gets measured gets improved. This chapter has explored the multifaceted nature of bench-
marking spanning systems, models, and data. Benchmarking is important to advancing AI by
providing the essential measurements to track progress.

ML system benchmarks enable optimization across metrics like speed, efÏciency, and scalability.
Model benchmarks drive innovation through standardized tasks andmetrics beyond just accuracy.
And data benchmarks highlight issues of quality, balance and representation.

Importantly, evaluating these components in isolation has limitations. The future will likely see
more integrated benchmarking that explores the interplay between system benchmarks, model
benchmarks and data benchmarks. This view promises new insights into the co-design of data,
algorithms and infrastructure.

As AI grows more complex, comprehensive benchmarking becomes even more critical. Standards
must continuously evolve to measure new capabilities and reveal limitations. Close collaboration
between industry, academics and national labls etc. is essential to develop benchmarks that are
rigorous, transparent and socially beneficial.

Benchmarkingprovides the compass to guide progress inAI. By persistentlymeasuring and openly
sharing results, we can navigate towards systems that are performant, robust and trustworthy. If
AI is to properly serve societal and human needs, it must be benchmarked with humanity’s best
interests in mind. To this end, there are emerging areas such as benchmarking the safety of AI
systems but that’s for another day and perhaps something we can discuss further in Generative
AI!
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Benchmarking is a continuously evolving topic. The article TheOlympics of AI: BenchmarkingMa-
chine Learning Systems covers several emerging subfields in AI benchmarking, including robotics,
extended reality, and neuromorphic computing that we encourage the reader to pursue.

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.

https://towardsdatascience.com/the-olympics-of-ai-benchmarking-machine-learning-systems-c4b2051fbd2b
https://towardsdatascience.com/the-olympics-of-ai-benchmarking-machine-learning-systems-c4b2051fbd2b
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43. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• Why is benchmarking important?

• Embedded inference benchmarking.

https://docs.google.com/presentation/d/17udz3gxeYF3r3X1r4ePwu1I9H8ljb53W3ktFSmuDlGs/edit?usp=drive_link&resourcekey=0-Espn0a0x81kl2txL_jIWjw
https://docs.google.com/presentation/d/18PI_0xmcW1xwwfcjmj25PikqBM_92vQfOXFV4hah-6I/edit?resourcekey=0-KO3HQcDAsR--jgbKd5cp4w#slide=id.g94db9f9f78_0_2
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44. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.





433

45. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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46. On-Device Learning

Figure 46.1. DALL·E 3 Prompt: Drawing of a smartphone with its internal components exposed,
revealing diverse miniature engineers of different genders and skin tones actively working on the
ML model. The engineers, including men, women, and non-binary individuals, are tuning param-
eters, repairing connections, and enhancing the network on the fly. Data flows into the ML model,
being processed in real-time, and generating output inferences.

On-device Learning represents a significant innovation for embedded and edge IoT devices, en-
abling models to train and update directly on small local devices. This contrasts with traditional
methods where models are trained on expansive cloud computing resources before deployment.
WithOn-Device Learning, devices like smart speakers, wearables, and industrial sensors can refine
models in real-time based on local data, without needing to transmit data externally. For example,
a voice-enabled smart speaker could learn and adapt to its owner’s speech patterns and vocabu-
lary right on the device. But there is no such thing as free lunch, therefore in this chapter, we will
discuss both the benefits and the limitations of on-device learning.
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Learning Objectives

• Understand on-device learning and how it differs from cloud-based training

• Recognize the benefits and limitations of on-device learning

• Examine strategies to adapt models through complexity reduction, optimization, and
data compression

• Understand related concepts like federated learning and transfer learning

• Analyze the security implications of on-device learning and mitigation strategies

46.1. Introduction

On-device Learning refers to the process of training ML models directly on the device where they
are deployed, as opposed to traditional methods where models are trained on powerful servers
and then deployed to devices. This method is particularly relevant to TinyML, where ML systems
are integrated into tiny, resource-constrained devices.

An example of On-Device Learning can be seen in a smart thermostat that adapts to user behavior
over time. Initially, the thermostat may have a generic model that understands basic patterns of
usage. However, as it is exposed tomore data, such as the times the user is home or away, preferred
temperatures, and external weather conditions, the thermostat can refine its model directly on the
device to provide a personalized experience for the user. This is all done without the need to send
data back to a central server for processing.

Another example is in predictive text on smartphones. As users type, the phone learns from the
user’s language patterns and suggests words or phrases that are likely to be used next. This learn-
ing happens directly on the device, and themodel updates in real-time as more data is collected. A
widely used real-world example of on-device learning is Gboard. On an Android phone, Gboard
learns from typing and dictation patterns to enhance the experience for all users. On-device learn-
ing is also called federated learning. Figure 46.2 shows the cycle of federated learning on mobile
devices: A. the device learns from user patterns; B. local model updates are communicated to the
cloud; C. the cloud server updates the global model and sends the new model to all the devices.

46.2. Advantages and Limitations

On-Device Learning provides a number of advantages over traditional cloud-based ML. By keep-
ing data and models on the device, it eliminates the need for costly data transmission and ad-
dresses privacy concerns. This allows for more personalized, responsive experiences as the model
can adapt in real-time to user behavior.

However, On-Device Learning also comes with tradeoffs. The limited compute resources on con-
sumer devices can make it challenging to run complex models locally. Datasets are also more re-
stricted since they consist only of user-generated data from a single device. Additionally, updating
models requires pushing out new versions rather than seamless cloud updates.
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Figure 46.2. Federated learning cycle. Credit: Google Research.

On-Device Learning opens up new capabilities by enabling ofÒine AI while maintaining user pri-
vacy. But it requires carefully managing model and data complexity within the constraints of
consumer devices. Finding the right balance between localization and cloud ofÒoading is key to
delivering optimized on-device experiences.

46.2.1. Benefits

46.2.1.1. Privacy and Data Security

One of the significant advantages of on-device learning is the enhanced privacy and security of user
data. For instance, consider a smartwatch that monitors sensitive health metrics such as heart rate
and blood pressure. By processing data and adapting models directly on the device, the biometric
data remains localized, circumventing the need to transmit rawdata to cloud serverswhere it could
be susceptible to breaches.

Server breaches are far from rare, with millions of records compromised annually. For example,
the 2017 Equifax breach exposed the personal data of 147 million people. By keeping data on the
device, the risk of such exposures is drastically minimized. On-device learning acts as a safeguard
against unauthorized access from various threats, including malicious actors, insider threats, and
accidental exposure, by eliminating reliance on centralized cloud storage.

Regulations like the Health Insurance Portability and Accountability Act (HIPAA) and the General
Data Protection Regulation (GDPR) mandate stringent data privacy requirements that on-device
learning adeptly addresses. By ensuring data remains localized and is not transferred to other
systems, on-device learning facilitates compliance with these regulations.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://gdpr.eu/tag/gdpr/
https://www.researchgate.net/publication/321515854_The_EU_General_Data_Protection_Regulation_GDPR_A_Practical_Guide
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On-device learning is not just beneficial for individual users; it has significant implications for
organizations and sectors dealing with highly sensitive data. For instance, within the military,
on-device learning empowers frontline systems to adapt models and function independently of
connections to central servers that could potentially be compromised. By localizing data process-
ing and learning, critical and sensitive information is staunchly protected. However, this comes
with the trade-off that individual devices take on more value and may incentivize theft or destruc-
tion, as they become sole carriers of specialized AI models. Care must be taken to secure devices
themselves when transitioning to on-device learning.

It is also important in preserving the privacy, security, and regulatory compliance of personal and
sensitive data. Training and operating models locally, as opposed to in the cloud, substantially
augments privacy measures, ensuring that user data is safeguarded from potential threats.

However, this is not entirely intuitive because on-device learning could instead open systems up
to new privacy attacks. With valuable data summaries and model updates permanently stored on
individual devices, it may be much harder to physically and digitally protect them compared to a
large computing cluster. While on-device learning reduces the amount of data compromised in any
one breach, it could also introduce new dangers by dispersing sensitive information across many
decentralized endpoints. Careful security practices are still essential for on-device systems.

46.2.1.2. Regulatory Compliance

On-device learning helps address major privacy regulations like (GDPR) and CCPA. These regula-
tions require data localization, restricting cross-border data transfers to approved countries with
adequate controls. GDPR also mandates privacy by design and consent requirements for data col-
lection. By keeping data processing and model training localized on-device, sensitive user data is
not transferred across borders. This avoids major compliance headaches for organizations.

For example, a healthcare provider monitoring patient vitals with wearables would have to ensure
cross-border data transfers comply with HIPAA and GDPR if using the cloud. Determining which
country’s laws apply and securing approvals for international data flows introduces legal and en-
gineering burdens. With on-device learning, no data leaves the device, simplifying compliance.
The time and resources spent on compliance are reduced significantly.

Industries like healthcare, finance and government with highly regulated data can benefit greatly
from on-device learning. By localizing data and learning, regulatory requirements on privacy
and data sovereignty are more easily met. On-device solutions provide an efÏcient way to build
compliant AI applications.

Major privacy regulations impose restrictions on cross-border datamovement that on-device learn-
ing inherently addresses through localized processing. This reduces the compliance burden for
organizations working with regulated data.

46.2.1.3. Reduced Bandwidth, Costs, and Increased EfÏciency

One major advantage of on-device learning is the significant reduction in bandwidth usage and
associated cloud infrastructure costs. By keeping data localized for model training, rather than
transmitting raw data to the cloud, on-device learning can result in substantial savings in band-
width. For instance, a network of cameras analyzing video footage can achieve up to significant

https://gdpr.eu/tag/gdpr/
https://oag.ca.gov/privacy/ccpa
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reductions in data transfer by training models on-device rather than streaming all video footage to
the cloud for processing.

This reduction in data transmission not only saves bandwidth but also translates to lower costs
for servers, networking, and data storage in the cloud. Large organizations, which might spend
millions on cloud infrastructure to train models on device data, can experience dramatic cost re-
ductions through on-device learning. In the era of Generative AI, where costs have been escalating
significantly, finding ways to keep expenses down has become increasingly important.

Furthermore, the energy and environmental costs associated with running large server farms are
also diminished. Data centers are known to consume vast amounts of energy, contributing to green-
house gas emissions. By reducing the need for extensive cloud-based infrastructure, on-device
learning plays a part in mitigating the environmental impact of data processing (C.-J. Wu et al.
2022).

Specifically for endpoint applications, on-device learning minimizes the number of network API
calls needed to run inference through a cloud provider. For applications withmillions of users, the
cumulative costs associated with bandwidth and API calls can quickly escalate. In contrast, per-
forming training and inferences locally is considerably more efÏcient and cost-effective. On-device
learning has been shown to reduce training memory requirements, drastically improve memory
efÏciency, and reduce up to 20% in per-iteration latency under the state-of-the-art optimizations
(Dhar et al. 2021).

Another key benefit of on-device learning is the potential for IoTdevices to continuously adapt their
ML model to new data for continuous, lifelong learning. On-device models can quickly become
outdated as user behavior, data patterns, and preferences change. Continuous learning enables the
model to efÏciently adapt to new data and improvements and maintain high model performance
over time.

46.2.2. Limitations

While traditional cloud-based ML systems have access to nearly endless computing resources, on-
device learning is often restricted by the limitations in computational and storage power of the
edge device that the model is trained on. By definition, an edge device is a device with restrained
computing, memory, and energy resources, that cannot be easily increased or decreased. Thus, the
reliance on edge devices can restrict the complexity, efÏciency, and size of on-device MLmodels.

46.2.2.1. Compute resources

Traditional cloud-based ML systems utilize large servers with multiple high-end GPUs or TPUs
that provide nearly endless computational power and memory. For example, services like Ama-
zon Web Services (AWS) EC2 allow configuring clusters of GPU instances for massively parallel
training.

In contrast, on-device learning is restricted by the hardware limitations of the edge device it runs
on. Edge devices refer to endpoints like smartphones, embedded electronics, and IoT devices. By
definition, these devices have highly restrained computing, memory, and energy resources com-
pared to the cloud.

https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems
https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems
http://arxiv.org/abs/1911.00623
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
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For example, a typical smartphone or Raspberry Pi may only have a few CPU cores, a few GB of
RAM, and a small battery. Even more resource-constrained are TinyML microcontroller devices
such as the Arduino Nano BLE Sense. The resources are fixed on these devices and can’t easily
be increased on demand like scaling cloud infrastructure. This reliance on edge devices directly
restricts the complexity, efÏciency, and size ofmodels that can be deployed for on-device training:

• Complexity: Limits on memory, computing, and power restrict model architecture design,
constraining the number of layers and parameters.

• EfÏciency: Models must be heavily optimized through methods like quantization and prun-
ing to run faster and consume less energy.

• Size: Actual model files must be compressed as much as possible to fit within the storage
limitations of edge devices.

Thus, while the cloud offers endless scalability, on-device learning must operate within the tight
resource constraints of endpoint hardware. This requires careful co-design of streamlined models,
training methods, and optimizations tailored specifically for edge devices.

46.2.2.2. Dataset Size, Accuracy, and Generalization

In addition to limited computing resources, on-device learning is also constrained in terms of the
dataset available for training models.

In the cloud, models are trained on massive, diverse datasets like ImageNet or Common Crawl.
For example, ImageNet contains over 14 million images carefully categorized across thousands of
classes.

On-device learning instead relies on smaller, decentralized data silos unique to each device. A
smartphone camera roll may contain only thousands of photos centered around a user’s specific
interests and environments.

This decentralized data leads to a lack of IID (independent and identically distributed) data. For
instance, two friends may take many photos of the same places and objects, meaning their data
distributions are highly correlated rather than independent.

Reasons data may be non-IID in on-device settings:

• User heterogeneity: different users have different interests and environments.
• Device differences: sensors, regions, and demographics affect data.
• Temporal effects: time of day, seasonal impacts on data.

The effectiveness of ML relies heavily on large, diverse training data. With small, localized
datasets, on-device models may fail to generalize across different user populations and environ-
ments. For example, a disease detection model trained only on images from a single hospital
would not generalize well to other patient demographics. Without extensive, diverse medical
images, the model’s real-world performance would suffer. Thus, while cloud-based learning
leverages massive datasets, on-device learning relies on much smaller, decentralized data silos
unique to each user.

The limited data and optimizations required for on-device learning can negatively impact model
accuracy and generalization:

https://store-usa.arduino.cc/products/arduino-nano-33-ble-sense
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• Small datasets increase overfitting risk. For example, a fruit classifier trained on 100 images
risks overfitting compared to one trained on 1 million diverse images.

• Noisy user-generated data reduces quality. Sensor noise or improper data labeling by non-
experts may degrade training.

• Optimizations like pruning and quantization trade off accuracy for efÏciency. An 8-bit quan-
tized model runs faster but less accurately than a 32-bit model.

So while cloud models achieve high accuracy with massive datasets and no constraints, on-device
models can struggle to generalize. Some studies show that on-device training matches cloud accu-
racy on select tasks. However, performance on real-world workloads requires further study (J. Lin
et al. 2022).

For instance, a cloud model can accurately detect pneumonia in chest X-rays from thousands of
hospitals. However, an on-device model trained only on a small local patient population may fail
to generalize.

Unreliable accuracy limits the real-world applicability of on-device learning for mission-critical
uses like disease diagnosis or self-driving vehicles.

On-device training is also slower than the cloud due to limited resources. Even if each iteration is
faster, the overall training process takes longer.

For example, a real-time robotics application may require model updates within milliseconds. On-
device training on small embedded hardware may take seconds or minutes per update - too slow
for real-time use.

Accuracy, generalization, and speed challenges pose hurdles to adopting on-device learning for
real-world production systems, especially when reliability and low latency are critical.

46.3. On-device Adaptation

In an ML task, resource consumption mainly comes from three sources:

• The ML model itself;
• The optimization process during model learning
• Storing and processing the dataset used for learning.

Correspondingly, there are three approaches to adapting existing ML algorithms onto resource-
constrained devices:

• Reducing the complexity of the ML model
• Modifying optimizations to reduce training resource requirements
• Creating new storage-efÏcient data representations

In the following section, wewill review these on-device learning adaptationmethods. More details
on model optimizations can be found in the Model Optimizations chapter.

http://arxiv.org/abs/1911.00623
../optimizations/optimizations.qmd
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46.3.1. Reducing Model Complexity

In this section, we will briefly discuss ways to reduce model complexity to adapt ML models on-
device. For details of reducing model complexity, please refer to the Model Optimization Chap-
ter.

46.3.1.1. Traditional ML Algorithms

Due to the compute and memory limitations of edge devices, select traditional ML algorithms are
great candidates for on-device learning applications due to their lightweight nature. Some example
algorithms with low resource footprints include Naive Bayes Classifier, Support Vector Machines
(SVMs), Linear Regression, Logistic Regression, and select Decision Tree algorithms.

With some refinements, these classicalML algorithms can be adapted to specific hardware architec-
tures and perform simple tasks, and their low performance requirements make it easy to integrate
continuous learning even on edge devices.

46.3.1.2. Pruning

Pruning is a technique used to reduce the size and complexity of an ML model to improve their
efÏciency and generalization performance. This is beneficial for training models on edge devices,
where we want to minimize the resource usage while maintaining competitive accuracy.

The primary goal of pruning is to remove parts of the model that do not contribute significantly to
its predictive power while retaining the most informative aspects. In the context of decision trees,
pruning involves removing some of the branches (subtrees) from the tree, leading to a smaller and
simpler tree. In the context of DNN, pruning is used to reduce the number of neurons (units) or
connections in the network, as shown in Figure 46.3.

46.3.1.3. Reducing Complexity of Deep Learning Models

Traditional cloud-based DNN frameworks have too much memory overhead to be used on-device.
For example, deep learning systems like PyTorch and TensorFlow require hundreds of megabytes
of memory overhead when training models such as MobilenetV2, and the overhead scales as the
number of training parameters increases.

Traditional cloud-based DNN frameworks have too much memory overhead to be used on-device.
For example, deep learning systems like PyTorch and TensorFlow require hundreds of megabytes
of memory overhead when training models such as MobilenetV2-w0.35, and the overhead scales
as the number of training parameters increases.

Current research for lightweight DNNs mostly explore CNN architectures. Several bare-metal
frameworks designed for running Neural Network on MCUs by keeping computational overhead
and memory footprint low also exist. Some examples include MNN, TVM, and TensorFlow
Lite. However, they can only perform inference during forward pass and lack support for
back-propagation. While these models are designed for edge deployment, their reduction in

http://arxiv.org/abs/2206.15472
https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
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Figure 46.3. Network pruning.

model weights and architectural connections led to reduced resource requirements for continuous
learning.

The tradeoff between performance and model support is clear when adapting the most popular
DNN systems. How do we adapt existing DNN models to resource-constrained settings while
maintaining support for back-propagation and continuous learning? Latest research suggests al-
gorithmand system codesign techniques that help reduce the resource consumption ofML training
on edge devices. Utilizing techniques such as quantization-aware scaling (QAS), sparse updates,
and other cutting edge techniques, on-device learning is possible on embedded systemswith a few
hundred kilobytes of RAM without additional memory while maintaining high accuracy.

46.3.2. Modifying Optimization Processes

Choosing the right optimization strategy is important forDNN training on-device, since this allows
for the finding of a good local minimum. This optimization strategy must also consider limited
memory and power since training occurs on-device.

46.3.2.1. Quantization-Aware Scaling

Quantization is a commonmethod for reducing the memory footprint of DNN training. Although
this could introduce new errors, these errors can be mitigated by designing a model to charac-
terize this statistical error. For example, models could use stochastic rounding or introduce the
quantization error into the gradient updates.

http://arxiv.org/abs/2206.15472
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A specific algorithmic technique is Quantization-Aware Scaling (QAS), used to improve the per-
formance of neural networks on low-precision hardware, such as edge devices and mobile devices
or TinyML systems, by adjusting the scale factors during the quantization process.

As we discussed in theModel Optimizations chapter, quantization is the process of mapping a con-
tinuous range of values to a discrete set of values. In the context of neural networks, quantization
often involves reducing the precision of the weights and activations from 32-bit floating point to
lower-precision formats such as 8-bit integers. This reduction in precision can significantly reduce
the computational cost and memory footprint of the model, making it suitable for deployment on
low-precision hardware. Figure 46.4 is an example of float to integer quatization.

Figure 46.4. Float to integer qunatization. Credit: Nvidia.

However, the quantization process can also introduce quantization errors that can degrade the
performance of the model. Quantization-aware scaling is a technique that aims to minimize these
errors by adjusting the scale factors used in the quantization process.

The QAS process involves two main steps:

• Quantization-aware training: In this step, the neural network is trainedwith quantization in
mind, using simulated quantization to mimic the effects of quantization during the forward
and backward passes. This allows the model to learn to compensate for the quantization er-
rors and improve its performance on low-precision hardware. Refer to QAT section inModel
Optimizations for details.

• Quantization and scaling: After training, the model is quantized to low-precision format,
and the scale factors are adjusted to minimize the quantization errors. The scale factors are
chosen based on the distribution of theweights and activations in themodel, and are adjusted
to ensure that the quantized values are within the range of the low-precision format.

https://developer-blogs.nvidia.com/wp-content/uploads/2021/07/qat-training-precision.png
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QAS is used to overcome the difÏculties of optimizing models on tiny devices. Without needing
hyperparamter tuning. QAS automatically scales tensor gradientswith various bit-precisions. This
in turn stabilizes the training process and matches the accuracy of floating-point precision.

46.3.2.2. Sparse Updates

Although QAS enables optimizing a quantized model, it uses a large amount of memory that is
unrealistic for on-device training. So spare update is used to reduce the memory footprint of full
backward computation. Instead of pruning weights for inference, sparse update prunes the gradi-
ent during backwards propagation to update the model sparsely. In other words, sparse update
skips computing gradients of less important layers and sub-tensors.

However, determining the optimal sparse update scheme given a constraining memory budget
can be challenging due to the large search space. For example, the MCUNet model has 43 con-
volutional layers and a search space of approximately 1030. One technique to address this issue
is contribution analysis. Contribution analysis measures the accuracy improvement from biases
(updating the last few biases compared to only updating the classifier) and weights (updating the
weight of one extra layer compared to only having a bias update). By trying to maximize these
improvements, contribution analysis automatically derives an optimal sparse update scheme for
enabling on-device training.

46.3.2.3. Layer-Wise Training

Other methods besides quantization can help optimize routines. One such method is layer-wise
training. A significant memory consumer of DNN training is the end-to-end back-propagation.
This requires all intermediate feature maps to be stored so the model can calculate gradients. An
alternative to this approach that reduces the memory footprint of DNN training is sequential layer-
by-layer training (T. Chen et al. 2016). Instead of training end-to-end, training a single layer at a
time helps avoid having to store intermediate feature maps.

46.3.2.4. Trading Computation for Memory

The strategy of trading computation for memory involves releasing some of the memory being
used to store intermediate results. Instead, these results can be recomputed as needed. Reducing
memory in exchange for more computation is shown to reduce the memory footprint of DNN
training to fit into almost any budget while also minimizing computational cost (Gruslys et al.
2016).

46.3.3. Developing New Data Representations

The dimensionality and volume of the training data can significantly impact on-device adapta-
tion. So another technique for adapting models onto resource-cosntrained devices is to represent
datasets in a more efÏcient way.



446 Chapter 46. On-Device Learning

46.3.3.1. Data Compression

The goal of data compression is to reach high accuracies while limiting the amount of training data.
Onemethod to achieve this is prioritizing sample complexity: the amount of training data required
for the algorithm to reach a target accuracy (Dhar et al. 2021).

Other more common methods of data compression focus on reducing the dimensionality and the
volume of the training data. For example, an approach could take advantage of matrix sparsity
to reduce the memory footprint of storing training data. Training data can be transformed into a
lower-dimensional embedding and factorized into a dictionarymatrixmultiplied by a block-sparse
coefÏcient matrix (Darvish Rouhani, Mirhoseini, and Koushanfar 2017). Another example could
involve representing words from a large language training dataset in a more compressed vector
format (X. Li et al. 2016).

46.4. Transfer Learning

Transfer learning is a ML technique where a model developed for a particular task is reused as
the starting point for a model on a second task. In the context of on-device AI, transfer learning
allows us to leverage pre-trained models that have already learned useful representations from
large datasets, and fine-tune them for specific tasks using smaller datasets directly on the device.
This can significantly reduce the computational resources and time required for training models
from scratch.

Figure 46.5 includes some intuitive examples of transfer learning from the real world. For instance,
if you can ride a bicycle, then you probably know how to balance yourself on two-wheel vehicles.
Then, it would be easier for you to learn how to ride a motorcyle than it would be for someone who
cannot ride a bicycle.

Figure 46.5. Transferring knowledge between tasks. Credit: Zhuang et al. (2021).
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Let’s take the example of a smart sensor application that uses on-device AI to recognize objects
in images captured by the device. Traditionally, this would require sending the image data to a
server, where a large neural network model processes the data and sends back the results. With
on-device AI, the model is stored and runs directly on-device, eliminating the need to send data
to a server.

If we want to customize the model for the on-device characteristics, training a neural network
model from scratch on the device would however be impractical due to the limited computational
resources and battery life. This is where transfer learning comes in. Instead of training a model
from scratch, we can take a pre-trained model, such as a convolutional neural network (CNN) or
a transformer network that has been trained on a large dataset of images, and fine-tune it for our
specific object recognition task. This fine-tuning can be done directly on the device using a smaller
dataset of images relevant to the task. By leveraging the pre-trained model, we can reduce the
computational resources and time required for training, while still achieving high accuracy for the
object recognition task.

Transfer learning plays an important role in making on-device AI practical by allowing us to lever-
age pre-trained models and fine-tune them for specific tasks, thereby reducing the computational
resources and time required for training. The combination of on-device AI and transfer learning
opens up new possibilities for AI applications that are more privacy-conscious and responsive to
user needs.

Transfer learning has revolutionized the way models are developed and deployed, both in the
cloud and at the edge. Transfer learning is being used in the real world. One such example is the
use of transfer learning to develop AI models that can detect and diagnose diseases from medical
images, such as X-rays, MRI scans, and CT scans. For example, researchers at Stanford University
developed a transfer learning model that can detect cancer in skin images with an accuracy of 97%
(Esteva et al. 2017). This model was pre-trained on 1.28 million images to classify a broad range
of objects, then specialized for cancer detection by training on a dermatologist-curated dataset of
skin images.

Implementation in production scenarios can be broadly categorized into two stages: pre-
deployment and post-deployment.

46.4.1. Pre-Deployment Specialization

In the pre-deployment stage, transfer learning acts as a catalyst to expedite the development pro-
cess. Here’s how it typically works: Imagine we are creating a system to recognize different breeds
of dogs. Rather than starting from scratch, we can utilize a pre-trained model that has already
mastered the broader task of recognizing animals in images.

This pre-trained model serves as a solid foundation and contains a wealth of knowledge acquired
from extensive data. We then fine-tune this model using a specialized dataset containing images
of various dog breeds. This fine-tuning process tailors the model to our specific need — identify-
ing dog breeds with precision. Once fine-tuned and validated to meet performance criteria, this
specialized model is then ready for deployment.

Here’s how it works in practice:
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• Start with a Pre-Trained Model: Begin by selecting a model that has already been trained
on a comprehensive dataset, usually related to a general task. This model serves as the foun-
dation for the task at hand.

• Fine-Tuning: The pre-trainedmodel is then fine-tuned on a smaller, more specialized dataset
that is specific to the desired task. This step allows the model to adapt and specialize its
knowledge to the specific requirements of the application.

• Validation: After fine-tuning, the model is validated to ensure it meets the performance
criteria for the specialized task.

• Deployment: Once validated, the specialized model is then deployed into the production
environment.

This method significantly reduces the time and computational resources required to train a model
from scratch (Pan and Yang 2010). By adopting transfer learning, embedded systems can achieve
high accuracy on specialized tasks without the need to gather extensive data or expend significant
computational resources on training from the ground up.

46.4.2. Post-Deployment Adaptation

Deployment to a device need not mark the culmination of a ML model’s educational trajectory.
With the advent of transfer learning, we open the doors to the deployment of adaptive ML models
to real-world scenarios, catering to the personalized needs of users.

Consider a real-world application where a parent wishes to identify their child in a collection of
images from a school event on their smartphone. In this scenario, the parent is faced with the
challenge of locating their child amidst images of many other children. Here, transfer learning can
be employed to fine-tune an embedded system’smodel to this unique and specialized task. Initially,
the systemmight use a generic model trained to recognize faces in images. However, with transfer
learning, the system can adapt this model to recognize the specific features of the user’s child.

Here’s how it works:

1. Data Collection: The embedded system gathers images that include the child, ideally with
the parent’s input to ensure accuracy and relevance. This can be done directly on the device,
maintaining the user’s data privacy.

2. Model Fine-Tuning: The pre-existing face recognition model, which has been trained on a
large and diverse dataset, is then fine-tuned using the newly collected images of the child.
This process adapts the model to recognize the child’s specific facial features, distinguishing
them from other children in the images.

3. Validation: The refinedmodel is then validated to ensure it accurately recognizes the child in
various images. This can involve the parent verifying themodel’s performance andproviding
feedback for further improvements.

4. Deployment: Once validated, the adapted model is deployed on the device, enabling the
parent to easily identify their child in images without having to sift through them manually.

This on-the-fly customization enhances the model’s efÏcacy for the individual user, ensuring that
they benefit from ML personalization. This is in part how iPhotos or Google photos works when
they ask us to recognize a face and then based on that information they index all the photos by
that face. Because the learning and adaptation occur on the device itself, there are no risks to
personal privacy. The parent’s images are not uploaded to a cloud server or shared with third
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parties, protecting the family’s privacy while still reaping the benefits of a personalizedMLmodel.
This approach represents a significant step forward in the quest to provide users with tailored ML
solutions that respect and uphold their privacy.

46.4.3. Benefits

Transfer learning has become an important technique in the field of ML and artificial intelligence,
and it is particularly valuable for several reasons.

1. Data Scarcity: In many real-world scenarios, acquiring a sufÏciently large labeled dataset for
training a ML model from scratch is challenging. Transfer learning mitigates this issue by
allowing the use of pre-trained models that have already learned valuable features from a
vast dataset.

2. Computational Expense: Training a model from scratch requires significant computational
resources and time, especially for complexmodels like deep neural networks. By using trans-
fer learning, we can leverage the computation that has already been done during the training
of the source model, thereby saving both time and computational power.

3. Limited Annotated Data: For some specific tasks, there might be ample raw data avail-
able, but the process of labeling that data for supervised learning can be costly and time-
consuming. Transfer learning enables us to utilize pre-trainedmodels that have been trained
on a related task with labeled data, hence requiring less annotated data for the new task.

There are advantages to reusing the features:

1. Hierarchical Feature Learning: Deep learning models, particularly Convolutional Neural
Networks (CNNs), have the ability to learn hierarchical features. Lower layers typically learn
generic features like edges and shapes, while higher layers learn more complex and task-
specific features. Transfer learning allows us to reuse the generic features learned by amodel
and fine-tune the higher layers for our specific task.

2. Boosting Performance: Transfer learning has been proven to boost the performance of mod-
els on tasks with limited data. The knowledge gained from the source task can provide a
valuable starting point and lead to faster convergence and improved accuracy on the target
task.

46.4.4. Core Concepts

Understanding the core concepts of transfer learning is essential for effectively utilizing this pow-
erful approach in ML. Here we’ll break down some of the main principles and components that
underlie the process of transfer learning.

46.4.4.1. Source and Target Tasks

In transfer learning, there are two main tasks involved: the source task and the target task. The
source task is the task for which the model has already been trained and has learned valuable
information. The target task is the new task we want the model to perform. The goal of transfer
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learning is to leverage the knowledge gained from the source task to improve performance on the
target task.

If we have amodel trained to recognize various fruits in images (source task), andwewant to create
a new model to recognize different vegetables in images (target task), we can use transfer learning
to leverage the knowledge gained during the fruit recognition task to improve the performance of
the vegetable recognition model.

46.4.4.2. Representation Transfer

Representation transfer is about transferring the learned representations (features) from the source
task to the target task. There are three main types of representation transfer:

• Instance Transfer: This involves reusing the data instances from the source task in the target
task.

• Feature-Representation Transfer: This involves transferring the learned feature representa-
tions from the source task to the target task.

• Parameter Transfer: This involves transferring the learned parameters (weights) of themodel
from the source task to the target task.

In natural language processing, a model trained to understand the syntax and grammar of a lan-
guage (source task) can have its learned representations transferred to a new model designed to
perform sentiment analysis (target task).

46.4.4.3. Fine-Tuning

Fine-tuning is the process of adjusting the parameters of a pre-trained model to adapt it to the
target task. This typically involves updating the weights of the model’s layers, especially the last
few layers, to make the model more relevant for the new task. In image classification, a model pre-
trained on a general dataset like ImageNet (source task) can be fine-tuned by adjusting the weights
of its layers to performwell on a specific classification task, like recognizing specific animal species
(target task).

46.4.4.4. Feature Extractions

Feature extraction involves using a pre-trainedmodel as a fixed feature extractor, where the output
of the model’s intermediate layers is used as features for the target task. This approach is partic-
ularly useful when the target task has a small dataset, as the pre-trained model’s learned features
can significantly enhance performance. In medical image analysis, a model pre-trained on a large
dataset of general medical images (source task) can be used as a feature extractor to provide valu-
able features for a newmodel designed to recognize specific types of tumors in X-ray images (target
task).
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46.4.5. Types of Transfer Learning

Transfer learning can be classified into three main types based on the nature of the source and
target tasks and data. Let’s explore each type in detail:

46.4.5.1. Inductive Transfer Learning

In inductive transfer learning, the goal is to learn the target predictive function with the help of
source data. It typically involves fine-tuning a pre-trained model on the target task with available
labeled data. A common example of inductive transfer learning is image classification tasks. For
instance, a model pre-trained on the ImageNet dataset (source task) can be fine-tuned to classify
specific types of birds (target task) using a smaller labeled dataset of bird images.

46.4.5.2. Transductive Transfer Learning

Transductive transfer learning involves using source and target data, but only the source task. The
main aim is to transfer knowledge from the source domain to the target domain, even though
the tasks remain the same. Sentiment analysis for different languages can serve as an example of
transductive transfer learning. A model trained to perform sentiment analysis in English (source
task) can be adapted to perform sentiment analysis in another language, like French (target task),
by leveraging parallel datasets of English and French sentences with the same sentiments.

46.4.5.3. Unsupervised Transfer Learning

Unsupervised transfer learning is used when the source and target tasks are related, but there is
no labeled data available for the target task. The goal is to leverage the knowledge gained from
the source task to improve performance on the target task, even without labeled data. An example
of unsupervised transfer learning is topic modeling in text data. A model trained to extract topics
from news articles (source task) can be adapted to extract topics from social media posts (target
task) without needing labeled data for the social media posts.

46.4.5.4. Comparison and Trade-offs

By leveraging these different types of transfer learning, practitioners can choose the approach that
best fits the nature of their tasks and available data, ultimately leading to more effective and efÏ-
cient ML models. So in summary:

• Inductive: different source and target tasks, different domains
• Transductive: different source and target tasks, same domain
• Unsupervised: unlabeled source data, transfers feature representations

Here’s a matrix that outlines in a bit more detail the similarities and differences between the types
of transfer learning:
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Inductive Transfer
Learning

Transductive Transfer
Learning

Unsupervised Transfer
Learning

Labeled Data for
Target Task

Required Not Required Not Required

Source Task Can be different Same Same or Different
Target Task Can be different Same Can be different
Objective Improve target task

performance with
source data

Transfer knowledge
from source to target
domain

Leverage source task to
improve target task
performance without
labeled data

Example ImageNet to bird
classification

Sentiment analysis in
different languages

Topic modeling for
different text data

46.4.6. Constraints and Considerations

When engaging in transfer learning, there are several factors that must be considered to ensure
successful knowledge transfer andmodel performance. Here’s a breakdown of some key factors:

46.4.6.1. Domain Similarity

Domain similarity refers to how closely related the source and target domains are. The more sim-
ilar the domains, the more likely the transfer learning will be successful. Transferring knowledge
from a model trained on images of outdoor scenes (source domain) to a new task that involves
recognizing objects in indoor scenes (target domain) might be more successful than transferring
knowledge from outdoor scenes to a task involving text analysis, as the domains (images vs. text)
are quite different.

46.4.6.2. Task Similarity

Task similarity refers to how closely related the source and target tasks are. Similar tasks are likely
to benefit more from transfer learning. A model trained to recognize different breeds of dogs
(source task) can be more easily adapted to recognize different breeds of cats (target task) than it
can be adapted to perform a completely different task like language translation.

46.4.6.3. Data Quality and Quantity

The quality and quantity of data available for the target task can significantly impact the success
of transfer learning. More and high-quality data can result in better model performance. If we
have a large dataset with clear, well-labeled images for our target task of recognizing specific bird
species, the transfer learning process is likely to be more successful than if we have a small, noisy
dataset.



Chapter 46. On-Device Learning 453

46.4.6.4. Feature Space Overlap

Feature space overlap refers to how well the features learned by the source model align with the
features needed for the target task. Greater overlap can lead to more successful transfer learning.
A model trained on high-resolution images (source task) may not transfer well to a target task that
involves low-resolution images, as the feature space (high-res vs. low-res) is different.

46.4.6.5. Model Complexity

The complexity of the source model can also impact the success of transfer learning. Sometimes,
a simpler model might transfer better than a complex one, as it is less likely to overfit the source
task. A simple convolutional neural network (CNN)model trained on image data (source task)may
transfermore successfully to a new image classification task (target task) than a complex CNNwith
many layers, as the simpler model is less likely to overfit the source task.

By considering these factors, ML practitioners can make informed decisions about when and how
to utilize transfer learning, ultimately leading to more successful model performance on the target
task. The success of transfer learning hinges on the degree of similarity between the source and
target domains. There is risk of overfitting, especially when fine-tuning occurs on a limited dataset.
On the computational front, it is worth noting that certain pre-trained models, owing to their size,
might not comfortably fit into the memory constraints of some devices or may run prohibitively
slowly. Over time, as data evolves, there is potential formodel drift, indicating the need for periodic
re-training or ongoing adaptation.

46.5. Federated Machine Learning

Federated Learning Overview

The modern internet is full of large networks of connected devices. Whether it’s cell phones, ther-
mostats, smart speakers or any number of other IOT products, countless edge devices are a gold-
mine for hyper-personalized, rich data. However, with that rich data comes an assortment of prob-
lemswith information transfer and privacy. Constructing a training dataset in the cloud from these
devices would involve high volumes of bandwidth and cost inefÏcient data transfer and violate
user’s privacy.

Federated learning offers a solution to these problems: train models partially on the edge devices
and only communicate model updates to the cloud. In 2016, a team from Google designed archi-
tecture for federated learning that attempts to address these problems.

In their initial paper Google outlines a principle federated learning algorithm called FederatedAv-
eraging, shown in Figure 46.6. Specifically, FederatedAveraging performs stochastic gradient de-
scent (SGD) over several different edge devices. In this process, each device calculates a gradient𝑔𝑘 = ∇𝐹𝑘(𝑤𝑡) which is then applied to update the server side weights as (with 𝜂 as learning rate
across 𝑘 clients): 𝑤𝑡+1 → 𝑤𝑡 −𝜂 𝐾∑𝑘=1 𝑛𝑘𝑛 𝑔𝑘
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This boils down the basic algorithm for federated learning on the right. For each round of training,
the server takes a random set of the client devices and calls each client to train on its local batch
using the most recent server side weights. Those weights then get returned to the server where
they are collected individually then averaged to update the global model weights.

Figure 46.6. Google’s Proposed FederatedAverage Algorithm. Credit: McMahan et al. (2017).

With this proposed structure, there are a few key vectors for optimizing federated learning further.
We will outline each in the following subsections.

46.5.1. Communication EfÏciency

One of the key bottlenecks in federated learning is communication. Every time a client trains the
model, theymust communicate back to the server their updates. Similarly, once the server has aver-
aged all the updates, it must send them back to the client. On large networks of millions of devices,
this incurs huge bandwidth and resource cost. As the field of federated learning advances, a few

https://arxiv.org/abs/1602.05629
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optimizations have been developed to minimize this communication. To address the footprint of
the model, researchers have developed model compression techniques. In the client server proto-
col, federated learning can also minimize communication through selective sharing of updates on
clients. Finally, efÏcient aggregation techniques can also streamline the communication process.

46.5.2. Model Compression

In standard federated learning, the server must communicate the entire model to each client and
then the clientmust send back all of the updatedweights. Thismeans that the easiestway to reduce
both the memory and communication footprint on the client is to minimize the size of the model
needed to be communicated. To do this, we can employ all of the previously discussed model
optimization strategies.

In 2022, another team at Google proposed wherein each client communicates via a compressed for-
mat and decompresses the model on the fly for training (Yang et al. 2023), allocating and deallocat-
ing the full memory for the model only for a short period while training. The model is compressed
through a range of various quantization strategies elaborated upon in their paper. Meanwhile the
server can update the uncompressed model, decompressing and applying updates as they come
in.

46.5.3. Selective Update Sharing

There are a breadth of methods for selectively sharing updates. The general principle is that re-
ducing the portion of the model that the clients are training on the edge reduces the memory
necessary for training and the size of communication to the server. In basic federated learning, the
client trains the entire model. This means that when a client sends an update to the server it has
gradients for every weight in the network.

However, we cannot just reduce communication by sending pieces of those gradients to the server
from each client because the gradients are part of an entire update required to improve the model.
Instead, you need to architecturally design the model such that the clients each train only a small
portion of the broader model, reducing the total communication while still gaining the benefit of
training on client data. A paper (Shi and Radu 2022) from the University of ShefÏeld applies this
concept to a CNN by splitting the global model into two parts: an upper and lower part as shown
in Z. Chen and Xu (2023).

The lower part is designed to focus on generic features in the dataset while the upper part trained
on those generic features is designed to be more sensitive to the activation maps. This means that
the lower part of themodel is trained through standard federated averaging across all of the clients.
Meanwhile, the upper part of the model is trained entirely on the server side from the activation
maps generated by the clients. This approach drastically reduces communication for the model
while still making the network robust to various types of input found in the data on the client
devices.
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Figure 46.7. Split model architecture for selective sharing. Credit: Shi et al., (2022).

https://doi.org/10.1145/3517207.3526980
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46.5.4. Optimized Aggregation

In addition to reducing the communication overhead, optimizing the aggregation function can
improve model training speed and accuracy in certain federated learning use cases. While the
standard for aggregation is just averaging, there are various other approaches which can improve
model efÏciency, accuracy, and security. One alternative is clipped averaging which clips the
model updates within a specific range. Another strategy to preserve security is differential pri-
vacy average aggregation. This approach integrates differential privacy into the aggregations tep
to protect client identities. Each client adds a layer of random noise to their updates before com-
municating to the server. The server then updates the server with the noisy updates, meaning that
the amount of noise needs to be tuned carefully to balance privacy and accuracy.

In addition to security enhancing aggregation methods, there are several modifications to the ag-
gregation methods that can improve training speed and performance by adding client metadata
along with the weight updates. Momentum aggregation is a technique which helps address the
convergence problem. In federated learning, client data can be extremely heterogeneous depend-
ing on the different environments devices are in. That means that many models with heteroge-
neous data may struggle to converge. Each client stores a momentum term locally which tracks
the pace of change over several updates. With clients communicating this momentum, the server
can factor in the rate of change of each update when changing the global model to accelerate con-
vergence. Similarly, weighted aggregation can factoro in the client performance or other param-
eters like device type or network connection strength to adjust the weight with which the server
should incorporate the model updates. Further description of specific aggregation algorithms are
described by Moshawrab et al. (2023).

46.5.5. Handling non-IID Data

When using federated learning to train a model across many client devices, it is convenient to
consider the data to be independent and identically distributed (IID) across all clients. When data
is IID, the model will converge faster and perform better because each local update on any given
client is more representative of the broader dataset. This makes aggregation straightforward as
you can directly average all clients. However, this is not how data often appears in the real world.
Consider a few of the following ways in which data may be non-IID:

• If you are learning on a set of health-monitor devices, different device models could mean
different sensor qualities and properties. This means that low quality sensors and devices
may produce data, and therefore model updates distinctly different than high quality ones

• A smart keyboard trained to perform autocorrect. If you have a disproportionate amount of
devices from a certain region the slang, sentence structure, or even language they were using
could skew more model updates towards a certain style of typing

• If you have wildlife sensors in remote areas, connectivity may not be equally distributed
causing some clients in certain regions to be able to send more model updates than others. If
those regions havedifferentwildlife activity fromcertain species, that could skew the updates
toward those animals
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There are a few approaches to addressing non-IID data in federated learning. One approachwould
be to change the aggregation algorithm. If you use a weighted aggregation algorithm, you can
adjust based on different client properties like region, sensor properties, or connectivity (Y. Zhao
et al. 2018).

46.5.6. Client Selection

Considering all of the factors influencing the efÏcacy of federated learning like IID data and com-
munication, client selection is key component to ensuring a system trainswell. Selecting thewrong
clients can skew the dataset, resulting in non-IID data. Similarly, choosing clients randomly with
bad network connections can slow down communication. Therefore, when selecting the right sub-
set of clients, several key characteristics must be considered.

When selecting clients, there are three main components to consider: data heterogeneity, resource
allocation, and communication cost. To address data heterogeneity, we can select for clients on
the previously proposed metrics in the non-IID section. In federated learning, all devices may not
have the same amount of compute, resulting in some being more inefÏcient at training than others.
When selecting a subset of clients for training, one must consider a balance of data heterogeneity
and available resources. In an ideal scenario, you can always select the subset of clients with the
greatest resources. However, this may skew your dataset so a balance must be struck. Commu-
nication differences add another layer to this, you do not want to be bottlenecked by waiting for
devices with poor connections to transmit their entire updates. Therefore, you must also consider
choosing a subset of diverse yet well-connected devices.

46.5.7. An Example of Deployed Federated Learning: G board

A primary example of a deployed federated learning system is Google’s Keyboard, Gboard, for an-
droid devices. In their implementation of federated learning for the keyboard, Google focused on
employing differential privacy techniques to protect the user’s data and identity. Gboard leverages
language models for several key features such as Next Word Prediction (NWP), Smart Compose
(SC), and On-The-Fly rescoring (OTF) (Z. Xu et al. 2023), as shown in Figure 46.8.

NWP will anticipate the next word the user is trying to type based on the previous one. SC gives
inline suggestions to speed up the typing based on each character. OTF will re-rank the proposed
next words based on the active typing process. All three of these models need to run quickly on
the edge and federated learning can accelerate training on the users’ data. However, uploading
every word a user typed to the cloud for training would be a massive privacy violation. Therefore,
federated learning with an emphasis on differential privacy protects the user while still enabling a
better user experience.

To accomplish this goal, Google employed their algorithmDP-FTRLwhich provides a formal guar-
antee that trained models will not memorize specific user data or identities. The system desgined
of the algorithm is shown in Figure 46.9. DP-FTRL combinedwith secure aggregation, a strategy of
encrypting model updates, provides an optimal balance of privacy and utility. Furthermore, adap-
tive clipping is applied in the aggregation process to limit the impact of individual users on the
global model (step 3 in Figure 46.9). Through a combination of all of these techniques, Google can
continuously refine their keyboard while preserving user privacy in a formally provable way.
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Figure 46.8. Google G Board Features. Credit: Zheng et al., (2023).

Figure 46.9. Differential Privacy in G Board. Credit: Zheng et al., (2023).

https://arxiv.org/abs/2305.18465
https://arxiv.org/abs/2305.18465
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46.5.8. Benchmarking for Federated Learning: MedPerf

One of the richest examples of data on the edge is medical devices. These devices store some of the
most personal data on users but offer huge advances in personalized treatment and better accuracy
in medical AI. Given these two factors, medical devices are the perfect use case for federated learn-
ing. MedPerf is an open source platform used to benchmark models using federated evaluation
(Karargyris et al. 2023). Instead of just training models via federated learning, MedPerf takes the
model to edge devices to test it against personalized data while preserving privacy. In this way
a benchmark committee can evaluate various models in the real world on edge devices while still
preserving patient anonymity.

46.6. Security Concerns

Performing ML model training and adaptation on end-user devices also introduces security risks
that must be addressed. Some key security concerns include:

• Exposure of private data: Training data may be leaked or stolen from devices
• Data poisoning: Adversaries can manipulate training data to degrade model performance
• Model extraction: Attackers may attempt to steal trained model parameters
• Membership inference: Models may reveal participation of specific users’ data
• Evasion attacks: Specially crafted inputs can cause misclassification

Any system that performs learning on-device introduces security concerns, as it may expose vul-
nerabilities in larger scale models. There are numerous security risks associated with any ML
model, but these risks have specific consequences for on-device learning. Fortunately, there are
methods to mitigate these risks to improve the real-world performance of on-device learning.

46.6.1. Data Poisoning

On-device ML introduces unique data security challenges compared to traditional cloud-based
training. In particular, data poisoning attacks pose a serious threat during on-device learning.
Adversaries can manipulate training data to degrade model performance when deployed.

Several data poisoning attack techniques exist:

• Label Flipping: It involves applying incorrect labels to samples. For instance, in image classi-
fication, cat photos may be labeled as dogs to confuse the model. Flipping even 10% of labels
can have significant consequences on the model.

• Data Insertion: It introduces fake or distorted inputs into the training set. This could include
pixelated images, noisy audio, or garbled text.

• Logic Corruption: This alters the underlying patterns in data to mislead the model. In senti-
ment analysis, highly negative reviews may be marked positive through this technique. For
this reason, recent surveys have shown that many companies are more afraid of data poison-
ing than other adversarial ML concerns.

https://doi.org/10.1038/s42256-023-00652-2
https://proceedings.mlr.press/v139/schwarzschild21a.html
https://www.worldscientific.com/doi/10.1142/S0218001414600027
https://proceedings.mlr.press/v139/schwarzschild21a.html
https://proceedings.mlr.press/v139/schwarzschild21a.html
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What makes data poisoning alarming is how it exploits the discrepancy between curated datasets
and live training data. Consider a cat photo dataset collected from the internet. In the weeks later
when this data trains a model on-device, new cat photos on the web differ significantly.

With data poisoning, attackers purchase domains and upload content that influences a portion
of the training data. Even small data changes significantly impact the model’s learned behavior.
Consequently, poisoning can instill racist, sexist, or other harmful biases if unchecked.

Microsoft Tay was a chatbot launched by Microsoft in 2016. It was designed to learn from its
interactionswith users on socialmedia platforms like Twitter. Unfortunately,Microsoft Tay became
a prime example of data poisoning in ML models. Within 24 hours of its launch, Microsoft had to
take Tay ofÒine because it had started producing offensive and inappropriate messages, including
hate speech and racist comments. This occurred because some users on social media intentionally
fed Tay with harmful and offensive input, which the chatbot then learned from and incorporated
into its responses.

This incident is a clear example of data poisoning because malicious actors intentionally manipu-
lated the data used to train and inform the chatbot’s responses. The data poisoning resulted in the
chatbot adopting harmful biases and producing output that was not intended by its developers. It
demonstrates how even small amounts of maliciously crafted data can have a significant impact on
the behavior of ML models, and highlights the importance of implementing robust data filtering
and validation mechanisms to prevent such incidents from occurring.

The real-world impacts of such biases could be dangerous. Rigorous data validation, anomaly
detection, and tracking of data provenance are critical defensive measures. Adopting frameworks
like Five Safes ensures models are trained on high-quality, representative data (Desai et al. 2016).

Data poisoning is a pressing concern for secure on-device learning, since data at the endpoint
cannot be easily monitored in real-time and if models are allowed to adapt on their own then we
run the risk of the device acting malicously. But continued research in adversarial ML aims to
develop robust solutions to detect and mitigate such data attacks.

46.6.2. Adversarial Attacks

During the training phase, attackers might inject malicious data into the training dataset, which
can subtly alter the model’s behavior. For example, an attacker could add images of cats that are
labeled as dogs into a dataset used to train an image classification model. If done cleverly, the
model’s accuracy might not significantly drop, and the attack could go unnoticed. The model
would then incorrectly classify some cats as dogs, which could have consequences depending on
the application.

In an embedded security camera system, for instance, this could allow an intruder to avoid
detection by wearing a specific pattern that the model has been tricked into classifying as
non-threatening.

During the inference phase, attackers can use adversarial examples to fool the model. Adversarial
examples are inputs that have been slightly altered in away that causes themodel tomake incorrect
predictions. For instance, an attacker might add a small amount of noise to an image in a way
that causes a face recognition system to misidentify a person. These attacks can be particularly
concerning in applications where safety is at stake, such as autonomous vehicles. In the example

https://en.wikipedia.org/wiki/Tay_(chatbot)
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you mentioned, the researchers were able to cause a trafÏc sign recognition system to misclassify
a stop sign as a speed sign. This type of misclassification could potentially lead to accidents if it
occurred in a real-world autonomous driving system.

To mitigate these risks, several defenses can be employed:

• Data Validation and Sanitization: Before incorporating new data into the training dataset,
it should be thoroughly validated and sanitized to ensure it is not malicious.

• Adversarial Training: The model can be trained on adversarial examples to make it more
robust to these types of attacks.

• Input Validation: During inference, inputs should be validated to ensure they have not been
manipulated to create adversarial examples.

• RegularAuditing andMonitoring: Regularly auditing andmonitoring themodel’s behavior
can help to detect and mitigate adversarial attacks. In the context of tiny ML systems, this
is easier said than done, because it is often hard to monitor embedded ML systems at the
endpoint due to communication bandwidth limitations and so forth, which we will discuss
in the MLOps chapter.

By understanding the potential risks and implementing these defenses, we can help to secure on-
device training at the endpoint/edge and mitigate the impact of adversarial attacks. Most people
easily confuse data poisoning and adversarial attacks. So here is a table comparing data poisoning
and adversarial attacks:

Aspect Data Poisoning Adversarial Attacks

Timing Training phase Inference phase
Target Training data Input data
Goal Negatively affect model’s

performance
Cause incorrect predictions

Method Insert malicious examples into
training data, often with incorrect
labels

Add carefully crafted noise to input
data

Example Adding images of cats labeled as
dogs to a dataset used for training
an image classification model

Adding a small amount of noise to an
image in a way that causes a face
recognition system to misidentify a
person

Potential Effects Model learns incorrect patterns and
makes incorrect predictions

Immediate and potentially dangerous
incorrect predictions

Applications
Affected

Any ML model Autonomous vehicles, security
systems, etc

46.6.3. Model Inversion

Model inversion attacks are a privacy threat to on-device machine learning models trained on
sensitive user data (Nguyen et al. 2023). Understanding this attack vector andmitigation strategies
will be important for building secure and ethical on-deviceAI. For example, imagine an iPhone app
uses on-device learning to categorize photos in your camera roll into groups like “beach”, “food”,
or “selfies” for easier searching.
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The on-device model may be pretrained by Apple on a dataset of iCloud photos from consenting
users. A malicious attacker could attempt to extract parts of those original iCloud training photos
using model inversion. Specifically, the attacker feeds crafted synthetic inputs into the on-device
photo classifier. By tweaking the synthetic inputs and observing how the model categorizes them,
they can refine the inputs until they reconstruct copies of the original training data - like a beach
photo from a user’s iCloud. Now the attacker has breached that user’s privacy by obtaining one of
their personal photos without consent. This demonstrates why model inversion is dangerous - it
can potentially leak highly sensitive training data.

Photos are an especially high-risk data type because they often contain identifiable people, location
information, andprivatemoments. But the same attackmethodology could apply to other personal
data like audio recordings, text messages, or users’ health data.

To defend against model inversion, one would need to take precautions like adding noise to the
model outputs or using privacy-preserving machine learning techniques like federated learning
to train the on-device model. The goal is to prevent attackers from being able to reconstruct the
original training data.

46.6.4. On-Device Learning Security Concerns

While data poisoning and adversarial attacks are common concerns for ML models in general,
on-device learning introduces unique security risks. When on-device variants of large-scale mod-
els are published, adversaries can exploit these smaller models to attack their larger counterparts.
Research has demonstrated that as on-device models and full-scale models become more similar,
the vulnerability of the original large-scale models increases significantly. For instance, evalua-
tions across 19 Deep Neural Networks (DNNs) revealed that exploiting on-device models could
increase the vulnerability of the original large-scale models by up to 100 times.

There are three primary types of security risks specific to on-device learning:

• Transfer-Based Attacks: These attacks exploit the transferability property between a sur-
rogate model (an approximation of the target model, similar to an on-device model) and a
remote target model (the original full-scale model). Attackers generate adversarial examples
using the surrogate model, which can then be used to deceive the target model. For example,
imagine an on-device model designed to identify spam emails. An attacker could use this
model to generate a spam email that is not detected by the larger, full-scale email filtering
system.

• Optimization-Based Attacks: These attacks generate adversarial examples for transfer-
based attacks using some form of objective function, and iteratively modify inputs to achieve
the desired outcome. Gradient estimation attacks, for example, approximate the model’s
gradient using query outputs (such as softmax confidence scores), while gradient-free
attacks use the model’s final decision (the predicted class) to approximate the gradient,
albeit requiring many more queries.

• Query Attacks with Transfer Priors: These attacks combine elements of transfer-based and
optimization-based attacks. They reverse engineer on-device models to serve as surrogates
for the target full-scale model. In other words, attackers use the smaller on-device model to
understand how the larger model works, and then use this knowledge to attack the full-scale
model.

http://arxiv.org/abs/2212.13700
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By understanding these specific risks associated with on-device learning, we can develop more
robust security protocols to protect both on-device and full-scale models from potential attacks.

46.6.5. Mitigation of On-Device Learning Risks

To mitigate the numerous security risks associated with on-device learning, a variety of methods
can be employed. These methods may be specific to the type of attack or serve as a general tool to
bolster security.

One strategy to reduce security risks is to diminish the similarity between on-device models and
full-scalemodels, thereby reducing transferability by up to 90%. Thismethod, known as similarity-
unpairing, addresses the problem that ariseswhen adversaries exploit the input-gradient similarity
between the twomodels. By fine-tuning the full-scalemodel to create a newversionwith similar ac-
curacy but different input gradients, we can then construct the on-device model by quantizing this
updated full-scalemodel. This unpairing reduces the vulnerability of on-devicemodels by limiting
the exposure of the original full-scalemodel. Importantly, the order of finetuning and quantization
can be varied while still achieving risk mitigation (Hong, Carlini, and Kurakin 2023).

To tackle data poisoning, it is imperative to source datasets from trusted and reliable vendors.

In combating adversarial attacks, several strategies can be employed. A proactive approach in-
volves generating adversarial examples and incorporating them into the model’s training dataset,
thereby fortifying the model against such attacks. Tools like CleverHans, an open-source training
library, are instrumental in creating adversarial examples. Defense distillation is another effective
strategy, wherein the on-device model outputs probabilities of different classifications rather than
definitive decisions (Hong, Carlini, and Kurakin 2023), making it more challenging for adversarial
examples to exploit the model.

The theft of intellectual property is another significant concern when deploying on-device mod-
els. Intellectual property theft is a concern when deploying on-device models, as adversaries may
attempt to reverse-engineer the model to steal the underlying technology. To safeguard against
intellectual property theft, the binary executable of the trained model should be stored on a micro-
controller unit with encrypted software and secured physical interfaces of the chip. Furthermore,
the final dataset used for training the model should be kept private.

Furthermore, on-device models often utilize well-known or open-source datasets, such as Mo-
bileNet’s Visual Wake Words. As such, it is important to maintain the privacy of the final dataset
used for training the model. Additionally, protecting the data augmentation process and incorpo-
rating specific use cases can minimize the risk of reverse-engineering an on-device model.

Lastly, the Adversarial Threat Landscape for Artificial-Intelligence Systems (ATLAS) serves as a
valuable matrix tool that helps assess the risk profile of on-device models, empowering developers
to identify and mitigate potential risks proactively.

46.6.6. Securing Training Data

There are a variety of different ways to secure on-device training data. Each of these concepts in
itself is really deep and could beworth a class by itself. So herewe’ll briefly allude to those concepts
so you’re aware about what to learn further.

https://www.eetimes.com/cybersecurity-threats-loom-over-endpoint-ai-systems/?_gl=1%2A17zgs0d%2A_ga%2AMTY0MzA1MTAyNS4xNjk4MDgyNzc1%2A_ga_ZLV02RYCZ8%2AMTY5ODA4Mjc3NS4xLjAuMTY5ODA4Mjc3NS42MC4wLjA
http://github.com/cleverhans-lab/cleverhans
https://www.eetimes.com/cybersecurity-threats-loom-over-endpoint-ai-systems/?_gl=1%2A17zgs0d%2A_ga%2AMTY0MzA1MTAyNS4xNjk4MDgyNzc1%2A_ga_ZLV02RYCZ8%2AMTY5ODA4Mjc3NS4xLjAuMTY5ODA4Mjc3NS42MC4wLjA
http://arxiv.org/abs/2212.13700
https://atlas.mitre.org/
https://www.eetimes.com/cybersecurity-threats-loom-over-endpoint-ai-systems/?_gl=1%2A17zgs0d%2A_ga%2AMTY0MzA1MTAyNS4xNjk4MDgyNzc1%2A_ga_ZLV02RYCZ8%2AMTY5ODA4Mjc3NS4xLjAuMTY5ODA4Mjc3NS42MC4wLjA
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46.6.6.1. Encryption

Encryption serves as the first line of defense for training data. This involves implementing end-to-
end encryption for both local storage on devices and communication channels to prevent unautho-
rized access to raw training data. Trusted execution environments, such as Intel SGX and ARM
TrustZone, are essential for facilitating secure training on encrypted data.

Additionally, when aggregating updates from multiple devices, secure multi-party computation
protocols can be employed to enhance security (Kairouz, Oh, and Viswanath 2015). A practical
application of this is in collaborative on-device learning, where cryptographic privacy-preserving
aggregation of user model updates can be implemented. This technique effectively hides individ-
ual user data even during the aggregation phase.

46.6.6.2. Differential Privacy

Differential privacy is another crucial strategy for protecting training data. By injecting calibrated
statistical noise into the data, we can mask individual records while still extracting valuable pop-
ulation patterns (Dwork and Roth 2013). Managing the privacy budget across multiple training
iterations and reducing noise as the model converges is also vital (Abadi et al. 2016). Methods
such as formally provable differential privacy, which may include adding Laplace or Gaussian
noise scaled to the dataset’s sensitivity, can be employed.

46.6.6.3. Anomaly Detection

Anomaly detection plays an important role in identifying and mitigating potential data poisoning
attacks. This can be achieved through statistical analyses like Principal Component Analysis (PCA)
and clustering, which help to detect deviations in aggregated training data. Time-series methods
such as Cumulative Sum (CUSUM) charts are useful for identifying shifts indicative of potential
poisoning. Comparing current data distributionswith previously seen clean data distributions can
also help to flag anomalies. Moreover, suspected poisoned batches should be removed from the
training update aggregation process. For example, spot checks on subsets of training images on
devices can be conducted using photoDNA hashes to identify poisoned inputs.

46.6.6.4. Input Data Validation

Lastly, input data validation is essential for ensuring the integrity and validity of input data before
it is fed into the training model, thereby protecting against adversarial payloads. Similarity mea-
sures, such as cosine distance, can be employed to catch inputs that deviate significantly from the
expected distribution. Suspicious inputs that may contain adversarial payloads should be quaran-
tined and sanitized. Furthermore, parser access to training data should be restricted to validated
code paths only. Leveraging hardware security features, such as ARM Pointer Authentication,
can prevent memory corruption (ARM Limited, 2023). An example of this is implementing input
integrity checks on audio training data used by smart speakers before processing by the speech
recognition model (Z. Chen and Xu 2023).

https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.arm.com/technologies/trustzone-for-cortex-a#:~:text=Arm%20TrustZone%20technology%20offers%20an,trust%20based%20on%20PSA%20guidelines.
https://www.arm.com/technologies/trustzone-for-cortex-a#:~:text=Arm%20TrustZone%20technology%20offers%20an,trust%20based%20on%20PSA%20guidelines.
https://en.wikipedia.org/wiki/CUSUM
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46.7. On-Device Training Frameworks

Embedded inference frameworks like TF-Lite Micro (David et al. 2021), TVM (T. Chen et al. 2018),
and MCUNet (J. Lin et al. 2020) provide a slim runtime for running neural network models on
microcontrollers and other resource-constrained devices. However, they don’t support on-device
training. Training requires its own set of specialized tools due to the impact of quantization on
gradient calculation and the memory footprint of backpropagation (J. Lin et al. 2022).

In recent years, there are a handful of tools and frameworks that have started to emerge that enable
on-device training, and these include Tiny Training Engine (J. Lin et al. 2022), TinyTL (Cai et al.
2020), and TinyTrain (Y. D. Kwon et al. 2023).

46.7.1. Tiny Training Engine

Tiny Training Engine (TTE) uses several techniques to optimize memory usage and speed up the
training process. An overview of the TTEworkflow is shown in Figure 46.10. First, TTE ofÒoads the
automatic differentiation to compile time instead of runtime. This significantly reduces overhead
during training. Second, TTE performs graph optimization like pruning and sparse updates to
reduce memory requirements and accelerate computations.

Figure 46.10. TTE workflow.

Specifically, TTE follows four main steps:

• During compile time, TTE traces the forward propagation graph and derives the correspond-
ing backward graph for backpropagation. This allows differentiation to happen at compile
time rather than runtime.

• TTE prunes any nodes representing frozen weights from the backward graph. Frozen
weights are weights that are not updated during training to reduce certain neurons’ impact.
Pruning their nodes saves memory.

• TTE reorders the gradient descent operators to interleave them with the backward pass com-
putations. This scheduling minimizes memory footprints.

• TTE uses code generation to compile the optimized forward and backward graphs, which
are then deployed for on-device training.

46.7.2. Tiny Transfer Learning

Tiny Transfer Learning (TinyTL) enables memory-efÏcient on-device training through a technique
called weight freezing. During training, much of the memory bottleneck comes from storing inter-
mediate activations and updating the weights in the neural network.

https://harvard-edge.github.io/cs249r_book/frameworks.html#differentiable-programming
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To reduce this memory overhead, TinyTL freezes themajority of the weights so they do not need to
be updated during training. This eliminates the need to store intermediate activations for frozen
parts of the network. TinyTL only fine-tunes the bias terms, which are much smaller than the
weights. An overview of TinyTL workflow is shown in Figure 46.11.

Figure 46.11. TinyTL workflow. Credit: Cai et al. (2020).)

Freezing weights is applicable not just to fully-connected layers but also to convolutional and nor-
malization layers. However, only adapting the biases limits the model’s ability to learn and adapt
to new data.

To increase adaptability without much additional memory, TinyTL uses a small residual learn-
ing model. This refines the intermediate feature maps to produce better outputs, even with fixed
weights. The residual model introduces minimal overhead - less than 3.8% on top of the base
model.

By freezingmost weights TinyTL significantly cuts downmemory usage during on-device training.
The residual model then allows it to still adapt and learn effectively for the task. The combined
approach providesmemory-efÏcient on-device trainingwithminimal impact onmodel accuracy.

46.7.3. Tiny Train

TinyTrain significantly reduces the time required for on-device training by selectively updating
only certain parts of themodel. It does this using a technique called task-adaptive sparse updating,
as shown in Figure 46.12.
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Based on the user data, memory, and compute available on the device, TinyTrain dynamically
chooses which layers of the neural network to update during training. This layer selection is opti-
mized to reduce computation and memory usage while maintaining high accuracy.

Figure 46.12. TinyTrain workflow. Credit: Y. D. Kwon et al. (2023).

More specifically, TinyTrain first does ofÒine pretraining of the model. During pretraining, it not
only trains themodel on the task data but alsometa-trains themodel. Meta-trainingmeans training
the model on metadata about the training process itself. This meta-learning improves the model’s
ability to adapt accurately even when limited data is available for the target task.

Then, during the online adaptation stage when the model is being customized on the device, Tiny-
Train performs task-adaptive sparse updates. Using the criteria around the device’s capabilities, it
selects only certain layers to update through backpropagation. The layers are chosen to balance
accuracy, memory usage, and computation time.

By sparsely updating layers tailored to the device and task, TinyTrain is able to significantly re-
duce on-device training time and resource usage. The ofÒine meta-training also improves accu-
racy when adapting with limited data. Together, these methods enable fast, efÏcient, and accurate
on-device training.

46.7.4. Comparison

Here is a table summarizing the key similarities and differences between the Tiny Training Engine,
TinyTL, and TinyTrain frameworks:

Framework Similarities Differences

Tiny Training Engine On-device training Optimize
memory & computation
Leverage pruning, sparsity, etc

Traces forward & backward
graphs Prunes frozen weights
Interleaves backprop &
gradients Code generation

TinyTL On-device training Optimize
memory & computation
Leverage freezing, sparsity, etc

Freezes most weights Only
adapts biases Uses residual
model
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Framework Similarities Differences

TinyTrain On-device training Optimize
memory & computation
Leverage sparsity, etc

Meta-training in pretraining
Task-adaptive sparse updating
Selective layer updating

46.8. Conclusion

The concept of on-device learning is increasingly important for increasing the usability and scalabil-
ity of TinyML. This chapter explored the intricacies of on-device learning, exploring its advantages
and limitations, adaptation strategies, key related algorithms and techniques, security implications,
and existing and emerging on-device training frameworks.

On-device learning is, undoubtedly, a groundbreaking paradigm that brings forth numerous ad-
vantages for embedded and edge ML deployments. By performing training directly on the end-
point devices, on-device learning obviates the need for continuous cloud connectivity, making it
particularlywell-suited for IoT and edge computing applications. It comeswith benefits such as im-
proved privacy, ease of compliance, and resource efÏciency. At the same time, on-device learning
faces limitations related to hardware constraints, limited data size, and reduced model accuracy
and generalization.

Mechanisms such as reduced model complexity, optimization and data compression techniques,
and related learning methods such as transfer learning and federated learning allow models to
adapt to learn and evolve under resource constraints, thus serving as the bedrock for effective ML
on edge devices.

The critical security concerns in on-device learning highlighted in this chapter, ranging from data
poisoning and adversarial attacks to specific risks introduced by on-device learning, must be ad-
dressed in real workloads for on-device learning to be a viable paradigm. Effective mitigation
strategies, such as data validation, encryption, differential privacy, anomaly detection, and input
data validation, are crucial to safeguard on-device learning systems from these threats.

The emergence of specialized on-device training frameworks like Tiny Training Engine, Tiny Trans-
fer Learning, and Tiny Train presents practical tools to enable efÏcient on-device training. These
frameworks employ various techniques to optimize memory usage, reduce computational over-
head, and streamline the on-device training process.

In conclusion, on-device learning stands at the forefront of TinyML, promising a future where
models can autonomously acquire knowledge and adapt to changing environments on edge de-
vices. The application of on-device learning has the potential to revolutionize various domains,
including healthcare, industrial IoT, and smart cities. However, the transformative potential of on-
device learning must be balanced with robust security measures to protect against data breaches
and adversarial threats. Embracing innovative on-device training frameworks and implementing
stringent security protocols are key steps in unlocking the full potential of on-device learning. As
this technology continues to evolve, it holds the promise of making our devices smarter, more
responsive, and better integrated into our daily lives.
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Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.
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47. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• Intro to TensorFlow Lite (TFLite).

• TFLite Optimization and Quantization.

• TFLite Quantization-Aware Training.

• Transfer Learning: with Visual Wake Words exaple.

• Continuous Monitoring:

– Continuous Evaluation Challenges for TinyML.

– Federated Learning Challenges.

– Continuous Monitoring with Federated ML.

– Continuous Monitoring Impact on MLOps.

https://docs.google.com/presentation/d/19nF6CATRBqQWGBBv4uO4RzWpAwwuhmBAv8AQdBkkAVY/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1JwP46J6eLFUebNy2vKDvPzExe20DuTL95Nw8ubCxNPg/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1eSOyAOu8Vg_VfIHZ9gWRVjWnmFTOcZ4FavaNMc4reHQ/edit#slide=id.p1
https://docs.google.com/presentation/d/1kVev1WwXG2MrpEMmRbiPjTBwQ6CSCE_K84SUlSbuUPM/edit#slide=id.ga654406365_0_127
https://docs.google.com/presentation/d/1OuhwH5feIwPivEU6pTDyR3QMs7AFstHLiF_LB8T5qYQ/edit?usp=drive_link&resourcekey=0-DZxIuVBUbJawuFh0AO-Pvw
https://docs.google.com/presentation/d/1Q8M76smakrt5kTqggoPW8WFTrP0zIrV-cWj_BEfPxIA/edit?resourcekey=0-mPx0WwZOEVkHndVhr_MzMQ#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1dHqWjKflisdLhX43jjOUmZCyM0tNhXTVgcch-Bcp-uo/edit?usp=drive_link&resourcekey=0-AuuCxz6QKc-t3lXMPeX1Sg
https://docs.google.com/presentation/d/1D7qI7aLGnoUV7x3s5Dqa44CsJTQdDO5xtID5MBM0GxI/edit?usp=drive_link&resourcekey=0-g7SB2RDsdGt01tPCI7VeUQ
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48. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.
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49. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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50. Embedded AIOps

Figure 50.1. DALL·E 3 Prompt: Create a detailed, wide rectangular illustration of an AI workflow.
The image should showcase the process across six stages, with a flow from left to right: 1. Data
collection, with diverse individuals of different genders and descents using a variety of devices
like laptops, smartphones, and sensors to gather data. 2. Data processing, displaying a data center
with active servers and databases with glowing lights. 3. Model training, represented by a com-
puter screen with code, neural network diagrams, and progress indicators. 4. Model evaluation,
featuring people examining data analytics on large monitors. 5. Deployment, where the AI is inte-
grated into robotics, mobile apps, and industrial equipment. 6. Monitoring, showing professionals
tracking AI performance metrics on dashboards to check for accuracy and concept drift over time.
Each stage should be distinctly marked and the style should be clean, sleek, and modern with a
dynamic and informative color scheme.

This chapter explores the practices and architectures needed to effectively develop, deploy, and
manage ML models across their entire lifecycle. We examine the various phases of the ML process
including data collection, model training, evaluation, deployment, and monitoring. The impor-
tance of automation, collaboration, and continuous improvement is also discussed. We contrast
different environments for ML model deployment, from cloud servers to embedded edge devices,
and analyze their distinct constraints. Through concrete examples, we demonstrate how to tailor
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ML system design and operations for reliable and optimized model performance in any target en-
vironment. The goal is to provide readers with a comprehensive understanding ofMLmodel man-
agement so they can successfully build and run ML applications that sustainably deliver value.

Learning Objectives

• Understand what is MLOps and why it is needed

• Learn the architectural patterns for traditional MLOps

• Contrast traditional vs. embedded MLOps across the ML lifecycle

• Identify key constraints of embedded environments

• Learn strategies to mitigate embedded ML challenges

• Examine real-world case studies demonstrating embedded MLOps principles

• Appreciate the need for holistic technical and human approaches

50.1. Introduction

Machine Learning Operations (MLOps), is a systematic approach that combines machine learn-
ing (ML), data science, and software engineering to automate the end-to-end ML lifecycle. This
includes everything from data preparation and model training to deployment and maintenance.
MLOps ensures that ML models are developed, deployed, and maintained efÏciently and effec-
tively.

Let’s start by taking a general example (i.e., non-edge ML) case. Consider a ridesharing company
that wants to deploy a machine-learning model to predict rider demand in real time. The data sci-
ence team spends months developing a model, but when it’s time to deploy, they realize it needs
to be compatible with the engineering team’s production environment. Deploying the model re-
quires rebuilding it from scratch - costing weeks of additional work. This is where MLOps comes
in.

With MLOps, there are protocols and tools in place to ensure that the model developed by the
data science team can be seamlessly deployed and integrated into the production environment.
In essence, MLOps removes friction during the development, deployment, and maintenance of
ML systems. It improves collaboration between teams through defined workflows and interfaces.
MLOps also accelerates iteration speed by enabling continuous delivery for ML models.

For the ridesharing company, implementingMLOpsmeans their demand prediction model can be
frequently retrained and deployed based on new incoming data. This keeps themodel accurate de-
spite changing rider behavior. MLOps also allows the company to experiment with newmodeling
techniques since models can be quickly tested and updated.

Other MLOps benefits include enhanced model lineage tracking, reproducibility, and auditing.
Cataloging ML workflows and standardizing artifacts - such as logging model versions, tracking
data lineage, and packaging models and parameters - enables deeper insight into model prove-
nance. Standardizing these artifacts facilitates tracing a model back to its origins, replicating the
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model development process, and examining how amodel version has changed over time. This also
facilitates regulation compliance, which is especially critical in regulated industries like healthcare
and finance where being able to audit and explain models is important.

Major organizations adoptMLOps to boost productivity, increase collaboration, and accelerateML
outcomes. It provides the frameworks, tools, and best practices tomanageML systems throughout
their lifecycle effectively. This results in better-performing models, faster time-to-value, and sus-
tained competitive advantage. As we explore MLOps further, consider how implementing these
practices can help address embedded ML challenges today and in the future.

50.2. Historical Context

MLOps has its roots in DevOps, which is a set of practices that combines software development
(Dev) and IT operations (Ops) to shorten the development lifecycle and provide continuous deliv-
ery of high-quality software. The parallels between MLOps and DevOps are evident in their focus
on automation, collaboration, and continuous improvement. In both cases, the goal is to break
down silos between different teams (developers, operations, and, in the case of MLOps, data sci-
entists and ML engineers) and to create a more streamlined and efÏcient process. It is useful to
understand the history of this evolution to better understand MLOps in the context of traditional
systems.

50.2.1. DevOps

The term “DevOps” was first coined in 2009 by Patrick Debois, a consultant and Agile practitioner.
Debois organized the first DevOpsDays conference in Ghent, Belgium, in 2009, which brought
together development and operations professionals to discuss ways to improve collaboration and
automate processes.

DevOps has its roots in the Agile movement, which began in the early 2000s. Agile provided the
foundation for a more collaborative approach to software development and emphasized small, it-
erative releases. However, Agile primarily focused on collaboration between development teams.
As Agile methodologies became more popular, organizations realized the need to extend this col-
laboration to operations teams as well.

The siloed nature of development and operations teams often led to inefÏciencies, conflicts, and
delays in software delivery. This need for better collaboration and integration between these teams
led to theDevOpsmovement. In a sense, DevOps can be seen as an extension of theAgile principles
to include operations teams.

The key principles of DevOps include collaboration, automation, continuous integration and de-
livery, and feedback. DevOps focuses on automating the entire software delivery pipeline, from
development to deployment. It aims to improve the collaboration between development and op-
erations teams, utilizing tools like Jenkins, Docker, and Kubernetes to streamline the development
lifecycle.

While Agile and DevOps share common principles around collaboration and feedback, DevOps
specifically targets the integration of development and IT operations - expandingAgile beyond just

https://www.jedi.be/
https://www.devopsdays.org/
https://agilemanifesto.org/
https://www.atlassian.com/devops
https://www.jenkins.io/
https://www.docker.com/
https://kubernetes.io/
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development teams. It introduces practices and tools to automate software delivery and enhance
the speed and quality of software releases.

50.2.2. MLOps

MLOps, on the other hand, stands for MLOps, and it extends the principles of DevOps to the ML
lifecycle. MLOps aims to automate and streamline the end-to-end ML lifecycle, from data prepa-
ration and model development to deployment and monitoring. The main focus of MLOps is to
facilitate collaboration between data scientists, data engineers, and IT operations, and to automate
the deployment, monitoring, and management of ML models. Some key factors led to the rise of
MLOps.

• Data drift: Data drift degrades model performance over time, motivating the need for rigor-
ous monitoring and automated retraining procedures provided by MLOps.

• Reproducibility: The lack of reproducibility in machine learning experiments motivated the
need for MLOps systems to track code, data, and environment variables to enable repro-
ducible ML workflows.

• Explainability: The black box nature and lack of explainability of complexmodelsmotivated
the need for MLOps capabilities to increase model transparency and explainability.

• Monitoring: The inability to reliably monitor model performance post-deployment high-
lighted the need for MLOps solutions with robust model performance instrumentation and
alerting.

• Friction: The friction in manually retraining and deploying models motivated the need for
MLOps systems that automate machine learning deployment pipelines.

• Optimization: The complexity of configuring infrastructure for machine learning motivated
the need for MLOps platforms with optimized, ready-made ML infrastructure.

While bothDevOps andMLOps share the common goal of automating and streamlining processes,
they differ in their focus and challenges. DevOps primarily deals with the challenges of software
development and IT operations. In contrast, MLOps deals with the additional complexities of
managingMLmodels, such as data versioning, model versioning, and model monitoring. MLOps
also requires collaboration between various stakeholders, including data scientists, data engineers,
and IT operations.

While DevOps andMLOps share similarities in their goals and principles, they differ in their focus
and challenges. DevOps focuses on improving the collaboration between development and oper-
ations teams and automating software delivery. In contrast, MLOps focuses on streamlining and
automating the ML lifecycle and facilitating collaboration between data scientists, data engineers,
and IT operations.

Here is a table that summarizes them side by side.

Aspect DevOps MLOps

Objective Streamlining software
development and operations
processes

Optimizing the lifecycle of machine
learning models

https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://dvc.org/
https://dvc.org/
https://www.fiddler.ai/
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Aspect DevOps MLOps

Methodology Continuous Integration and
Continuous Delivery (CI/CD)
for software development

Similar to CI/CD but focuses on
machine learning workflows

Primary Tools Version control (Git), CI/CD
tools (Jenkins, Travis CI),
Configuration management
(Ansible, Puppet)

Data versioning tools, Model
training and deployment tools,
CI/CD pipelines tailored for ML

Primary Concerns Code integration, Testing,
Release management,
Automation, Infrastructure as
code

Data management, Model
versioning, Experiment tracking,
Model deployment, Scalability of ML
workflows

Typical Outcomes Faster and more reliable software
releases, Improved collaboration
between development and
operations teams

EfÏcient management and
deployment of machine learning
models, Enhanced collaboration
between data scientists and
engineers

50.3. Key Components of MLOps

In this chapter, we will provide an overview of the core components of MLOps, an emerging set
of practices that enables robust delivery and lifecycle management of ML models in production.
While some MLOps elements like automation and monitoring were covered in previous chapters,
we will integrate them into an integrated framework and expand on additional capabilities like
governance. Additionally, we will describe and link to popular tools used within each component,
such as LabelStudio for data labeling. By the end, we hope that you will understand the end-to-
end MLOps methodology that takes models from ideation to sustainable value creation within
organizations.

50.3.1. Data Management

Robust data management and data engineering actively empower successful MLOps implementa-
tions. Teams properly ingest, store, and prepare raw data from sensors, databases, apps, and other
systems for model training and deployment.

Teams actively track changes to datasets over time using version control with Git and tools like
GitHub or GitLab. Data scientists collaborate on curating datasets by merging changes from mul-
tiple contributors. Teams can review or roll back each iteration of a dataset if needed.

Teams meticulously label and annotate data using labeling software like LabelStudio, which en-
ables distributed teams to work on tagging datasets together. As the target variables and labeling
conventions evolve, teams maintain accessibility to earlier versions.

Teams store the raw dataset and all derived assets on cloud storage services like Amazon S3 or
Google Cloud Storagewhich provide scalable, resilient storagewith versioning capabilities. Teams
can set granular access permissions.

https://labelstud.io/
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://git-scm.com/
https://github.com/
https://about.gitlab.com/
https://labelstud.io/
https://aws.amazon.com/s3/
https://cloud.google.com/storage
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Robust data pipelines created by teams automate the extraction, joining, cleansing and transforma-
tion of raw data into analysis-ready datasets. Prefect, Apache Airflow, dbt are workflow orchestra-
tors that allow engineers to develop flexible, reusable data processing pipelines.

For instance, a pipeline may ingest data from PostgreSQL databases, REST APIs, and CSVs stored
on S3. It can filter, deduplicate, and aggregate the data, handle errors, and save the output to
S3. The pipeline can also push the transformed data into a feature store like Tecton or Feast for
low-latency access.

In an industrial predictive maintenance use case, sensor data is ingested from devices into S3.
A Prefect pipeline processes the sensor data, joining it with maintenance records. The enriched
dataset is stored in Feast so models can easily retrieve the latest data for training and predictions.

50.3.2. CI/CD Pipelines

Continuous integration and continuous delivery (CI/CD) pipelines actively automate the progres-
sion of ML models from initial development into production deployment. Adapted for ML sys-
tems, CI/CD principles empower teams to rapidly and robustly deliver new models with mini-
mized manual errors.

CI/CD pipelines orchestrate key steps, including checking out new code changes, transforming
data, training and registering new models, validation testing, containerization, deploying to en-
vironments like staging clusters, and promoting to production. Teams leverage popular CI/CD
solutions like Jenkins, CircleCI and GitHub Actions to execute these MLOps pipelines, while Pre-
fect, Metaflow and Kubeflow offer ML-focused options.

Figure 50.2 illustrates a CI/CD pipeline specifically tailored for MLOps. The process starts with
a dataset and feature repository (on the left), which feeds into a dataset ingestion stage. Post-
ingestion, the data undergoes validation to ensure its quality before being transformed for training.
Parallel to this, a retraining trigger can initiate the pipeline based on specified criteria. The data
then passes through a model training/tuning phase within a data processing engine, followed by
model evaluation and validation. Once validated, the model is registered and stored in a machine
learning metadata and artifact repository. The final stage involves deploying the trained model
back into the dataset and feature repository, thereby creating a cyclical process for continuous im-
provement and deployment of machine learning models

For example, when a data scientist checks improvements to an image classification model into
a GitHub repository, this actively triggers a Jenkins CI/CD pipeline. The pipeline reruns data
transformations and model training on the latest data, tracking experiments with MLflow. After
automated validation testing, teams deploy themodel container to a Kubernetes staging cluster for
further QA. Once approved, Jenkins facilitates a phased rollout of the model to production with
canary deployments to catch any issues. If anomalies are detected, the pipeline enables teams to
roll back to the previous model version gracefully.

By connecting the disparate steps from development to deployment under continuous automation,
CI/CD pipelines empower teams to iterate and deliver ML models rapidly. Integrating MLOps
tools like MLflow enhances model packaging, versioning, and pipeline traceability. CI/CD is inte-
gral for progressing models beyond prototypes into sustainable business systems.

https://www.prefect.io/
https://airflow.apache.org/
https://www.getdbt.com/
https://www.postgresql.org/
https://www.tecton.ai/
https://feast.dev/
https://www.jenkins.io/
https://circleci.com/
https://github.com/features/actions
https://www.prefect.io/
https://www.prefect.io/
https://metaflow.org/
https://www.kubeflow.org/
https://github.com/
https://mlflow.org/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#canary-deployments
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Figure 50.2. MLOps CI/CD diagram. Credit: HarvardX.

50.3.3. Model Training

In the model training phase, data scientists actively experiment with different ML architectures
and algorithms to create optimized models that effectively extract insights and patterns from data.
MLOps introduces best practices and automation to make this iterative process more efÏcient and
reproducible.

Modern ML frameworks like TensorFlow, PyTorch and Keras provide pre-built components that
simplify designing neural networks and othermodel architectures. Data scientists leverage built-in
modules for layers, activations, losses, etc. and high-level APIs like Keras to focus more on model
architecture.

MLOps enables teams to packagemodel training code into reusable, tracked scripts and notebooks.
As models are developed, capabilities like hyperparameter tuning, neural architecture search and
automatic feature selection rapidly iterate to find the best-performing configurations.

Teams put training code under version control using Git and host it in repositories like GitHub to
track changes over time. This allows seamless collaboration between data scientists.

Notebooks like Jupyter make an excellent environment for interactive model development. The
notebooks contain data ingestion, preprocessing, model declaration, training loop, evaluation, and
export code in one reproducible document.

Finally, teams orchestrate model training as part of a CI/CD pipeline for automation. For instance,
a Jenkins pipeline can trigger a Python script to load new training data, retrain a TensorFlow clas-
sifier, evaluate model metrics, and automatically register the model if performance thresholds are
met.

An example workflow has a data scientist using a PyTorch notebook to develop a CNN model
for image classification. The fastai library provides high-level APIs to simplify training CNNs on
image datasets. The notebook trains the model on sample data, evaluates accuracy metrics, and

https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
https://cloud.google.com/ai-platform/training/docs/hyperparameter-tuning-overview
https://arxiv.org/abs/1808.05377
https://scikit-learn.org/stable/modules/feature_selection.html
https://jupyter.org/
https://www.fast.ai/
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tunes hyperparameters like learning rate and layers to optimize performance. This reproducible
notebook is version-controlled and integrated into a retraining pipeline.

Automating and standardizing model training empowers teams to accelerate experimentation and
achieve the rigor needed for production of ML systems.

50.3.4. Model Evaluation

Before deploying models, teams perform rigorous evaluation and testing to validate meeting per-
formance benchmarks and readiness for release. MLOps introduces best practices around model
validation, auditing and canary testing.

Teams typically evaluate models against holdout test datasets not used during training. The test
data originates from the same distribution as production data. Teams calculate metrics like accu-
racy, AUC, precision, recall, and F1 score.

Teams also track the same metrics over time against test data samples. If evaluation data comes
from live production streams, this catches data drifts over time that degrademodel performance.

Human oversight for model release remains important. Data scientists review performance across
key segments and slices. Error analysis helps identify model weaknesses to guide enhancement.
Teams apply fairness and bias detection techniques.

Canary testing releases amodel to a small subset of users to evaluate real-world performance before
wide deployment. Teams incrementally route trafÏc to the canary release while monitoring for
issues.

For example, a retailer evaluates a personalized product recommendation model against historical
test data, reviewing accuracy and diversity metrics. Teams also calculate metrics on live customer
data over time, detecting decreased accuracy over the last 2 weeks. Before full rollout, the new
model is released to 5% of web trafÏc to ensure no degradation.

Automating evaluation and canary releases reduces deployment risks. But human review remains
critical to assess less quantifiable dynamics of model behavior. Rigorous pre-deployment valida-
tion provides confidence in putting models into production.

50.3.5. Model Deployment

To reliably deploy ML models to production, teams need to properly package, test and track them.
MLOps introduces frameworks and procedures to actively version, deploy, monitor and update
models in sustainable ways.

Teams containerize models using Docker which bundles code, libraries and dependencies into a
standardized unit. Containers enable smooth portability across environments.

Frameworks like TensorFlow Serving and BentoML help serve predictions from deployed models
via performance-optimized APIs. These frameworks handle versioning, scaling andmonitoring.

Teams first deploy updated models to staging or QA environments for testing before full produc-
tion rollout. Shadow or canary deployments route a sample of trafÏc to test model variants. Teams
incrementally increase access to new models.

https://martinfowler.com/bliki/CanaryRelease.html
https://en.wikipedia.org/wiki/Training,_validation,_and_test_sets
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score
https://www.ibm.com/cloud/learn/data-drift
https://developers.google.com/machine-learning/fairness-overview
https://developers.google.com/machine-learning/fairness-overview
https://www.docker.com/
https://www.tensorflow.org/tfx/guide/serving
https://bentoml.org/
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Teams build robust rollback procedures in case issues emerge. Rollbacks revert to the last known
good model version. Integration with CI/CD pipelines simplifies redeployment if needed.

Teams carefully track model artifacts like scripts, weights, logs and metrics for each version with
ML metadata tools like MLflow. This maintains lineage and auditability.

For example, a retailer containerizes a product recommendationmodel in TensorFlow Serving and
deploys it to a Kubernetes staging cluster. Aftermonitoring and approving performance on sample
trafÏc, Kubernetes shifts 10%of production trafÏc to the newmodel. If no issues are detected after a
few days, the newmodel takes over 100% of trafÏc. But teams keep the previous version accessible
for rollback if needed.

Model deployment processes enable teams tomakeML systems resilient in production by account-
ing for all transition states.

50.3.6. Infrastructure Management

MLOps teams heavily leverage infrastructure as code (IaC) tools and robust cloud architectures to
activelymanage the resources needed for development, training and deployment ofML systems.

Teams use IaC tools like Terraform, CloudFormation and Ansible to programmatically define, pro-
vision and update infrastructure in a version controlled manner. For MLOps, teams widely use
Terraform to spin up resources on AWS, GCP and Azure.

For model building and training, teams dynamically provision compute resources like GPU
servers, container clusters, storage and databases through Terraform as needed by data scientists.
Code encapsulates and preserves infrastructure definitions.

Containers and orchestrators like Docker and Kubernetes provide means for teams to package
models and reliably deploy them across different environments. Containers can be predictably
spun up or down automatically based on demand.

By leveraging cloud elasticity, teams scale resources up and down to meet spikes in workloads like
hyperparameter tuning jobs or spikes in prediction requests. Auto-scaling enables optimized cost
efÏciency.

Infrastructure spans on-prem, cloud and edge devices. A robust technology stack provides flexi-
bility and resilience. Monitoring tools give teams observability into resource utilization.

For example, a Terraform config may deploy a GCP Kubernetes cluster to host trained TensorFlow
models exposed as prediction microservices. The cluster scales up pods to handle increased trafÏc.
CI/CD integration seamlessly rolls out new model containers.

Carefully managing infrastructure through IaC and monitoring enables teams to prevent bottle-
necks in operationalizing ML systems at scale.

https://mlflow.org/
https://kubernetes.io/
https://www.infoworld.com/article/3271126/what-is-iac-infrastructure-as-code-explained.html
https://www.terraform.io/
https://aws.amazon.com/cloudformation/
https://www.ansible.com/
https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/
https://aws.amazon.com/autoscaling/
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50.3.7. Monitoring

MLOps teams actively maintain robust monitoring to sustain visibility into ML models deployed
in production. Monitoring continuously provides insights into model and system performance so
teams can rapidly detect and address issues to minimize disruption.

Teams actively monitor key model aspects including analyzing samples of live predictions to track
metrics like accuracy and confusion matrix over time.

When monitoring performance, it is important for teams to profile incoming data to check for
model drift - a steady decline in model accuracy over time after production deployment. Model
drift can occur in one of two ways: concept drift and data drift. Concept drift refers to a fun-
damental change observed in the relationship between the input data and the target outcomes.
For instance, as the COVID-19 pandemic progressed e-commerce and retail sites had to correct
their model recommendations, since purchase data was overwhelmingly skewed towards items
like hand sanitizer. Data drift describes changes in the distribution of data over time. For exam-
ple, image recognition algorithms used in self-driving cars will need to account for seasonality in
observing their surroundings. Teams also track application performance metrics like latency and
errors for model integrations.

From an infrastructure perspective, teams monitor for capacity issues like high CPU, memory and
disk utilization as well as system outages. Tools like Prometheus, Grafana and Elastic enable teams
to actively collect, analyze, query and visualize diverse monitoring metrics. Dashboards make
dynamics highly visible.

Teams configure alerting for key monitoring metrics like accuracy declines and system faults to
enable proactively responding to events that threaten reliability. For example, drops in model ac-
curacy trigger alerts for teams to investigate potential data drift and retrain models using updated,
representative data samples.

Comprehensive monitoring enables teams to maintain confidence in model and system health af-
ter deployment. It empowers teams to catch and resolve deviations through data-driven alerts and
dashboards preemptively. Active monitoring is essential for maintaining highly available, trust-
worthy ML systems.

50.3.8. Governance

MLOps teams actively establish proper governance practices as a critical component. Governance
provides oversight into ML models to ensure they are trustworthy, ethical, and compliant. With-
out governance, significant risks exist of models behaving in dangerous or prohibited ways when
deployed in applications and business processes.

MLOps governance employs techniques to provide transparency into model predictions, perfor-
mance, and behavior throughout the ML lifecycle. Explainability methods like SHAP and LIME
help auditors understand why models make certain predictions by highlighting influential in-
put features behind decisions. Bias detection analyzes model performance across different de-
mographic groups defined by attributes like age, gender and ethnicity to detect any systematic
skews. Teams perform rigorous testing procedures on representative datasets to validate model
performance before deployment.

https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
https://en.wikipedia.org/wiki/Concept_drift
https://prometheus.io/
https://grafana.com/
https://www.elastic.co/
https://github.com/slundberg/shap
https://github.com/marcotcr/lime
https://developers.google.com/machine-learning/fairness-overview
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Once in production, teams monitor concept drift to track if predictive relationships change over
time in ways that degrade model accuracy. Teams analyze production logs to uncover patterns in
the types of errors models generate. Documentation about data provenance, development proce-
dures, and evaluation metrics provides additional visibility.

Platforms like Watson OpenScale incorporate governance capabilities like bias monitoring and ex-
plainability directly into model building, testing and production monitoring. The key focus areas
of governance are transparency, fairness, and compliance. This minimizes risks of models behav-
ing incorrectly or dangerously when integrated into business processes. Embedding governance
practices into MLOps workflows enables teams to ensure trustworthy AI.

50.3.9. Communication & Collaboration

MLOps actively breaks down silos and enables free flowof information and insights between teams
through all ML lifecycle stages. Tools like MLflow, Weights & Biases, and data contexts provide
traceability and visibility to improve collaboration.

Teams use MLflow to systematize tracking of model experiments, versions, and artifacts. Experi-
ments can be programmatically logged from data science notebooks and training jobs. The model
registry provides a central hub for teams to store production-ready models before deployment,
with metadata like descriptions, metrics, tags and lineage. Integrations with Github, GitLab facili-
tate code change triggers.

Weights&Biases provides collaborative tools tailored toML teams. Data scientists log experiments,
visualizemetrics like loss curves, and share experimentation insightswith colleagues. Comparison
dashboards highlight model differences. Teams discuss progress and next steps.

Establishing shared data contexts - glossaries, data dictionaries, schema references - ensures align-
ment on data meaning and usage across roles. Documentation aids understanding for those with-
out direct data access.

For example, a data scientist may use Weights & Biases to analyze an anomaly detection model
experiment and share the evaluation results with other team members to discuss improvements.
The final model can then be registered with MLflow before handing off for deployment.

Enabling transparency, traceability and communication via MLOps empowers teams to remove
bottlenecks and accelerate delivery of impactful ML systems.

50.4. Hidden Technical Debt in ML Systems

Technical debt is an increasingly pressing issue for ML systems (see Figure 14.2). This metaphor,
originally proposed in the 1990s, likens the long-term costs of quick software development to fi-
nancial debt. Just as some financial debt powers beneficial growth, carefully managed technical
debt enables rapid iteration. However, left unchecked, accumulating technical debt can outweigh
any gains.

Figure 50.3 illustrates the various components that contribute to hidden technical debt in ML sys-
tems. It shows the interconnected nature of configuration, data collection, and feature extraction,

https://en.wikipedia.org/wiki/Concept_drift
https://www.ibm.com/cloud/watson-openscale
https://mlflow.org/
https://wandb.ai/
https://github.com/
https://about.gitlab.com/
https://en.wikipedia.org/wiki/Data_dictionary
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which are foundational to theML codebase. The box sizes indicate the proportion of the entire sys-
tem represented by each component. In industry ML systems, the code for the model algorithm
makes up only a very tiny fraction (see the small black box in the middle as compared to all the
other large boxes). The complexity of ML systems and the fast-paced nature of the industry make
it very easy to accumulate technical debt.

Figure 50.3. ML system components. Credit: Sambasivan et al. (2021a)

50.4.1. Model Boundary Erosion

Unlike traditional software,ML lacks clear boundaries between components as seen in the diagram
above. This erosion of abstraction creates entanglements that exacerbate technical debt in several
ways:

50.4.2. Entanglement

Tight coupling between ML model components makes isolating changes difÏcult. Modifying one
part causes unpredictable ripple effects throughout the system. Changing anything changes every-
thing (also known as CACE) is a phenomenon that applies to any tweak you make to your system.
Potential mitigations include decomposing the problem when possible or closely monitoring for
changes in behavior to contain their impact.
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50.4.3. Correction Cascades

Figure 50.4. Figure 14.3: The flowchart depicts the concept of correction cascades in the ML workflow,
from problem statement to model deployment. The arcs represent the potential iterative corrections needed
at each stage of the workflow, with different colors corresponding to distinct issues such as interacting with
physical world brittleness, inadequate application-domain expertise, conflicting reward systems, and poor
cross-organizational documentation. The red arrows indicate the impact of cascades, which can lead to sig-
nificant revisions in the model development process, while the dotted red line represents the drastic measure of
abandoning the process to restart. This visual emphasizes the complex, interconnected nature of ML system
development and the importance of addressing these issues early in the development cycle to mitigate their
amplifying effects downstream. (Sambasivan et al. 2021a)

Building models sequentially creates risky dependencies where later models rely on earlier ones.
For example, taking an existing model and fine-tuning it for a new use case seems efÏcient. How-
ever, this bakes in assumptions from the original model that may eventually need correction.

There are several factors that inform the decision to build models sequentially or not:

• Dataset size and rate of growth: With small, static datasets, it often makes sense to fine-tune
existing models. For large, growing datasets, training custom models from scratch allows
more flexibility to account for new data.

• Available computing resources: Fine-tuning requires less resources than training largemod-
els from scratch. With limited resources, leveraging existing models may be the only feasible
approach.

While fine-tuning can be efÏcient, modifying foundational components later becomes extremely
costly due to the cascading effects on subsequent models. Careful thought should be given to iden-
tifying points where introducing freshmodel architectures, evenwith large resource requirements,
can avoid correction cascades down the line (see Figure 14.3). There are still scenarios where se-
quential model building makes sense, so it entails weighing these tradeoffs around efÏciency, flex-
ibility, and technical debt.

Figure 50.5 depicts the concept of correction cascades in theMLworkflow, from problem statement
to model deployment. The arcs represent the potential iterative corrections needed at each stage
of the workflow, with different colors corresponding to distinct issues such as interacting with
physical world brittleness, inadequate application-domain expertise, conflicting reward systems,
and poor cross-organizational documentation. The red arrows indicate the impact of cascades,
which can lead to significant revisions in the model development process, while the dotted red
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line represents the drastic measure of abandoning the process to restart. This visual emphasizes
the complex, interconnected nature of ML system development and the importance of addressing
these issues early in the development cycle to mitigate their amplifying effects downstream.

Figure 50.5. Data cascades. Credit: Sambasivan et al. (2021b).

50.4.4. Undeclared Consumers

OnceMLmodel predictions are made available, many downstream systems may silently consume
them as inputs for further processing. However, the original model was not designed to accommo-
date this broad reuse. Due to the inherent opacity of ML systems, it becomes impossible to fully
analyze the impact of the model’s outputs as inputs elsewhere. Changes to the model can then
have expensive and dangerous consequences by breaking undiscovered dependencies.

Undeclared consumers can also enable hidden feedback loops if their outputs indirectly influence
the original model’s training data. Mitigations include restricting access to predictions, defining
strict service contracts, and monitoring for signs of un-modelled influences. Architecting ML sys-
tems to encapsulate and isolate their effects limits the risks from unanticipated propagation.

50.4.5. Data Dependency Debt

Data dependency debt refers to unstable and underutilized data dependencies which can have
detrimental and hard to detect repercussions. While this is a key contributor to tech debt for tradi-
tional software, those systems can benefit from the use of widely available tools for static analysis
by compilers and linkers to identify dependencies of these types. ML systems lack similar tool-
ing.

One mitigation for unstable data dependencies is to use versioning which ensures the stability of
inputs but comes with the cost of managing multiple sets of data and the potential for staleness
of the data. A mitigation for underutilized data dependencies is to conduct exhaustive leave-one-
feature-out evaluation.

50.4.6. Analysis Debt from Feedback Loops

Unlike traditional software, ML systems can change their own behavior over time, making it difÏ-
cult to analyze pre-deployment. This debt manifests in feedback loops, both direct and hidden.



Chapter 50. Embedded AIOps 491

Direct feedback loops occurwhen amodel influences its own future inputs, such as by recommend-
ing products to users that in turn shape future training data. Hidden loops arise indirectly between
models, such as two systems that interact via real-world environments. Gradual feedback loops
are especially hard to detect. These loops lead to analysis debt—the inability to fully predict how a
model will act after release. They undermine pre-deployment validation by enabling unmodeled
self-influence.

Careful monitoring and canary deployments help detect feedback. But fundamental challenges
remain in understanding complex model interactions. Architectural choices that reduce entangle-
ment and coupling mitigate analysis debt’s compounding effect.

50.4.7. Pipeline Jungles

ML workflows often lack standardized interfaces between components. This leads teams to in-
crementally “glue” together pipelines with custom code. What emerges are “pipeline jungles”—
tangled preprocessing steps that are brittle and resist change. Avoiding modifications to these
messy pipelines causes teams to experiment through alternate prototypes. Soon, multiple ways of
doing everything proliferate. The lack of abstractions and interfaces then impedes sharing, reuse,
and efÏciency.

Technical debt accumulates as one-off pipelines solidify into legacy constraints. Teams sink time
into managing idiosyncratic code rather than maximizing model performance. Architectural prin-
ciples like modularity and encapsulation are needed to establish clean interfaces. Shared abstrac-
tions enable interchangeable components, prevent lock-in, and promote best practice diffusion
across teams. Breaking free of pipeline jungles ultimately requires enforcing standards that prevent
accretion of abstraction debt. The benefits of interfaces and APIs that tame complexity outweigh
the transitional costs.

50.4.8. Configuration Debt

ML systems involve extensive configuration of hyperparameters, architectures, and other tuning
parameters. However, configuration is often an afterthought, lacking rigor and testing. Ad hoc
configurations proliferate, amplified by the many knobs available for tuning complex ML mod-
els.

This accumulation of technical debt has several consequences. Fragile and outdated configura-
tions lead to hidden dependencies and bugs that cause production failures. Knowledge about op-
timal configurations is isolated rather than shared, leading to redundant work. Reproducing and
comparing results becomes difÏcult when configuration lacks documentation. Legacy constraints
accrete as teams fear changing poorly understood configurations.

Addressing configuration debt requires establishing standards to document, test, validate, and
centrally store configurations. Investing in more automated approaches such as hyperparameter
optimization and architecture search reduces dependence on manual tuning. Better configuration
hygienemakes iterative improvementmore tractable by preventing complexity from compounding
endlessly. The key is recognizing configuration as an integral part of theML system lifecycle rather
than an ad hoc afterthought.
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50.4.9. The Changing World

ML systems operate in dynamic real-world environments. Thresholds and decisions that are ini-
tially effective become outdated as the world evolves. But legacy constraints make it difÏcult to
adapt systems to reflect changing populations, usage patterns, and other shifting contextual fac-
tors.

This debt manifests in two main ways. First, preset thresholds and heuristics require constant re-
evaluation and tuning as their optimal values drift. Second, validating systems through static unit
and integration tests fails when inputs and behaviors are moving targets.

Responding to a changingworld in real-timewith legacyML systems is challenging. Technical debt
accumulates as assumptions decay. The lack of modular architecture and ability to dynamically
update components without side effects exacerbates these issues.

Mitigating this requires building in configurability, monitoring, and modular updatability. Online
learning where models continuously adapt, as well as robust feedback loops to training pipelines,
help automatically tune to the world. But anticipating and architecting for change is essential to
prevent erosion of real-world performance over time.

50.4.10. Navigating Technical Debt in Early Stages

It is understandable that technical debt accumulates naturally in early stages of model develop-
ment. When aiming to build MVPmodels quickly, teams often lack complete information on what
components will reach scale or require modification. Some deferred work is expected.

However, even scrappy initial systems should follow principles like “Flexible Foundations” to
avoid painting themselves into corners:

• Modular code and reusable libraries allow components to be swapped later
• Loose coupling between models, data stores, and business logic facilitates change
• Abstraction layers hide implementation details that may shift over time
• Containerized model serving keeps options open on deployment requirements

Decisions that seem expedient in the moment can seriously limit future flexibility. For example,
baking key business logic intomodel code rather than keeping it separatemakes subsequentmodel
changes extremely difÏcult.

With thoughtful design, though, it is possible to build quickly at first while retaining degrees of
freedom to improve. As the systemmatures, prudent break points emergewhere introducing fresh
architectures proactively avoidsmassive rework down the line. This balances urgent timelineswith
reducing future correction cascades.

50.4.11. Summary

Although financial debt is a good metaphor to understand the tradeoffs, it differs from technical
debt in its measurability. Technical debt lacks the ability to be fully tracked and quantified. This
makes it hard for teams to navigate the tradeoffs between moving quickly and inherently introduc-
ing more debt versus taking the time to pay down that debt.
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The Hidden Technical Debt of Machine Learning Systems paper spreads awareness of the nuances
of ML system specific tech debt and encourages additional development in the broad area of main-
tainable ML.

50.5. Roles and Responsibilities

Given the vastness of MLOps, successfully implementing ML systems requires diverse skills and
close collaboration between people with different areas of expertise. While data scientists build
the core ML models, it takes cross-functional teamwork to successfully deploy these models into
production environments and enable them to deliver business value in a sustainable way.

MLOps provides the framework and practices for coordinating the efforts of various roles involved
in developing, deploying and runningMLg systems. Bridging traditional silos between data, engi-
neering and operations teams is key to MLOps success. Enabling seamless collaboration through
the machine learning lifecycle accelerates benefit realization while ensuring long-term reliability
and performance of ML models.

Wewill look at some of the key roles involved inMLOps and their primary responsibilities. Under-
standing the breadth of skills needed to operationalize ML models provides guidance on assem-
bling MLOps teams. It also clarifies how the workflows between different roles fit together under
the overarching MLOps methodology.

50.5.1. Data Engineers

Data engineers are responsible for building and maintaining the data infrastructure and pipelines
that feed data to ML models. They ensure data is smoothly moved from source systems into the
storage, processing, and feature engineering environments needed forMLmodel development and
deployment. Their main responsibilities include:

• Migrating raw data from on-prem databases, sensors, apps into cloud-based data lakes like
Amazon S3 or Google Cloud Storage. This provides cost-efÏcient, scalable storage.

• Building data pipelines with workflow schedulers like Apache Airflow, Prefect, dbt. These
extract data from sources, transform and validate data, and load it into destinations like data
warehouses, feature stores or directly for model training.

• Transforming messy raw data into structured, analysis-ready datasets. This includes han-
dling null or malformed values, deduplicating, joining disparate data sources, aggregating
data and engineering new features.

• Maintaining data infrastructure components like cloud data warehouses (Snowflake, Red-
shift, BigQuery), data lakes, and metadata management systems. Provisioning and optimiz-
ing data processing systems.

• Establishing data versioning, backup and archival processes for ML datasets and features.
Enforcing data governance policies.

For example, a manufacturing firm may use Apache Airflow pipelines to extract sensor data from
PLCs on the factory floor into an Amazon S3 data lake. The data engineers would then process
this raw data to filter, clean, and join it with product metadata. These pipeline outputs would then

https://papers.nips.cc/paper_files/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://www.snowflake.com/en/data-cloud/workloads/data-warehouse/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
https://cloud.google.com/bigquery?hl=en
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load into a Snowflake data warehouse from which features can be read for model training and
prediction.

The data engineering team builds and sustains the data foundation for reliablemodel development
and operations. Their work enables data scientists andML engineers to focus on building, training
and deploying ML models at scale.

50.5.2. Data Scientists

The job of the data scientists is to focus on the research, experimentation, development and con-
tinuous improvement of ML models. They leverage their expertise in statistics, modeling and
algorithms to create high-performing models. Their main responsibilities include:

• Working with business and data teams to identify opportunities where ML can add value.
Framing the problem and defining success metrics.

• Performing exploratory data analysis to understand relationships in data and derive insights.
Identifying relevant features for modeling.

• Researching and experimentingwith differentML algorithms andmodel architectures based
on the problem and data characteristics. Leveraging libraries like TensorFlow, PyTorch,
Keras.

• Training and fine-tuningmodels by tuning hyperparameters, adjusting neural network archi-
tectures, feature engineering, etc. to maximize performance.

• Evaluating model performance through metrics like accuracy, AUC, F1 scores. Performing
error analysis to identify areas for improvement.

• Developing newmodel versions by incorporating newdata, testing different approaches, and
optimizing model behavior. Maintaining documentation and lineage for models.

For example, a data scientist may leverage TensorFlow and TensorFlow Probability to develop a
demand forecasting model for retail inventory planning. They would iterate on different sequence
models like LSTMs and experiment with features derived from product, sales and seasonal data.
The model would be evaluated based on error metrics versus actual demand before deployment.
The data scientist monitors performance and retrains/enhances the model as new data comes in.

Data scientists drive model creation, improvement and innovation through their expertise in ML
techniques. They collaborate closely with other roles to ensure models create maximum business
impact.

50.5.3. ML Engineers

ML engineers enablemodels data scientists develop to be productized and deployed at scale. Their
expertise makes models reliably serve predictions in applications and business processes. Their
main responsibilities include:

• Taking prototype models from data scientists and hardening them for production environ-
ments through coding best practices.

• Building APIs and microservices for model deployment using tools like Flask, FastAPI. Con-
tainerizing models with Docker.

https://www.tensorflow.org/probability
https://flask.palletsprojects.com/en/3.0.x/
https://fastapi.tiangolo.com/


Chapter 50. Embedded AIOps 495

• Managing model versions and sinaging newmodels into production using CI/CD pipelines.
Implementing canary releases, A/B tests, and rollback procedures.

• Optimizing model performance for high scalability, low latency and cost-efÏciency. Leverag-
ing compression, quantization, multi-model serving.

• Monitoring models once in production and ensuring continued reliability and accuracy. Re-
training models periodically.

For example, a ML engineer may take a TensorFlow fraud detection model developed by data sci-
entists and containerize it using TensorFlow Serving for scalable deployment. Themodel would be
integrated into the company’s transaction processing pipeline via APIs. The ML engineer imple-
ments a model registry and CI/CD pipeline using MLFlow and Jenkins to reliably deploy model
updates. The ML engineers would then monitor the running model for continued performance
using tools like Prometheus and Grafana. If model accuracy drops, they initiate retraining and
deployment of a new model version.

The ML engineering team enables data science models to progress smoothly into sustainable and
robust production systems. Their expertise in building modular, monitored systems delivers con-
tinuous business value.

50.5.4. DevOps Engineers

DevOps engineers enable MLOps by building and managing the underlying infrastructure for de-
veloping, deploying, and monitoring ML models. They provide the cloud architecture and au-
tomation pipelines. Their main responsibilities include:

• Provisioning and managing cloud infrastructure for ML workflows using IaC tools like Ter-
raform, Docker, Kubernetes.

• Developing CI/CD pipelines for model retraining, validation, and deployment. Integrating
ML tools into the pipeline like MLflow, Kubeflow.

• Monitoring model and infrastructure performance using tools like Prometheus, Grafana,
ELK stack. Building alerts and dashboards.

• Implementing governance practices aroundmodel development, testing, and promotion. En-
abling reproducibility and traceability.

• Embedding ML models within applications. Exposing models via APIs and microservices
for integration.

• Optimizing infrastructure performance and costs. Leveraging autoscaling, spot instances,
and availability across regions.

For example, a DevOps engineer provisions a Kubernetes cluster on AWS using Terraform to run
ML training jobs and online deployment. They build a CI/CD pipeline in Jenkins which triggers
model retraining if new data is available. After automated testing, the model is registered with
MLflow and deployed in the Kubernetes cluster. The engineer then monitors cluster health, con-
tainer resource usage, and API latency using Prometheus and Grafana.

The DevOps team enables rapid experimentation and reliable deployments for ML through exper-
tise in cloud, automation, andmonitoring. Their workmaximizes model impact while minimizing
technical debt.

https://prometheus.io/
https://grafana.com/
https://aws.amazon.com/what-is/elk-stack/
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50.5.5. Project Managers

Project managers play a vital role in MLOps by coordinating the activities between the different
teams involved in delivering ML projects. They help drive alignment, accountability, and acceler-
ated results. Their main responsibilities include:

• Working with stakeholders to define project goals, success metrics, timelines and budgets.
Outlining specifications and scope.

• Creating a project plan spanning activities like data acquisition, model development, infras-
tructure setup, deployment, and monitoring.

• Coordinating design, development and testing efforts between data engineers, data scientists,
ML engineers and DevOps roles.

• Tracking progress and milestones. Identifying roadblocks and resolving through corrective
actions. Managing risks and issues.

• Facilitating communication through status reports, meetings, workshops, documentation.
Enabling seamless collaboration.

• Driving adherence to timelines and budget. Escalating anticipated overruns or shortfalls for
mitigation.

For example, a project manager would create a project plan for the development and ongoing en-
hancement of a customer churn prediction model. They coordinate between data engineers build-
ing data pipelines, data scientists experimenting with models, ML engineers productionalizing
models, and DevOps setting up deployment infrastructure. The project manager tracks progress
via milestones like dataset preparation, model prototyping, deployment, and monitoring. They
surface any risks, delays or budget issues to enact preventive solutions.

Skilled project managers enable MLOps teams to work synergistically to deliver maximum busi-
ness value from ML investments rapidly. Their leadership and organization align with diverse
teams.

50.6. Embedded System Challenges

We will briefly review the challenges with embedded systems so taht it sets the context for the
specific challenges that emerge with embedded MLOps that we will discuss in the following sec-
tion.

50.6.1. Limited Compute Resources

Embedded devices likemicrocontrollers andmobile phones havemuchmore constrained compute
power compared to data center machines or GPUs. A typical microcontroller may have only KB of
RAM, MHz of CPU speed, and no GPU. For example, a microcontroller in a smartwatch may only
have a 32-bit processor running at 120MHzwith 320KB of RAM (STM32L4Q5AG 2021). This allows
relatively simple ML models like small linear regressions or random forests, but more complex
deepneural networkswould be infeasible. Strategies tomitigate this include quantization, pruning,
efÏcient model architectures, and ofÒoading certain computations to the cloud when connectivity
allows.
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50.6.2. Constrained Memory

With limitedmemory, storing largeMLmodels and datasets directly on embedded devices is often
infeasible. For example, a deep neural network model can easily take hundreds of MB, which ex-
ceeds the storage capacity of many embedded systems. Consider this example. A wildlife camera
that captures images to detect animals may have only a 2GB memory card. This is insufÏcient to
store a deep learning model for image classification that is often hundreds of MB in size. Conse-
quently, this requires optimization of memory usage through methods like weights compression,
lower-precision numerics, and streaming inference pipelines.

50.6.3. Intermittent Connectivity

Many embedded devices operate in remote environments without reliable internet connectivity.
This means we cannot rely on constant cloud access for convenient retraining, monitoring, and
deployment. Instead, we need smart scheduling and caching strategies to optimize for intermittent
connections. For example, a model predicting crop yield on a remote farm may need to make
predictions daily, but only have connectivity to the cloud once a week when the farmer drives into
town. The model needs to operate independently in between connections.

50.6.4. Power Limitations

Embedded devices like phones, wearables, and remote sensors are battery-powered. Continual
inference and communication can quickly drain those batteries, limiting functionality. For exam-
ple, a smart collar tagging endangered animals runs on a small battery. Continuously running
a GPS tracking model would drain the battery within days. The collar has to carefully schedule
when to activate the model. Thus, embedded ML has to carefully manage tasks to conserve power.
Techniques include optimized hardware accelerators, prediction caching, and adaptive model ex-
ecution.

50.6.5. Fleet Management

For mass-produced embedded devices, there can be millions of units deployed in the field to or-
chestrate updates for. Hypothetically, updating a fraud detection model on 100 million (future
smart) credit cards requires securely pushing updates to each distributed device rather than a cen-
tralized data center. Such distributed scale makes fleet-wide management much harder than a
centralized server cluster. It requires intelligent protocols for over-the-air updates, handling con-
nectivity issues, and monitoring resource constraints across devices.

50.6.6. On-Device Data Collection

Collecting useful training data requires engineering both the sensors on device as well as the soft-
ware pipelines. This is unlike servers where we can pull data from external sources. Challenges
include handling sensor noise. Sensors on an industrial machine detect vibrations and tempera-
ture to predict maintenance needs. This requires tuning the sensors and sampling rates to capture
useful data.
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50.6.7. Device-Specific Personalization

A smart speaker learns an individual user’s voice patterns and speech cadence to improve recog-
nition accuracy, all while protecting privacy. Adapting ML models to specific devices and users is
important but this poses privacy challenges. On-device learning allows personalization without
transmitting as much private data. But balancing model improvement, privacy preservation, and
constraints requires novel techniques.

50.6.8. Safety Considerations

For extremely large embedded ML in systems like self-driving vehicles, there are serious safety
risks if not engineered carefully. Self-driving cars must undergo extensive track testing in simu-
lated rain, snow, and obstacle scenarios to ensure safe operation before deployment. This requires
extensive validation, fail-safes, simulators, and standards compliance before deployment.

50.6.9. Diverse Hardware Targets

There are a diverse range of embedded processors including ARM, x86, specializedAI accelerators,
FPGAs etc. Supporting this heterogeneity makes deployment challenging. We need strategies like
standardized frameworks, extensive testing, and allowing model tuning for each platform. For
example, an object detection model needs efÏcient implementations across embedded devices like
a Raspberry Pi, Nvidia Jetson, and Google Edge TPU.

50.6.10. Testing Coverage

Rigorously testing edge cases is difÏcult with constrained embedded resources for simulation. But
exhaustive testing is critical in systems like self-driving cars. Exhaustively testing an autopilot
model requires millions of simulated kilometers exposing it to extremely rare events like sensor
failures. Therefore, strategies like synthetic data generation, distributed simulation, and chaos
engineering help improve coverage.

50.6.11. Concept Drift Detection

With limited monitoring data from each remote device, detecting changes in the input data over
time is much harder. Drift can lead to degraded model performance. Lightweight methods are
needed to identify when retraining is necessary. A model predicting power grid loads shows de-
clining performance as usage patterns change over time. With only local device data, this trend is
difÏcult to spot.
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50.7. Traditional MLOps vs. Embedded MLOps

In traditional MLOps, ML models are typically deployed in cloud-based or server environments,
where resources like computing power and memory are abundant. These environments facilitate
the smooth operation of complex models that require significant computational resources. For
instance, a cloud-based image recognition model might be used by a social media platform to
tag photos with relevant labels automatically. In this case, the model can leverage the extensive
resources available in the cloud to process vast data efÏciently.

On the other hand, embedded MLOps involves deploying ML models on embedded systems, spe-
cialized computing systems designed to perform specific functions within larger systems. Embed-
ded systems are typically characterized by their limited computational resources and power. For
example, a ML model might be embedded in a smart thermostat to optimize heating and cool-
ing based on the user’s preferences and habits. In this case, the model must be optimized to run
efÏciently on the thermostat’s limited hardware, without compromising its performance or accu-
racy.

The key difference between traditional and embedded MLOps lies in the resource constraints of
embedded systems. While traditional MLOps can leverage abundant cloud or server resources,
embedded MLOps must contend with the hardware limitations on which the model is deployed.
This requires careful optimization and fine-tuning of the model to ensure it can deliver accurate
and valuable insights within the constraints of the embedded system.

Furthermore, embedded MLOps must consider the unique challenges posed by integrating ML
models with other components of the embedded system. For example, the model must be com-
patible with the system’s software and hardware and must be able to interface seamlessly with
other components, such as sensors or actuators. This requires a deep understanding of both ML
and embedded systems, as well as close collaboration between data scientists, engineers, and other
stakeholders.

So, while traditional MLOps and embedded MLOps share the common goal of deploying and
maintaining ML models in production environments, the unique challenges posed by embedded
systems require a specialized approach. Embedded MLOps must carefully balance the need for
model accuracy and performance with the constraints of the hardware on which the model is de-
ployed. This requires a deep understanding of both ML and embedded systems, as well as close
collaboration between various stakeholders to ensure the successful integration of MLmodels into
embedded systems.

This time we will group the subtopics under broader categories to streamline the structure of our
thought process on MLOps. This structure will help you understand how different aspects of
MLOps are interconnected and why each is important for the efÏcient operation of ML systems
as we discuss the challenges in the context of embedded systems.

• Model Lifecycle Management

– Data Management: Handling data ingestion, validation, and version control.
– Model Training: Techniques and practices for effective and scalable model training.
– Model Evaluation: Strategies for testing and validating model performance.
– Model Deployment: Approaches for deploying models into production environments.

• Development and Operations Integration
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– CI/CD Pipelines: Integrating ML models into continuous integration and continuous
deployment pipelines.

– Infrastructure Management: Setting up and maintaining the infrastructure required for
training and deploying models.

– Communication & Collaboration: Ensuring smooth communication and collaboration
practices between data scientists, ML engineers, and operations teams.

• Operational Excellence

– Monitoring: Techniques for monitoring model performance, data drift, and operational
health.

– Governance: Implementing policies for model auditability, compliance, and ethical con-
siderations.

50.7.1. Model Lifecycle Management

50.7.1.1. Data Management

In traditional centralized MLOps, data is aggregated into large datasets and data lakes, then pro-
cessed on cloud or on-prem servers. However, embedded MLOps relies on decentralized data
from local on-device sensors. Devices collect smaller batches of incremental data, often noisy and
unstructured. With connectivity constraints, this data cannot always be instantly transmitted to
the cloud and needs to be intelligently cached and processed at the edge.

Embedded devices can only preprocess and clean data minimally before transmission due to lim-
ited on-device compute. Early filtering and processing occurs at edge gateways to reduce transmis-
sion loads. While leveraging cloud storage, more processing and storage happens at the edge to
account for intermittent connectivity. Devices identify and transmit only the most critical subsets
of data to the cloud.

Labeling also faces challenges without centralized data access, requiring more automated tech-
niques like federated learning where devices collaboratively label peers’ data. With personal edge
devices, data privacy and regulations are critical concerns. Data collection, transmission and stor-
age must be secure and compliant.

For instance, a smartwatch may collect step count, heart rate, GPS coordinates throughout the day.
This data is cached locally and transmitted to an edge gateway when WiFi is available. The gate-
way processes and filters data before syncing relevant subsets with the cloud platform to retrain
models.

50.7.1.2. Model Training

In traditional centralized MLOps, models are trained using abundant data via deep learning on
high-powered cloud GPU servers. However, embedded MLOps faces severe constraints on model
complexity, data availability and compute resources for training.

The volume of aggregated data is much lower, often requiring techniques like federated learn-
ing across devices to create training sets. The specialized nature of edge data also limits public
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datasets for pre-training. With privacy concerns, data samples need to be tightly controlled and
anonymized where possible.

Furthermore, the models themselves need to use simplified architectures optimized for low-power
edge hardware. There is no access to high-end GPUs for intensive deep learning given the com-
pute limitations. Training leverages lower-powered edge servers and clusters with distributed ap-
proaches to spread load.

To mitigate data scarcity and irregularity, strategies like transfer learning become essential (see
Figure 14.5). Models can pre-train on large public datasets, then fine-tune the training on limited
domain-specific edge data. Even incremental on-device learning to customize models helps over-
come the decentralized nature of embedded data. The lack of broad labeled data also motivates
semi-supervised techniques.

Figure 50.6 illustrates the concept of transfer learning in model training within an MLOps frame-
work. It showcases a neural network where the initial layers (W_{A1} to W_{A4}), which are re-
sponsible for general feature extraction, are frozen (indicated by the green dashed line), meaning
their weights are not updated during training. This reuse of pre-trained layers accelerates learning
by utilizing knowledge gained fromprevious tasks. The latter layers (W_{A5} toW_{A7}), depicted
beyond the blue dashed line, are fine-tuned for the specific task at hand, focusing on task-specific
feature learning. This approach allows the model to adapt to the new task using fewer resources
and potentially achieve higher performance on specialized tasks by reusing the general features
learned from a broader dataset.

Figure 50.6. Transfer learning in MLOps. Credit: HarvardX.

For example, a smart home assistant may pre-train an audio recognition model on public YouTube
clips which helps bootstrap with general knowledge. It then transfer learns on a small sample
of home data to classify customized appliances and events, specializing the model. The model
distills down into a lightweight neural network optimized for microphone-enabled devices across
the home.

So embedded MLOps faces acute challenges in constructing training datasets, designing efÏcient
models, and distributing compute for model development compared to traditional settings. Care-
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ful adaptation such as transfer learning and distributed training is required to train models given
the embedded constraints.

50.7.1.3. Model Evaluation

In traditional centralized MLOps, models are evaluated primarily on accuracy metrics using hold-
out test datasets. However, embedded MLOps requires more holistic evaluation accounting for
system constraints beyond just accuracy.

Models need to be tested early and often on real deployed edge hardware covering diverse config-
urations. In addition to accuracy, factors like latency, CPU usage, memory footprint and power
consumption are critical evaluation criteria. Models are selected based on tradeoffs between these
metrics to meet edge device constraints.

Data drift must also be monitored - where models trained on cloud data degrade in accuracy over
time on local edge data. Embedded data often has more variability than centralized training sets.
Evaluating models across diverse operational edge data samples is key. But sometimes getting the
data formonitoring the drift can be challenging if these devices are in thewild and communication
is a barrier.

Ongoing monitoring provides visibility into real-world performance post-deployment, revealing
bottlenecks not caught during testing. For instance, a smart camera model update may be canary
tested on 100 cameras first and rolled back if degraded accuracy is observed before expanding to
all 5000 cameras.

50.7.1.4. Model Deployment

In traditional MLOps, new model versions are directly deployed onto servers via API endpoints.
However, embedded devices require optimized delivery mechanisms to receive updated models.
Over-the-air (OTA) updates provide a standardized approach to wirelessly distribute new soft-
ware or firmware releases to embedded devices. Rather than direct API access, OTA packages
allow remotely deploying models and dependencies as pre-built bundles. As an alternative, feder-
ated learning allows model updates without direct access to raw training data. This decentralized
approach has potential for continuous model improvement, but currently lacks robust MLOps
platforms.

For deeply embedded devices lacking connectivity, model delivery relies on physical interfaces
like USB or UART serial connections. The model packaging still follows similar principles to OTA
updates, but the deploymentmechanism is tailored for the capabilities of the edge hardware. More-
over, specialized OTA protocols optimized for IoT networks are often used rather than standard
WiFi or Bluetooth protocols. Key factors include efÏciency, reliability, security, and telemetry like
progress tracking. Solutions like Mender.io provide embedded-focused OTA services handling
differential updates across device fleets.

Figure 50.7 presents an overview ofModel LifecycleManagement in anMLOps context, illustrating
the flow from development (top left) to deployment and monitoring (bottom right). The process
begins with ML Development, where code and configurations are version-controlled. Data and
model management are central to the process, involving datasets and feature repositories. Con-
tinuous training, model conversion, and model registry are key stages in the operationalization

https://mender.io/
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of training. Model deployment includes serving the model and managing serving logs. Alerting
mechanisms are in place to flag issues, which feed into continuous monitoring to ensure model
performance and reliability over time. This integrated approach ensures that models are not only
developed but also maintained effectively throughout their lifecycle.

Figure 50.7. Model lifecycle management. Credit: HarvardX.

50.7.2. Development and Operations Integration

50.7.2.1. CI/CD Pipelines

In traditional MLOps, robust CI/CD infrastructure like Jenkins and Kubernetes enables automat-
ing pipelines for large-scalemodel deployment. However, embeddedMLOps lacks this centralized
infrastructure and needs more tailored CI/CD workflows for edge devices.

Building CI/CD pipelines has to account for a fragmented landscape of diverse hardware,
firmware versions and connectivity constraints. There is no standard platform on which to
orchestrate pipelines and tooling support is more limited.

Testing needs to cover this wide spectrum of target embedded devices early, which is difÏcult with-
out centralized access. Companies must invest significant effort into acquiring and managing test
infrastructure across the heterogeneous embedded ecosystem.
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Over-the-air updates require setting up specialized servers to securely distribute model bundles
to devices in the field. Rollout and rollback procedures must be carefully tailored for particular
device families.

With traditional CI/CD tools less applicable, embeddedMLOps relies more on custom scripts and
integration. Companies take varied approaches from open source frameworks to fully in-house
solutions. Tight integration between developers, edge engineers and end customers establishes
trusted release processes.

Therefore, embedded MLOps can’t leverage centralized cloud infrastructure for CI/CD. Compa-
nies cobble together custom pipelines, testing infrastructure and OTA delivery to deploy models
across fragmented and disconnected edge systems.

50.7.2.2. Infrastructure Management

In traditional centralizedMLOps, infrastructure entails provisioning cloud servers, GPUs andhigh-
bandwidth networks for intensive workloads like model training and serving predictions at scale.
However, embedded MLOps requires more heterogeneous infrastructure spanning edge devices,
gateways, and cloud.

Edge devices like sensors capture and preprocess data locally before intermittent transmission to
avoid overloading networks. Gateways aggregate and process data from devices before sending
select subsets to the cloud for training and analysis. The cloud provides centralized management
and supplemental compute.

This infrastructure needs tight integration, balancing processing and communication loads. Net-
work bandwidth is limited, requiring careful data filtering and compression. Edge compute capa-
bilities are modest compared to the cloud, imposing optimization constraints.

Managing secure OTA updates across large device fleets presents challenges at the edge. Roll-
outs must be incremental and rollback-ready for quick mitigation. Updating edge infrastructure
requires coordination given decentralized environments.

For example, an industrial plant may perform basic signal processing on sensors before sending
data to an on-prem gateway. The gateway handles data aggregation, infrastructure monitoring,
and OTA updates. Only curated data is transmitted to the cloud for advanced analytics andmodel
retraining.

In summary, embedded MLOps requires holistic management of distributed infrastructure span-
ning constrained edge, gateways, and centralized cloud. Workloads are balanced across tiers while
accounting for connectivity, compute and security challenges.

50.7.2.3. Communication & Collaboration

In traditional MLOps, collaboration tends to be centered around data scientists, ML engineers and
DevOps teams. But embedded MLOps requires tighter cross-functional coordination between ad-
ditional roles to address system constraints.



Chapter 50. Embedded AIOps 505

Edge engineers optimize model architectures for target hardware environments. They provide
feedback to data scientists during development so models fit device capabilities early on. Similarly,
product teams define operational requirements informed by end-user contexts.

With more stakeholders across the embedded ecosystem, communication channels must facilitate
information sharing between centralized and remote teams. Issue tracking and project manage-
ment ensures alignment.

Collaborative tools optimizemodels for particular devices. Data scientists can log issues replicated
from field devices so models specialize on niche data. Remote device access aids debugging and
data collection.

For example, data scientists may collaborate with field teams managing fleets of wind turbines to
retrieve operational data samples. This data is used to specialize models detecting anomalies spe-
cific to that turbine class. Model updates are first tested in simulations then reviewed by engineers
before field deployment.

In essence, embedded MLOps mandates continuous coordination between data scientists, engi-
neers, end customers and other stakeholders throughout the ML lifecycle. Only through close
collaboration can models be tailored and optimized for targeted edge devices.

50.7.3. Operational Excellence

50.7.3.1. Monitoring

In traditional MLOps, monitoring focuses on tracking model accuracy, performance metrics and
data drift centrally. But embedded MLOps must account for decentralized monitoring across di-
verse edge devices and environments.

Edge devices require optimized data collection to transmit key monitoring metrics without over-
loading networks. Metrics help assessmodel performance, data patterns, resource usage and other
behaviors on remote devices.

With limited connectivity, more analysis occurs at the edge before aggregating insights centrally.
Gateways play a key role inmonitoring fleet health and coordinating software updates. Confirmed
indicators are eventually propagated to the cloud.

Broad device coverage is challenging but critical. Issues specific to certain device typesmay arise so
monitoring needs to cover the full spectrum. Canary deployments help trial monitoring processes
before scaling.

Anomaly detection identifies incidents requiring rolling back models or retraining on new data.
But interpreting alerts requires understanding unique device contexts based on input from engi-
neers and customers.

For example, an automakermaymonitor autonomous vehicles for indicators ofmodel degradation
using caching, aggregation and real-time streams. Engineers assess when identified anomalies
warrant OTA updates to improve models based on factors like location and vehicle age.

Embedded MLOps monitoring provides observability into model and system performance across
decentralized edge environments. Careful data collection, analysis and collaboration delivers
meaningful insights to maintain reliability.
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50.7.3.2. Governance

In traditional MLOps, governance focuses on model explainability, fairness and compliance for
centralized systems. But embeddedMLOps must also address device-level governance challenges
around data privacy, security and safety.

With sensors collecting personal and sensitive data, local data governance on devices is critical.
Data access controls, anonymization, and encrypted caching help address privacy risks and com-
pliance like HIPAA and GDPR. Updates must maintain security patches and settings.

Safety governance considers the physical impacts of flawed device behavior. Failures could cause
unsafe conditions in vehicles, factories and critical systems. Redundancy, fail-safes and warning
systems help mitigate risks.

Traditional governance like bias monitoring and model explainability remains imperative but is
harder to implement for embedded AI. Peeking into black-boxmodels on low-power devices poses
challenges.

For example, a medical device may scrub personal data on-device before transmission. Strict data
governance protocols approve model updates. Model explainability is limited but the focus is
detecting anomalous behavior. Backup systems prevent failures.

In essence, embedded MLOps governance must span the dimensions of privacy, security, safety,
transparency, and ethics. Specialized techniques and team collaboration are needed to help estab-
lish trust and accountability within decentralized environments.

50.7.4. Comparison

Here is a comparison table highlighting similarities and differences between Traditional MLOps
and Embedded MLOps based on all the things we have learned thus far:

Area Traditional MLOps Embedded MLOps

Data Management Large datasets, data lakes,
feature stores

On-device data capture, edge
caching and processing

Model Development Leverage deep learning,
complex neural nets, GPU
training

Constraints on model
complexity, need for
optimization

Deployment Server clusters, cloud
deployment, low latency at
scale

OTA deployment to devices,
intermittent connectivity

Monitoring Dashboards, logs, alerts for
cloud model performance

On-device monitoring of
predictions, resource usage

Retraining Retrain models on new data Federated learning from
devices, edge retraining

Infrastructure Dynamic cloud infrastructure Heterogeneous edge/cloud
infrastructure

Collaboration Shared experiment tracking
and model registry

Collaboration for
device-specific optimization
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So while Embedded MLOps shares foundational MLOps principles, it faces unique constraints to
tailor workflows and infrastructure specifically for resource-constrained edge devices.

50.8. Commercial Offerings

While no replacement for understanding the principles, there are an increasing number of commer-
cial offerings that help ease the burden of building ML pipelines and integrating tools together to
build, test, deploy, and monitor ML models in production.

50.8.1. Traditional MLOps

Google, Microsoft, and Amazon all offer their own version of managed ML services. These in-
clude services that manage model training and experimentation, model hosting and scaling, and
monitoring. These offerings are available via an API and client SDKs, as well as through web UIs.
While it is possible to build your own end-to-end MLOps solutions using pieces from each, the
greatest ease of use benefits come by staying within a single provider ecosystem to take advantage
of interservice integrations.

I will provide a quick overview of the services offered that fit into each part of theMLOps life cycle
described above, providing examples of offerings from different providers. The space is moving
very quickly; new companies and products are entering the scene very rapidly, and these are not
meant to serve as an endorsement of a particular company’s offering.

50.8.1.1. Data Management

Data storage and versioning are table stakes for any commercial offering and most take advantage
of existing general purpose storage solutions such as S3. Others use more specialized options such
as a git-based storage (Example: Hugging Face’s DatasetHub This is an areawhere providersmake
it easy to support their competitors’ data storage options, as they don’t want this to be a barrier for
adoptions of the rest of theirMLOps services. For example, VertexAI’s training pipeline seamlessly
supports datasets stored in S3, Google Cloud Buckets, or Hugging Face’s Dataset Hub.

50.8.1.2. Model Training

Managed training services are where cloud providers really shine, as they provide on demand
access to hardware that is out of reach for most smaller companies. They bill only for hardware
during training time, and this puts GPU accelerated training within reach of even the smallest
developer teams. The level of control that developers have over their training workflow can vary
widely depending on their needs. Someproviders have services that provide littlemore than access
to the resources and rely on the developer to manage the training loop, logging, andmodel storage
themselves. Other services are as simple as pointing to a base model and a labeled data set to kick
off a fully managed fine tuning job (example: Vertex AI Fine Tuning).

https://huggingface.co/datasets
https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models
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A word of warning: As of 2023, GPU hardware demand well exceeds the supply and as a result
cloud providers are rationing access to their GPUs, and in some data center regions may be un-
available or require long term contracts.

50.8.1.3. Model Evaluation

Model evaluation tasks typically involve monitoring the accuracy, latency, and resource usage of
models in both the testing and production phases. Unlike in embedded systems, ML models de-
ployed to the cloud benefit from constant internet connectivity and virtually unlimited logging
capacities. As a result it is often feasible to capture and log every request and response. This
makes replaying or generating synthetic requests to enable comparison across different models
and versions tractable.

Some providers also offer services that automate the experiment tracking of modifying model hy-
perparameters. They track the runs, performance, and generated artifacts from these model train-
ing runs. Example: WeightsAndBiases

50.8.1.4. Model Deployment

Each provider typically has a service referred to as a “model registry” where training models are
stored and accessed. Often these registries may also provide access to base models that are either
open source or provided by larger technology companies (or in some cases like LLAMA, both!).
Thesemodel registries are a common place to compare all of themodels and their versions together
to allow easy decision making on which to pick for a given use case. Example: Vertex AI’s model
registry

From the model registry it is quick and simple to deploy a model to an inference endpoint, which
handles the resource provisioning, model weight downloading, and hosting of a given model.
These services typically give access to the model via a REST API where inference requests can
be sent. Depending on the model type, the specific required resources can be configured, such as
which type of GPU acceleratormay be needed to hit the desired performance. Some providersmay
also offer serverless inference, or batch inference options that do not need a persistent endpoint for
accessing the model. Example: AWS SageMaker Inference

50.8.2. Embedded MLOps

Despite the proliferation of new ML Ops tools in response to the increase in demand, the chal-
lenges described earlier have constrained the availability of such tools in embedded systems envi-
ronments. More recently, new tools such as Edge Impulse (Janapa Reddi et al. 2023) have made
the development process somewhat easier, as we’ll describe below.

https://wandb.ai/
https://ai.meta.com/llama/
https://cloud.google.com/vertex-ai/docs/model-registry/introduction
https://cloud.google.com/vertex-ai/docs/model-registry/introduction
https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-model.html
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50.8.2.1. Edge Impulse

Edge Impulse is an end-to-end development platform for creating and deployingmachine learning
models onto edge devices such as microcontrollers and small processors. It aims to make embed-
dedmachine learningmore accessible to software developers through its easy-to-useweb interface
and integrated tools for data collection, model development, optimization and deployment. It’s
key capabilities include:

• Intuitive drag and drop workflow for building ML models without coding required
• Tools for acquiring, labeling, visualizing and preprocessing data from sensors
• Choice of model architectures including neural networks and unsupervised learning
• Model optimization techniques to balance performance metrics and hardware constraints

• Seamless deployment onto edge devices through compilation, SDKs and benchmarks
• Collaboration features for teams and integration with other platforms

With Edge Impulse, developers with limited data science expertise can develop specialized ML
models that run efÏciently within small computing environments. It provides a comprehensive
solution for creating embedded intelligence and taking machine learning to the edge.

50.8.2.1.1. User Interface

Edge Impulse was designed with seven key principles in mind: accessibility, end-to-end capabil-
ities, a data-centric approach, iterativeness, extensibility, team orientation, and community sup-
port. The intuitive user interface, shown in Figure 50.8, guides developers at all experience levels
through uploading data, selecting amodel architecture, training themodel, and deploying it across
relevant hardware platforms. It should be noted that, like any tool, Edge Impulse is intended to
assist with, not replace, foundational considerations such as determining if ML is an appropriate
solution or acquiring the requisite domain expertise for a given application.

What makes Edge Impulse notable is its comprehensive yet intuitive end-to-end workflow. De-
velopers start by uploading their data, either through file upload or command line interface (CLI)
tools, after which they can examine raw samples and visualize the distribution of data in the train-
ing and test splits. Next, users can pick from a variety of preprocessing “blocks” to facilitate digital
signal processing (DSP). While default parameter values are provided, users have the option to
customize the parameters as needed, with considerations around memory and latency displayed.
Users can easily choose their neural network architecture - without any code needed.

Thanks to the platform’s visual editor, users can customize the components of the architecture and
the specific parameters, all while ensuring that the model is still trainable. Users can also lever-
age unsupervised learning algorithms, such as K-means clustering and Gaussian mixture models
(GMM).

50.8.2.1.2. Optimizations

To accommodate the resource constraints of TinyML applications, Edge Impulse provides a con-
fusion matrix summarizing key performance metrics including per-class accuracy and F1 scores.
The platform elucidates the tradeoffs between model performance, size, and latency using simula-
tions in Renode and device-specific benchmarking. For streaming data use cases, a performance

https://edgeimpulse.com/
https://renode.io/
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Figure 50.8. Screenshot of Edge Impulse user interface for building workflows from input data to output
features.

calibration tool leverages a genetic algorithm to find ideal post-processing configurations balanc-
ing false acceptance and false rejection rates. To optimize models, techniques like quantization,
code optimization, and device-specific optimization are available. For deployment, models can be
compiled in appropriate formats for target edge devices. Native firmware SDKs also enable direct
data collection on devices.

In addition to streamlining development, Edge Impulse scales the modeling process itself. A key
capability is the EON Tuner, an automated machine learning (AutoML) tool that assists users in
hyperparameter tuning based on system constraints. It runs a random search to quickly generate
configurations for digital signal processing and training steps. The resulting models are displayed
for the user to select based on relevant performance, memory, and latency metrics. For data, active
learning facilitates training on a small labeled subset then manually or automatically labeling new
samples based on proximity to existing classes. This expands data efÏciency.

50.8.2.1.3. Use Cases

Beyond the accessibility of the platform itself, the Edge Impulse team has expanded the knowledge
base of the embedded ML ecosystem. The platform lends itself to academic environments, having
been used in online courses and on-site workshops globally. Numerous case studies featuring in-
dustry and research use cases have been published, most notably Oura Ring, which uses ML to
identify sleep patterns. The team has made repositories open source on GitHub, facilitating com-
munity growth. Users can also make projects public to share techniques and download libraries
to share via Apache. Organization-level access enables collaboration on workflows.

Overall, Edge Impulse is uniquely comprehensive and integrateable for developer workflows.
Larger platforms like Google and Microsoft focus more on cloud versus embedded systems.
TinyMLOps frameworks such as Neuton AI and Latent AI offer some functionality but lack Edge

https://docs.edgeimpulse.com/docs/edge-impulse-studio/eon-tuner
https://ouraring.com/
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Impulse’s end-to-end capabilities. TensorFlow Lite Micro is the standard inference engine due to
flexibility, open source status, and TensorFlow integration but uses more memory and storage
than Edge Impulse’s EON Compiler. Other platforms are outdated, academic-focused, or less
versatile. In summary, Edge Impulse aims to streamline and scale embedded ML through an
accessible, automated platform.

50.8.2.2. Limitations

While Edge Impulse provides an accessible pipeline for embedded ML, there are still important
limitations and risks to consider. A key challenge is data quality and availability - the models
are only as good as the data used to train them. Users must have sufÏcient labeled samples that
capture the breadth of expected operating conditions and failure modes. Labeled anomalies and
outliers are critical yet time-consuming to collect and identify. InsufÏcient or biased data leads to
poor model performance regardless of the tool’s capabilities.

There are also inherent challenges in deploying to low-powered devices. Optimized models may
still be too resource intensive for ultra-low powerMCUs. Striking the right balance of compression
versus accuracy takes some experimentation. The tool simplifies but doesn’t eliminate the need for
foundational ML and signal processing expertise. Embedded environments also constrain debug-
ging and interpretability compared to the cloud.

While impressive results are achievable, users shouldn’t view Edge Impulse as a “Push ButtonML”
solution. Careful project scoping, data collection, model evaluation and testing is still essential. As
with any development tool, reasonable expectations and diligence in application are advised. But
for developers willing to invest the requisite data science and engineering effort, Edge Impulse can
accelerate embedded ML prototyping and deployment.

50.9. Case Studies

50.9.1. Oura Ring

The Oura Ring is a wearable that, when placed on the user’s finger, canmeasure activity, sleep, and
recovery. Using sensors to track physiologicalmetrics, the device uses embeddedML to predict the
stages of sleep. To establish a baseline of legitimacy in the industry, Oura conducted a correlation
experiment to evaluate the success of the device in predicting sleep stages against a baseline study,
resulting in a solid 62% correlation compared to the baseline of 82-83%. Thus, the team set out to
determine how they could improve their performance even further.

The first challenge was to obtain better data, in terms of both quantity and quality. They could
host a larger study to get a more comprehensive data set, but the data would be noisy and at such
a large scale that it would be difÏcult to aggregate, scrub, and analyze. This is where Edge Impulse
comes in.

Oura was able to host a massive sleep study of 100 men and women between the ages of 15 and
73 across three continents (Asia, Europe, North America). In addition to wearing the Oura Ring,
participants were responsible for undergoing the industry standard PSG testing, which provided
a “label” for this data set. With 440 nights of sleep from 106 participants, the data set totaled 3,444

https://ouraring.com/
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hours in length across Ring and PSG data. With Edge Impulse, Oura was able to easily upload and
consolidate the data from different sources into a private S3 bucket. They were also able to set up
a Data Pipeline to merge data samples into individual files, as well as preprocess the data without
having to conduct manual scrubbing.

Because of the time saved on data processing thanks to Edge Impulse, the Oura team was able to
focus on the key drivers of their prediction. In fact, they ended up only extracting three types of
sensor data: heart rate, motion, and body temperature. After partitioning the data using five-fold
cross validation and classifying sleep stage, the team was able to achieve a correlation of 79% - just
a few percentage points off the standard. They were able to readily deploy two types of models for
sleep detection: one simplified using just the ring’s accelerometer and one more comprehensive
leveraging Autonomic Nervous System (ANS)-mediated peripheral signals and circadian features.
With Edge Impulse, they plan to conduct further analyses of different activity types and leverage
the scalability of the platform to continue to experiment with different sources of data and subsets
of features extracted.

While most ML research focuses on the model-dominant steps such as training and finetuning,
this case study underscores the importance of a holistic approach toMLOps, where even the initial
steps of data aggregation and preprocessing have a fundamental impact on successful outcomes.

50.9.2. ClinAIOps

Let’s take a look at MLOps in the context of medical health monitoring to better understand how
MLOps “matures” in the context of a real world deployment. Specifically, let’s consider continu-
ous therapeutic monitoring (CTM) enabled by wearable devices and sensors , providing the op-
portunity for more frequent and personalized adjustments to treatments by capturing detailed
physiological data from patients.

Wearable ML enabled sensors enable continuous physiological and activity monitoring outside
of clinics, opening up possibilities for timely, data-driven adjustments of therapies. For example,
wearable insulin biosensors (Psoma and Kanthou 2023) and wrist-worn ECG sensors for glucose
monitoring (J. Li et al. 2021) can automate insulin dosing for diabetes, wrist-worn ECG and PPG
sensors can adjust blood thinners based on atrial fibrillation patterns (Attia et al. 2018; Guo et al.
2019), and accelerometers tracking gait can trigger preventative care for declining mobility in the
elderly (Yingcheng Liu et al. 2022). The variety of signals that can now be captured passively and
continuously allows therapy titration and optimization tailored to each patient’s changing needs.
By closing the loop between physiological sensing and therapeutic response with TinyML and
ondevice learning, wearables are poised to transform many areas of personalized medicine.

ML holds great promise in analyzing CTM data to provide data-driven recommendations for ther-
apy adjustments. But simply deploying AI models in silos, without integrating them properly into
clinical workflows and decision making, can lead to poor adoption or suboptimal outcomes. In
other words, thinking about MLOps alone is simply insufÏcient to make them useful in practice.
What is needed are frameworks to seamlessly incorporate AI and CTM into real-world clinical
practice as this study shows.

This case study analyzes “ClinAIOps” as a model for embeddedML operations in complex clinical
environments (E. Chen et al. 2023). We provide an overview of the framework andwhy it’s needed,
walk through an application example, and discuss key implementation challenges related tomodel
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monitoring, workflow integration, and stakeholder incentives. Analyzing real-world examples like
ClinAIOps illuminates crucial principles and best practices needed for reliable and effectiveAIOps
across many domains.

Traditional MLOps frameworks are insufÏcient for integrating continuous therapeutic monitoring
(CTM) and AI in clinical settings for a few key reasons:

• MLOps focuses on theMLmodel lifecycle - training, deployment, monitoring. But healthcare
involves coordinating multiple human stakeholders - patients, clinicians - not just models.

• MLOps aims to automate IT system monitoring and management. But optimizing patient
health requires personalized care and human oversight, not just automation.

• CTM and healthcare delivery are complex sociotechnical systems with many moving parts.
MLOps doesn’t provide a framework for coordinating human and AI decision-making.

• There are ethical considerations regarding healthcare AI that require human judgment, over-
sight and accountability. MLOps frameworks lack processes for ethical oversight.

• Patient health data is highly sensitive and regulated. MLOps alone doesn’t ensure handling
of protected health information to privacy and regulatory standards.

• Clinical validation of AI-guided treatment plans is essential for provider adoption. MLOps
doesn’t incorporate domain-specific evaluation of model recommendations.

• Optimizing healthcaremetrics like patient outcomes requires aligning stakeholder incentives
and workflows, which pure tech-focused MLOps overlooks.

Thus, effectively integrating AI/ML and CTM in clinical practice requires more than just model
and data pipelines, but coordinating complex human-AI collaborative decision making, which
ClinAIOps aims to address via its multi-stakeholder feedback loops.

50.9.2.1. Feedback Loops

The ClinAIOps framework, shown in Figure 50.9, provides these mechanisms through three feed-
back loops. The loops are useful for coordinating the insights from continuous physiological mon-
itoring, clinician expertise, and AI guidance via feedback loops, enabling data-driven precision
medicine while maintaining human accountability. ClinAIOps provides a model for effective
human-AI symbiosis in healthcare: the patient is at the center, providing health challenges and
goals which inform the therapy regimen; the clinician oversees this regimen, giving inputs for ad-
justments based on continuous monitoring data and health reports from the patient; whereas AI
developers play a crucial role by creating systems that generate alerts for therapy updates, which
are then vetted by the clinician.

These feedback loops which we will discuss below help maintain clinician responsibility and con-
trol over treatment plans, by reviewing AI suggestions before they impact patients. They help
dynamically customize AI model behavior and outputs to each patient’s changing health status.
They help improve model accuracy and clinical utility over time by learning from clinician and
patient responses. They facilitate shared decision-making and personalized care during patient-
clinician interactions. They enable rapid optimization of therapies based on frequent patient data
that clinicians cannot manually analyze.
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Figure 50.9. ClinAIOps cycle. Credit: E. Chen et al. (2023).
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50.9.2.1.1. Patient-AI Loop

The patient-AI loop enables frequent therapy optimization driven by continuous physiological
monitoring. Patients are prescribed wearables like smartwatches or skin patches to passively col-
lect relevant health signals. For example, a diabetic patient could have a continuous glucose mon-
itor, or a heart disease patient may wear an ECG patch. The patient’s longitudinal health data
streams are analyzed by anAImodel in context of their electronicmedical records - their diagnoses,
lab tests, medications, and demographics. The AI model suggests adjustments to the treatment
regimen tailored to that individual, like changing a medication dose or administration schedule.
Minor adjustments within a pre-approved safe range can be made by the patient independently,
while major changes are reviewed by the clinician first. This tight feedback between the patient’s
physiology andAI-guided therapy allowsdata-driven, timely optimizations like automated insulin
dosing recommendations based on real-time glucose levels for diabetes patients.

50.9.2.1.2. Clinician-AI Loop

The clinician-AI loop allows clinical oversight overAI-generated recommendations to ensure safety
and accountability. The AI model provides the clinician with treatment recommendations, along
with easily reviewed summaries of the relevant patient data the suggestions are based on. For
instance, an AI may suggest lowering a hypertension patient’s blood pressure medication dose
based on continuously low readings. The clinician can choose to accept, reject, or modify the AI’s
proposed prescription changes. This clinician feedback further trains and improves the model.
Additionally, the clinician sets the bounds for the types and extents of treatment changes the AI
can autonomously recommend to patients. By reviewing AI suggestions, the clinician maintains
ultimate treatment authority based on their clinical judgment and accountability. This loop allows
them to efÏciently oversee patient cases with AI assistance.

50.9.2.1.3. Patient-Clinician Loop

Instead of routine data collection, the clinician can focus on interpreting high-level data patterns
and collaborating with the patient to set health goals and priorities. The AI assistance will also
free up clinician time, allowing them to focus more deeply on listening to patients’ stories and con-
cerns. For instance, the clinician may discuss diet and exercise changes with a diabetes patient to
improve their glucose control based on their continuousmonitoring data. Appointment frequency
can also be dynamically adjusted based on patient progress rather than following a fixed calendar.
Freed from basic data gathering, the clinician can provide coaching and care customized to each
patient informed by their continuous health data. The patient-clinician relationship is made more
productive and personalized.

50.9.2.2. Hypertension Example

Let’s consider an example. According to the Centers for Disease Control and Prevention, nearly
half of adults have hypertension (48.1%, 119.9 million). Hypertension can be managed through
ClinAIOps with the help of wearable sensors using the following approach:
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50.9.2.2.1. Data Collection

The data collectedwould include continuous blood pressuremonitoring using awrist-worn device
equipped with photoplethysmography (PPG) and electrocardiography (ECG) sensors to estimate
blood pressure (Q. Zhang, Zhou, and Zeng 2017). The wearable would also track the patient’s
physical activity via embedded accelerometers. The patient would log any antihypertensive med-
ications they take, along with the time and dose. Additionally, the patient’s demographic details
and medical history from their electronic health record (EHR) would be incorporated. This multi-
modal real-world data provides valuable context for the AI model to analyze the patient’s blood
pressure patterns, activity levels, medication adherence, and responses to therapy.

50.9.2.2.2. AI Model

The on-device AI model would analyze the patient’s continuous blood pressure trends, circadian
patterns, physical activity levels, medication adherence behaviors, and other context. It would use
ML to predict optimal antihypertensive medication doses and timing to control the individual’s
blood pressure. Themodel would send dosage change recommendations directly to the patient for
minor adjustments, or to the reviewing clinician for approval for more significant modifications.
By observing clinician feedback on its recommendations, as well as evaluating the resulting blood
pressure outcomes in patients, the AI model could be continually retrained and improved to en-
hance performance. The goal is fully personalized blood pressuremanagement optimized for each
patient’s needs and responses.

50.9.2.2.3. Patient-AI Loop

In the Patient-AI loop, the hypertensive patient would receive notifications on their wearable de-
vice or tethered smartphone app recommending adjustments to their antihypertensive medica-
tions. For minor dose changes within a pre-defined safe range, the patient could independently
implement the AI model’s suggested adjustment to their regimen. However, for more significant
modifications, the patient would need to obtain clinician approval before changing their dosage.
By providing personalized and timely medication recommendations, this automates an element
of hypertension self-management for the patient. It can improve their adherence to the regimen
as well as treatment outcomes. The patient is empowered to leverage AI insights to better control
their blood pressure.

50.9.2.2.4. Clinician-AI Loop

In the Clinician-AI loop, the provider would receive summaries of the patient’s continuous blood
pressure trends and visualizations of their medication taking patterns and adherence. They re-
view the AI model’s suggested antihypertensive dosage changes and decide whether to approve,
reject, ormodify the recommendations before they reach the patient. The clinician also specifies the
boundaries for how much the AI can independently recommend changing dosages without clin-
ician oversight. If the patient’s blood pressure is trending at dangerous levels, the system alerts
the clinician so they can promptly intervene and adjust medications or request an emergency room
visit. By keeping the clinician in charge of approvingmajor treatment changes, this loopmaintains
accountability and safety while allowing the clinician to harness AI insights.
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50.9.2.2.5. Patient-Clinician Loop

In the Patient-Clinician loop, shown in Figure 50.10, the in-person visits would focus less on collect-
ing data or basic medication adjustments. Instead, the clinician could interpret high-level trends
and patterns in the patient’s continuous monitoring data and have focused discussions about diet,
exercise, stress management, and other lifestyle changes to holistically improve their blood pres-
sure control. The frequency of appointments could be dynamically optimized based on the pa-
tient’s stability rather than following a fixed calendar. Since the clinician would not need to review
all the granular data, they could concentrate on delivering personalized care and recommenda-
tions during visits. With continuous monitoring and AI-assisted optimization of medications be-
tween visits, the clinician-patient relationship focuses on overall wellness goals and becomes more
impactful. This proactive and tailored data-driven approach can help avoid hypertension compli-
cations like stroke, heart failure, and other threats to patient health and wellbeing.

Figure 50.10. ClinAIOps interactive loop. Credit: E. Chen et al. (2023).

50.9.2.3. MLOps vs. ClinAIOps

The hypertension example illustrates well why traditional MLOps is insufÏcient for many real-
world AI applications, and why frameworks like ClinAIOps are needed instead.

With hypertension, simply developing and deploying an ML model for adjusting medications
would fail without considering the broader clinical context. The patient, clinician, and health sys-
tem each have concerns that shape adoption. And the AI model cannot optimize blood pressure
outcomes alone - it requires integrating with workflows, behaviors, and incentives.

• Some key gaps the example highlights in a pure MLOps approach:
• The model itself would lack the real-world patient data at scale to reliably recommend treat-

ments. ClinAIOps enables this through collecting feedback from clinicians and patients via
continuous monitoring.

• Clinicians would not trust model recommendations without transparency, explainability,
and accountability. ClinAIOps keeps the clinician in the loop to build confidence.

• Patients need personalized coaching and motivation - not just AI notifications. The Cli-
nAIOps patient-clinician loop facilitates this.

• Sensor reliability and data accuracy would be insufÏcient without clinical oversight. Cli-
nAIOps validates recommendations.

• Liability for treatment outcomes is unclear with just an ML model. ClinAIOps maintains
human accountability.

• Health systems would lack incentive to change workflows without demonstrating value. Cli-
nAIOps aligns stakeholders.
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The hypertension case clearly shows the need to look beyond just training and deploying a perfor-
mant ML model to considering the entire human-AI socio-technical system. This is the key gap
ClinAIOps aims to address over traditional MLOps. Put another way, traditional MLOps is overly
tech-focused on automating ML model development and deployment, while ClinAIOps incorpo-
rates clinical context and human-AI coordination through multi-stakeholder feedback loops.

Here is a table comparing them. The point of this table is to highlight how when MLOps is put
into practice, we need to think about more than just ML models.

Traditional MLOps ClinAIOps

FocusML model development and deployment Coordinating human and AI
decision-making

StakeholdersData scientists, IT engineers Patients, clinicians, AI developers
Feedback
loops

Model retraining, monitoring Patient-AI, clinician-AI, patient-clinician

ObjectiveOperationalize ML deployments Optimize patient health outcomes
ProcessesAutomated pipelines and infrastructure Integrates clinical workflows and oversight
Data
con-
sid-
er-
a-
tions

Building training datasets Privacy, ethics, protected health
information

Model
val-
i-
da-
tion

Testing model performance metrics Clinical evaluation of recommendations

ImplementationFocuses on technical integration Aligns incentives of human stakeholders

50.9.2.4. Summary

In complex domains like healthcare, successfully deploying AI requires moving beyond a narrow
focus on just training and deploying performant ML models. As illustrated through the hyperten-
sion example, real-world integration of AI necessitates coordinating diverse stakeholders, aligning
incentives, validating recommendations, and maintaining accountability. Frameworks like Cli-
nAIOps, which facilitate collaborative human-AI decision making through integrated feedback
loops, are needed to address these multifaceted challenges. Rather than just automating tasks,
AI must augment human capabilities and clinical workflows. This allows AI to deliver a positive
impact on patient outcomes, population health, and healthcare efÏciency.

50.10. Conclusion

Embedded ML is poised to transform many industries by enabling AI capabilities directly on
edge devices like smartphones, sensors, and IoT hardware. However, developing and deploying
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TinyMLmodels on resource-constrained embedded systems poses unique challenges compared to
traditional cloud-based MLOps.

This chapter provided an in-depth analysis of key differences between traditional and embedded
MLOps across the model lifecycle, development workflows, infrastructure management, and oper-
ational practices. We discussed how factors like intermittent connectivity, decentralized data, and
limited on-device compute necessitate innovative techniques like federated learning, on-device in-
ference, andmodel optimization. Architectural patterns like cross-device learning and hierarchical
edge-cloud infrastructure help mitigate constraints.

Through concrete examples like Oura Ring and ClinAIOps, we demonstrated applied principles
for embedded MLOps. The case studies highlighted critical considerations beyond just core ML
engineering, like aligning stakeholder incentives, maintaining accountability, and coordinating
human-AI decision making. This underscores the need for a holistic approach spanning both tech-
nical and human elements.

While embedded MLOps faces impediments, emerging tools like Edge Impulse and lessons from
pioneers help accelerate TinyML innovation. A solid understanding of foundationalMLOps princi-
ples tailored to embedded environmentswill empowermore organizations to overcome constraints
and deliver distributed AI capabilities. As frameworks and best practices mature, seamlessly in-
tegrating ML into edge devices and processes will transform industries through localized intelli-
gence.

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.
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51. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• MLOps, DevOps, and AIOps.

• MLOps overview.

• Tiny MLOps.

• MLOps: a use case.

• MLOps: Key Activities and Lifecycle.

• ML Lifecycle.

• Scaling TinyML: Challenges and Opportunities.

• Training Operationalizatios:

– Training Ops: CI/CD trigger.

– Continuous Integration.

– Continuous Deployment.

– Production Deployment.

– Production Deployment: Online Experimentation.

– Training Ops Impact on MLOps.

• Model Deployment:

– Scaling ML Into Production Deployment.

– Containers for Scaling ML Deployment.

– Challenges for Scaling TinyML Deployment: Part 1.

– Challenges for Scaling TinyML Deploymnet: Part 2.

– Model Deployment Impact on MLOps.

https://docs.google.com/presentation/d/1vsC8WpmvVRgMTpzTltAhEGzcVohMkatMZBqm3-P8TUY/edit?usp=drive_link
https://docs.google.com/presentation/d/1tG7YfW-FwC5Up3gLk-DrvOkpKmkMPO6y2k-t7FJgK3s/edit#slide=id.p1
https://docs.google.com/presentation/d/1Sa27wZmKokVyKwmLLM2p_HHAam-sXKVPxzxqv-0y2V8/edit
https://docs.google.com/presentation/d/1qhBZvtHe5jya6TAAmZKlK2oowQUfBwhIOcfk1fpoGq4/edit?resourcekey=0-xKK09GAhYbOK6dB_RrSvkw#slide=id.ged8f947d63_0_0
https://docs.google.com/presentation/d/1awWKlEYyYcHp5HR5MXomg0v6uevtvFV76HjesxrN_9g/edit#slide=id.geb6aec3278_0_0
https://docs.google.com/presentation/d/1FW8Q1Yj5g_jbArFANfncbLQj36uV2vfV8pjoqaD6gjM/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1VxwhVztoTk3eG04FD9fFNpj2lVrVjYYPJi3jBz0O_mo/edit?resourcekey=0-bV7CCIPr7SxZf2p61oB_CA#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1YyRY6lOzdC7NjutJSvl_VXYu29qwHKqx0y98zAUCJCU/edit?resourcekey=0-PTh1FxqkQyhOO0bKKHBldQ#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1poGgYTH44X0dVGwG9FGIyVwot4EET_jJOt-4kgcQawo/edit?usp=drive_link
https://docs.google.com/presentation/d/1nxbIluROAOl5cN6Ug4Dm-mHh1Fwm5aEng_S5iLfiCqo/edit?usp=drive_link&resourcekey=0-xFOl8i7ea2vNtiilXz8CaQ
https://docs.google.com/presentation/d/1m8KkCZRnbJCCTWsmcwMt9EJhYLoaVG_Wm7zUE2bQkZI/edit?usp=drive_link
https://docs.google.com/presentation/d/1elFEK61X5Kc-5UV_4AEtRvCT7l1TqTdABmJV8uAYykY/edit?usp=drive_link
https://docs.google.com/presentation/d/1-6QL2rq0ahGVz8BL1M1BT0lR-HDxsHady9lGTN93wLc/edit?usp=drive_link&resourcekey=0-sRqqoa7pX9IkDDSwe2MLyw
https://docs.google.com/presentation/d/12sf-PvSxDIlCQCXULWy4jLY_2fIq-jpRojRsmeMGq6k/edit?resourcekey=0-knPSQ5h4ffhgeV6CXvwlSg#slide=id.gf209f12c63_0_314
https://docs.google.com/presentation/d/1YXE4cAWMwL79Vqr_8TJi-LsQD9GFdiyBqY--HcoBpKg/edit?usp=drive_link&resourcekey=0-yajtiQTx2SdJ6BCVG0Bfng
https://docs.google.com/presentation/d/1mw5FFERf5r-q8R7iyNf6kx2MMcwNOTBd5WwFOj8Zs20/edit?resourcekey=0-u80KeJio3iIWco00crGD9g#slide=id.gdc4defd718_0_0
https://docs.google.com/presentation/d/1NB63wTHoEPGSn--KqFu1vjHx3Ild9AOhpBbflJP-k7I/edit?usp=drive_link&resourcekey=0-MsEi1Lba2dpl0G-bzakHJQ
https://docs.google.com/presentation/d/1A0pfm55s03dFbYKKFRV-x7pRCm_2-VpoIM0O9kW0TAA/edit?usp=drive_link&resourcekey=0--O2AFFmVzAmz5KO0mJeVHA
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52. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.
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53. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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54. Security & Privacy

Figure 54.1. DALL·E 3 Prompt: An illustration on privacy and security inmachine learning systems.
The image shows a digital landscape with a network of interconnected nodes and data streams,
symbolizing machine learning algorithms. In the foreground, there’s a large lock superimposed
over the network, representing privacy and security. The lock is semi-transparent, allowing the
underlying network to be partially visible. The background features binary code and digital en-
cryption symbols, emphasizing the theme of cybersecurity. The color scheme is a mix of blues,
greens, and grays, suggesting a high-tech, digital environment.

Ensuring security and privacy is a critical concern when developing real-world machine learning
systems. As machine learning is increasingly applied to sensitive domains like healthcare, finance,
and personal data, protecting confidentiality and preventing misuse of data and models becomes
imperative. Anyone aiming to build robust and responsible ML systems must have a grasp of
potential security and privacy risks such as data leaks, model theft, adversarial attacks, bias, and
unintended access to private information. We also need to understand best practices for mitigat-
ing these risks. Most importantly, security and privacy cannot be an afterthought and must be
proactively addressed throughout the ML system development lifecycle - from data collection and
labeling to model training, evaluation, and deployment. Embedding security and privacy consid-
erations into each stage of building, deploying andmanagingmachine learning systems is essential
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for safely unlocking the benefits of AI.

Learning Objectives

• Understand key ML privacy and security risks like data leaks, model theft, adversarial
attacks, bias, and unintended data access.

• Learn from historical hardware and embedded systems security incidents.

• Identify threats to MLmodels like data poisoning, model extraction, membership infer-
ence, and adversarial examples.

• Recognize hardware security threats to embedded ML spanning hardware bugs, phys-
ical attacks, side channels, counterfeit components, etc.

• Explore embeddedMLdefenses like trusted execution environments, secure boot, phys-
ical unclonable functions, and hardware security modules.

• Discuss privacy issues in handling sensitive user data with embedded ML, including
regulations.

• Learn privacy-preserving ML techniques like differential privacy, federated learning,
homomorphic encryption, and synthetic data generation.

• Understand tradeoffs between privacy, accuracy, efÏciency, threat models, and trust
assumptions.

• Recognize the need for a cross-layer perspective spanning electrical, firmware, software,
and physical design when securing embedded ML devices.

54.1. Introduction

Machine learning has evolved substantially from its academic origins, where privacy was not a
primary concern. As ML migrated into commercial and consumer applications, the data became
more sensitive - encompassing personal information like communications, purchases, and health
data. This explosion of data availability fueled rapid advancements in ML capabilities. However,
it also exposed new privacy risks, as demonstrated by incidents like the AOL data leak in 2006 and
the Cambridge Analytica scandal.

These events highlighted the growing need to address privacy in ML systems. In this chapter, we
explore privacy and security considerations together, as they are inherently linked in ML:

• Privacy refers to controlling access to sensitive user data, such as financial information or
biometric data collected by an ML application.

• Security protects ML systems and data from hacking, theft, and misuse.

For example, anML-powered home security cameramust secure video feeds against unauthorized
access. It also needs privacy protections to ensure only intended users can view the footage. A
breach of either security or privacy could expose private user moments.

https://en.wikipedia.org/wiki/AOL_search_log_release
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
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Embedded ML systems like smart assistants and wearables are ubiquitous and process intimate
user data. However, their computational constraints often prevent heavy security protocols. De-
signers must balance performance needs with rigorous security and privacy standards tailored to
embedded hardware limitations.

This chapter provides essential knowledge for addressing the complex privacy and security land-
scape of embeddedML.Wewill explore vulnerabilities and cover various techniques that enhance
privacy and security within the resource constraints of embedded systems.

We hope you will gain the principles to develop secure, ethical, embedded ML applications by
building a holistic understanding of risks and safeguards.

54.2. Terminology

In this chapter, we will be talking about security and privacy together, so there are key terms that
we need to be clear about.

• Privacy: For instance, consider an ML-powered home security camera that identifies and
records potential threats. This camera records identifiable information, including faces, of
individuals who approach, and potentially enter, this home. Privacy concerns may surround
who can access this data.

• Security: Consider an ML-powered home security camera that identifies and records poten-
tial threats. The security aspect would involve ensuring that these video feeds and recogni-
tion models aren’t accessible to hackers.

• Threat: Using our home security camera example, a threat could be a hacker trying to gain
access to live feeds or stored videos, or using false inputs to trick the system.

• Vulnerability: A common vulnerability might be a poorly secured network through which
the camera connects to the internet, which could be exploited to access the data.

54.3. Historical Precedents

While the specifics of machine learning hardware security can be distinct, the embedded systems
field has a history of security incidents that provide critical lessons for all connected systems, in-
cluding those using ML. Here are detailed explorations of past breaches:

54.3.1. Stuxnet

In 2010, something unexpected was found on a computer in Iran - a very complicated computer
virus that experts had never seen before. Stuxnet was a malicious computer worm that targeted
supervisory control and data acquisition (SCADA) systems and was designed to damage Iran’s
nuclear program (Farwell and Rohozinski 2011). Stuxnet was using four “zero-day exploits” - at-
tacks that take advantage of secret weaknesses in software that no one knows about yet. This made
Stuxnet very sneaky and hard to detect.

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/200661/Cyber-Reports-2017-04.pdf
https://en.wikipedia.org/wiki/Zero-day_(computing)
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But Stuxnetwasn’t designed to steal information or spy on people. Its goalwas physical destruction
- to sabotage centrifuges at Iran’s Natanz nuclear plant! So how did the virus get onto computers
at the Natanz plant, which was supposed to be disconnected from the outside world for security?
Experts think someone inserted a USB stick containing Stuxnet into the internal Natanz network.
This allowed the virus to “jump” from an outside system onto the isolated nuclear control systems
and wreak havoc.

Stuxnet was incredibly advanced malware built by national governments to cross from the digital
realm into real-world infrastructure. It specifically targeted important industrial machines, where
embedded machine learning is highly applicable, in a way never done before. The virus provided
a wake-up call about how sophisticated cyberattacks could now physically destroy equipment and
facilities.

This breach was significant due to its sophistication; Stuxnet specifically targeted programmable
logic controllers (PLCs) used to automate electromechanical processes such as the speed of cen-
trifuges for uranium enrichment. The worm exploited vulnerabilities in the Windows operating
system to gain access to the Siemens Step7 software controlling the PLCs. Despite not being a direct
attack on ML systems, Stuxnet is relevant for all embedded systems as it showcases the potential
for state-level actors to design attacks that bridge the cyber and physical worlds with devastating
effects.

54.3.2. Jeep Cherokee Hack

The Jeep Cherokee hack was a groundbreaking event demonstrating the risks inherent in increas-
ingly connected automobiles (C. Miller 2019). In a controlled demonstration, security researchers
remotely exploited a vulnerability in the Uconnect entertainment system, which had a cellular con-
nection to the internet. They were able to control the vehicle’s engine, transmission, and brakes,
alarming the automotive industry into recognizing the severe safety implications of cyber vulner-
abilities in vehicles.

https://www.youtube.com/watch?v=MK0SrxBC1xs&ab_channel=WIRED

While this wasn’t an attack on an ML system per se, the reliance of modern vehicles on embedded
systems for safety-critical functions has significant parallels to the deployment ofML in embedded
systems, underscoring the need for robust security at the hardware level.

54.3.3. Mirai Botnet

The Mirai botnet involved the infection of networked devices such as digital cameras and DVR
players (Antonakakis et al. 2017). InOctober 2016, the botnetwas used to conduct one of the largest
DDoS attacks ever, disrupting internet access across the United States. The attack was possible
because many devices used default usernames and passwords, which were easily exploited by the
Mirai malware to control the devices.

https://www.youtube.com/watch?v=1pywzRTJDaY

Although the deviceswere notML-based, the incident is a stark reminder ofwhat can happenwhen
numerous embedded devices with poor security controls are networked together, a situation that
is becoming more common with the growth of ML-based IoT devices.

https://www.youtube.com/watch?v=MK0SrxBC1xs&ab_channel=WIRED
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/
https://www.youtube.com/watch?v=1pywzRTJDaY
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54.3.4. Implications

These historical breaches demonstrate the cascading effects of hardware vulnerabilities in embed-
ded systems. Each incident offers a precedent for understanding the risks and designing better
security protocols. For instance, the Mirai botnet highlights the immense destructive potential
when threat actors can gain control over networked devices with weak security, a situation becom-
ing increasingly common with ML systems. Many current ML devices function as “edge” devices
meant to collect and process data locally before sending it to the cloud. Much like the cameras
and DVRs compromised by Mirai, edge ML devices often rely on embedded hardware like ARM
processors and run lightweight OS like Linux. Securing the device credentials is critical.

Similarly, the Jeep Cherokee hackwas awatershedmoment for the automotive industry. It exposed
serious vulnerabilities in the growing network-connected vehicle systems and their lack of isolation
from core drive systems like brakes and steering. In response, automanufacturers invested heavily
in new cybersecurity measures, though gaps likely remain.

Chrysler did a recall to patch the vulnerable Uconnect software, allowing the remote exploit. This
included adding network-level protections to prevent unauthorized external access and compart-
mentalizing in-vehicle systems to limit lateral movement. Additional layers of encryption were
added for commands sent over the CAN bus within vehicles.

The incident also spurred the creation of new cybersecurity standards and best practices. The
Auto-ISAC was established for automakers to share intelligence, and the NHTSA guided manag-
ing risks. New testing and audit procedures were developed to assess vulnerabilities proactively.
The aftereffects continue to drive change in the automotive industry as cars become increasingly
software-defined.

Unfortunately, in the rush to develop newML edge devices, manufacturers often overlook security
- using default passwords, unencrypted communications, unsecured firmware updates, etc. Any
such vulnerabilities could allow attackers to gain access and control devices at scale by infecting
them with malware. With a botnet of compromised ML devices, attackers could leverage their
aggregated computational power for DDoS attacks on critical infrastructure.

While these events didn’t involve machine learning hardware directly, the principles of the attacks
carry over to ML systems, which often involve similar embedded devices and network architec-
tures. As ML hardware often operates in continuous interaction with the physical world, securing
it against such breaches is paramount. The evolution of security measures in response to these in-
cidents provides valuable insights into protecting current and future ML systems from analogous
vulnerabilities.

The distributed nature of ML edge devices means threats can propagate quickly across networks.
And if devices are being used formission-critical purposes likemedical devices, industrial controls
or self-driving vehicles, the potential physical damage from weaponized ML bots could be severe.
Just like Mirai demonstrated the dangerous potential of poorly secured IoT devices, the litmus test
forML hardware securitywill be how vulnerable or resilient these devices are toworm-like attacks.
The stakes are raised as ML spreads to safety-critical domains, putting the onus on manufacturers
and system operators to incorporate the lessons from Mirai.

The lesson is the importance of designing for security from the outset and having layered defenses.
For ML systems, the Jeep case highlights potential blindspots around externally facing software
interfaces as well as isolation between subsystems. Manufacturers of ML devices and platforms

https://automotiveisac.com/
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should assume a similar proactive and comprehensive approach to security rather than leaving
it as an afterthought. Rapid response and dissemination of best practices will be key as threats
continue evolving.

54.4. Security Threats to ML Models

ML models face security risks that can undermine their integrity, performance, and trustworthi-
ness if not properly addressed. While there are several different threats, the key threats include: 1)
model theft, where adversaries steal the proprietary model parameters and the sensitive data they
contain; 2) data poisoning, which compromisesmodels through data tampering; and 3) adversarial
attacks, which deceive the model to make incorrect or unwanted predictions.

54.4.1. Model Theft

Model theft occurs when an attacker gains unauthorized access to a deployed ML model. The
concern here is the theft of the model’s structure and trained parameters and the proprietary data
it contains (Ateniese et al. 2015). Model theft is a real and growing threat, as demonstrated by
cases like ex-Google engineer Anthony Levandowski, who allegedly stoleWaymo’s self-driving car
designs and started a competing company. Beyond economic impacts, model theft can seriously
undermine privacy and enable further attacks.

For instance, consider an ML model developed for personalized recommendations in an e-
commerce application. If a competitor steals this model, they gain insights into business analytics,
customer preferences, and even trade secrets embedded within the model’s data. Attackers could
leverage stolen models to craft more effective inputs for model inversion attacks, deducing private
details about the model’s training data. A cloned e-commerce recommendation model could
reveal customer purchase behaviors and demographics.

To understandmodel inversion attacks, consider a facial recognition system used to grant access to
secured facilities. The system is trained on a dataset of employee photos. An attacker, by observing
the model’s output to various inputs, could infer features of the original dataset. For example, if
the model’s confidence level for a particular face is significantly higher for a given set of features,
an attacker might deduce that someone with those features is likely in the training dataset.

The methodology of model inversion typically involves the following steps:

• AccessingModel Outputs: The attacker queries theMLmodel with input data and observes
the outputs. This is often done through a legitimate interface, like a public API.

• Analyzing Confidence Scores: For each input, the model provides a confidence score that
reflects how similar the input is to the training data.

• Reverse-Engineering: By analyzing the confidence scores or output probabilities, attackers
can use optimization techniques to reconstruct what they believe is close to the original input
data.

https://www.nytimes.com/2017/02/23/technology/google-self-driving-waymo-uber-otto-lawsuit.html
https://www.nytimes.com/2017/02/23/technology/google-self-driving-waymo-uber-otto-lawsuit.html
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One historical example of such a vulnerability being exploredwas the research on inversion attacks
against the U.S. Netflix Prize dataset, where researchers demonstrated that it was possible to learn
about an individual’s movie preferences, which could lead to privacy breaches (Narayanan and
Shmatikov 2006).

Model theft implies that it could lead to economic losses, undermine competitive advantage, and
violate user privacy. There’s also the risk of model inversion attacks, where an adversary could
input various data into the stolen model to infer sensitive information about the training data.

Model theft attacks can be divided into two categories based on the desired asset: exact model
properties and approximate model behavior.

54.4.1.0.1. Stealing Exact Model Properties

In these attacks, the objective is to extract information about concrete metrics, such as the learned
parameters of a network, the fine-tuned hyperparameters, and the model’s internal layer architec-
ture (Oliynyk, Mayer, and Rauber 2023).

• Learned Parameters: adversaries aim to steal the learned knowledge (weights and biases) of
a model in order to replicate it. Parameter theft is generally used in conjunction with other
attacks, such as architecture theft, which lacks parameter knowledge.

• Fine-Tuned Hyperparameters: training is costly, and finding the right configuration of hy-
perparameters (such as the learning rate and regularization) can be a very long and expen-
sive process.Thus, stealing an optimized model’s hyperparameters can allow an adversary
to replicate the model without the high training costs.

• Model Architecture: this attack is concerned with the specific design and structure of the
model, such as layers, neurons, and connectivity patterns. Aside from the reduction in as-
sociated training costs it can provide an attacker, this type of theft is especially dangerous
because it concerns core IP theft, which can affect a company’s competitive edge. Architec-
ture theft can be achieved by exploiting side-channel attacks (discussed later).

54.4.1.0.2. Stealing Approximate Model Behavior

Instead of focusing on extracting exact numerical values of the model’s parameters, these attacks
aim at reproducing the model’s behavior (predictions and effectiveness), decision-making, and
high-level characteristics (Oliynyk, Mayer, and Rauber 2023). These techniques aim at achieving
similar outcomes while allowing for internal deviations in parameters and architecture. Types of
approximate behavior theft include achieving the same level of effectiveness and obtaining predic-
tion consistency.

• Level of Effectiveness: Rather than focus on the precise parameter values, attackers aim to
replicate the model’s decision-making capabilities. This is done through understanding the
overall behavior of themodel. Consider a scenariowhere an attackerwants to copy the behav-
ior of an image classification model. Through analysis of the model’s decision boundaries,
the attack tunes their model to reach a level of effectiveness comparable to the original model.
This could entail analyzing 1) the confusion matrix to understand the balance of prediction
metrics (true positive, true negative, false positive, false negative), and 2)other performance
metrics, such as F1 score and precision, to ensure that the two models are comparable.
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• Prediction Consistency: The attacker tries to align their model’s prediction patterns with
those of the target model. This involvesmatching prediction outputs (both positive and nega-
tive) on the same set of inputs and ensuring distributional consistency across different classes.
For instance, consider a natural language processing (NLP) model that generates sentiment
analysis for move reviews (labels reviews as positive, neutral, or negative). The attacker will
try to fine-tune their model to match the prediction of the original models on the same set of
movie reviews. This includes ensuring that the model makes the same mistakes (mispredic-
tions) that the targeted model makes.

54.4.1.1. Case Study

In 2018, Tesla filed a lawsuit against self-driving car startup Zoox, alleging former employees stole
confidential data and trade secrets related to Tesla’s autonomous driving assistance system.

Tesla claimed that several of its former employees took over 10GB of proprietary data including
ML models and source code before joining Zoox. This allegedly included one of Tesla’s crucial
image recognition models used for identifying objects.

The theft of this sensitive proprietary model could potentially help Zoox shortcut years of ML
development and duplicate Tesla’s capabilities. Tesla argued this theft of IP caused major financial
and competitive harm. There were also concerns it could allow model inversion attacks to infer
private details about Tesla’s testing data.

The Zoox employees denied stealing any proprietary information. However, the case highlights
the significant risks of model theft - enabling cloning of commercial models, causing economic
impacts, and opening the door for further data privacy violations.

54.4.2. Data Poisoning

Data poisoning is an attack where the training data is tampered with, leading to a compromised
model (Biggio, Nelson, and Laskov 2012). Attackers can modify existing training examples, insert
new malicious data points, or influence the data collection process. The poisoned data is labeled
in such a way as to skew the model’s learned behavior. This can be particularly damaging in
applications where ML models make automated decisions based on learned patterns. Beyond
training sets, poisoning tests and validation data can allow adversaries to boost reported model
performance artificially.

The process usually involves the following steps:

• Injection: The attacker adds incorrect or misleading examples into the training set. These
examples are often designed to look normal to cursory inspection but have been carefully
crafted to disrupt the learning process.

• Training: The ML model trains on this manipulated dataset and develops skewed under-
standings of the data patterns.

• Deployment: Once the model is deployed, the corrupted training leads to flawed decision-
making or predictable vulnerabilities the attacker can exploit.

https://storage.courtlistener.com/recap/gov.uscourts.nvd.131251/gov.uscourts.nvd.131251.1.0_1.pdf
https://zoox.com/
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The impacts of data poisoning extend beyond just classification errors or accuracy drops. For in-
stance, if incorrect or malicious data is introduced into a trafÏc sign recognition system’s training
set, the model may learn to misclassify stop signs as yield signs, which can have dangerous real-
world consequences, especially in embedded autonomous systems like autonomous vehicles.

Data poisoning can degrade the accuracy of a model, force it to make incorrect predictions or
cause it to behave unpredictably. In critical applications like healthcare, such alterations can lead
to significant trust and safety issues.

There are six main categories of data poisoning (Oprea, Singhal, and Vassilev 2022):

• Availability Attacks: these attacks aim to compromise the overall functionality of a model.
They cause it to misclassify the majority of testing samples, rendering the model unusable
for practical applications. An example is label flipping, where labels of a specific, targeted
class are replaced with labels from a different one.

• Targeted Attacks: in contrast to availability attacks, targeted attacks aim to compromise a
small number of the testing samples.So the effect is localized to a limited number of classes,
while the model maintains the same original level of accuracy on the majority of the classes.
The targeted nature of the attack requires the attacker to possess knowledge of the model’s
classes.It also makes detecting these attacks more challenging.

• Backdoor Attacks: in these attacks, an adversary targets specific patterns in the data. The at-
tacker introduces a backdoor(amalicious, hidden trigger or pattern) into the training data.For
example, manipulating certain features in structured data ormanipulating a pattern of pixels
at a fixed position. This causes the model to associate the malicious pattern with specific la-
bels.As a result, when the model encounters test samples that contain the malicious pattern,
it makes false predictions.

• Subpopulation Attacks: here attackers selectively choose to compromise a subset of the test-
ing samples, while maintaining accuracy on the rest of the samples. You can think of these
attacks as a combination of availability and targeted attacks:performing availability attacks
(performance degradation) within the scope of a targeted subset. Although subpopulation
attacks may seem very similar to targeted attacks, the two have clear differences:

• Scope: while targeted attacks target a selected set of samples,subpopulation attacks target a
general subpopulationwith similar feature representations. For example, in a targeted attack,
an actor inserts manipulated images of a ‘speed bump’ warning sign(with carefully crafted
perturbation or patterns), which causes an autonomous car to fail to recognize such sign and
slow down. On the other hand, manipulating all samples of people with a British accent so
that a speech recognition model would misclassify aBritish person’s speech is an example of
a subpopulation attack.

• Knowledge: while targeted attacks require a high degree of familiarity with the data, sub-
population attacks require less intimate knowledge in order to be effective.

54.4.2.1. Case Study 1

In 2017, researchers demonstrated a data poisoning attack against a popular toxicity classification
model called Perspective (Hosseini et al. 2017). This ML model is used to detect toxic comments
online.
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The researchers added synthetically generated toxic comments with slight misspellings and gram-
matical errors to the model’s training data. This slowly corrupted the model, causing it to misclas-
sify increasing numbers of severely toxic inputs as non-toxic over time.

After retraining on the poisoned data, the model’s false negative rate increased from 1.4% to 27% -
allowing extremely toxic comments to bypass detection. The researchers warned this stealthy data
poisoning could enable the spread of hate speech, harassment, and abuse if deployed against real
moderation systems.

This case highlights how data poisoning can degrademodel accuracy and reliability over time. For
social media platforms, a poisoning attack that impairs toxicity detection could lead to the prolif-
eration of harmful content and distrust of ML moderation systems. The example demonstrates
why securing training data integrity and monitoring for poisoning is critical across application
domains.

54.4.2.2. Case Study 2

Interestingly enough, data poisoning attacks are not always malicious (Shan et al. 2023). Night-
shade, a tool developed by a team led by Professor Ben Zhao at the University of Chicago, utilizes
data poisoning to help artists protect their art against scraping and copyright violations by gen-
erative AI models. Artists can use the tool to make subtle modifications to their images before
uploading them online.

While these changes are indiscernible to the human eye, they can significantly disrupt the perfor-
mance of generative AI models when incorporated into the training data. Generative models can
be manipulated into generating hallucinations and weird images. For example, with only 300 poi-
soned images, the University of Chicago researchers were able to trick the latest Stable Diffusion
model into generating images of dogs that look like cats or images of cows when prompted for
cars.

As the number of poisoned images on the internet increases, the performance of themodels that use
scraped data will deteriorate exponentially. First, the poisoned data is hard to detect, and would
require amanual elimination process. Second, the “poison” spreads quickly to other labels because
generative models rely on connections between words and concepts as they generate images. So a
poisoned image of a “car” could spread into generated images associated with words like “truck”,
“train”, “bus”, etc.

On the flip side, this tool can be used maliciously and can affect legitimate applications of the
generative models. This goes to show the very challenging and novel nature of machine learning
attacks.

Figure 54.2 demonstrates the effects of different levels of data poisoning (50 samples, 100 samples,
and 300 samples of poisoned images) on generating images in different categories. Notice how the
images start deforming and deviating from the desired category. For example , after 300 poison
samples a car prompt generates a cow.
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Figure 54.2. Data poisoning. Credit: Shan et al. (2023).

54.4.3. Adversarial Attacks

Adversarial attacks are methods that aim to trick models into making incorrect predictions by pro-
viding it with specially crafted, deceptive inputs (called adversarial examples) (Parrish et al. 2023).
By adding slight perturbations to input data, adversaries can “hack” a model’s pattern recognition
and deceive it. These are sophisticated techniques where slight, often imperceptible alterations to
input data can trick an ML model into making a wrong prediction.

In text-to-image models like DALLE (Ramesh et al. 2021) or Stable Diffusion (Rombach et al. 2022),
one can generate prompts that lead to unsafe images. For example, by altering the pixel values
of an image, attackers can deceive a facial recognition system into identifying a face as a different
person.

Adversarial attacks exploit the way ML models learn and make decisions during inference. These
models work on the principle of recognizing patterns in data. An adversary crafts special inputs
with perturbations to mislead the model’s pattern recognition—essentially ‘hacking’ the model’s
perceptions.

Adversarial attacks fall under different scenarios:

• Whitebox Attacks: the attacker possess full knowledge of the target model’s internal work-
ings, including the training data,parameters, and architecture. This comprehensive access
creates favorable conditions for an attacker to exploit themodel’s vulnerabilities. The attacker
can take advantage of specific and subtle weaknesses to craft effective adversarial examples.

• Blackbox Attacks: in contrast to whitebox attacks, in blackbox attacks, the attacker has little
to no knowledge of the target model. To carry out the attack, the adversarial actor needs to
make careful observations of the model’s output behavior.
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• Greybox Attacks: these fall in between blackbox andwhitebox attacks. The attacker has only
partial knowledge about the target model’s internal design. For example, the attacker could
have knowledge about training data but not the architecture or parameters. In the real-world,
practical attacks fall under both blackbox and greybox scenarios.

The landscape of machine learning models is both complex and broad, especially given their rela-
tively recent integration into commercial applications. This rapid adoption, while transformative,
has brought to light numerous vulnerabilities within these models. Consequently, a diverse array
of adversarial attack methods has emerged, each strategically exploiting different aspects of differ-
ent models. Below, we highlight a subset of these methods, showcasing the multifaceted nature of
adversarial attacks on machine learning models:

• Generative Adversarial Networks (GANs) are deep learning models that consist of two net-
works competing against each other: a generator and and a discriminator (Goodfellow et
al. 2020). The generator tries to synthesize realistic data, while the discriminator evaluates
whether they are real or fake. GANs can be used to craft adversarial examples. The gener-
ator network is trained to produce inputs that are misclassified by the target model. These
GAN-generated images can then be used to attack a target classifier or detection model. The
generator and the target model are engaged in a competitive process, with the generator con-
tinually improving its ability to create deceptive examples, and the target model enhancing
its resistance to such examples. GANs provide a powerful framework for crafting complex
and diverse adversarial inputs, illustrating the adaptability of generative models in the ad-
versarial landscape.

• Transfer LearningAdversarial Attacks exploit the knowledge transferred from a pre-trained
model to a target model, enabling the creation of adversarial examples that can deceive both
models.These attacks pose a growing concern, particularly when adversaries have knowl-
edge of the feature extractor but lack access to the classification head (the part or layer that
is responsible for making the final classifications). Referred to as”headless attacks,” these
transferable adversarial strategies leverage the expressive capabilities of feature extractors to
craft perturbations while being oblivious to the label space or training data. The existence
of such attacks underscores the importance of developing robust defenses for transfer learn-
ing applications, especially since pre-trained models are commonly used (Abdelkader et al.
2020).

54.4.3.1. Case Study

In 2017, researchers conducted experiments by placing small black andwhite stickers on stop signs
(Eykholt et al. 2017). When viewed by a normal human eye, the stickers did not obscure the sign
or prevent interpretability. However, when images of the stickers stop signs were fed into standard
trafÏc sign classification ML models, they were misclassified as speed limit signs over 85% of the
time.

This demonstration showed how simple adversarial stickers could trick ML systems into misread-
ing critical road signs. These attacks could endanger public safety if deployed in the real world,
causing autonomous vehicles to misinterpret stop signs as speed limits. Researchers warned this
could potentially cause dangerous rolling stops or acceleration into intersections.
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This case study provides a concrete illustration of how adversarial examples exploit howML mod-
els recognize patterns. By subtly manipulating the input data, attackers can induce incorrect pre-
dictions and create serious risks for safety-critical applications like self-driving cars. The attack’s
simplicity shows how even minor changes imperceptible to humans can lead models astray. De-
velopers need robust defenses against such threats.

54.5. Security Threats to ML Hardware

Discussing the threats to embedded ML hardware security in a structured order is useful for a
clear and in-depth understanding of the potential pitfalls for ML systems. We will begin with
hardware bugs. We address the issues where intrinsic design flaws in the hardware can be a gate-
way to exploitation. This forms the fundamental knowledge required to understand the genesis
of hardware vulnerabilities. Moving to physical attacks establishes the basic threat model from
there, as these are the most overt and direct methods of compromising hardware integrity. Fault-
injection attacks naturally extend this discussion, showing how specific manipulations can induce
systematic failures.

Advancing to side-channel attacks next will show the increasing complexity, as these rely on ex-
ploiting indirect information leakages, requiring a nuanced understanding of hardware operations
and environmental interactions. Leaky interfaceswill showhow external communication channels
can become vulnerable, leading to inadvertent data exposures. Counterfeit hardware discussions
benefit from prior explorations of hardware integrity and exploitation techniques, as they often
compound these issues with additional risks due to their questionable provenance. Finally, sup-
ply chain risks encompass all concerns above and frame themwithin the context of the hardware’s
journey fromproduction to deployment, highlighting themultifaceted nature of hardware security
and the need for vigilance at every stage.

Here’s an overview table summarizing the topics:

Threat Type Description
Relevance to Embedded
ML Hardware Security

Hardware
Bugs

Intrinsic flaws in hardware designs that can
compromise system integrity.

Foundation of hardware
vulnerability.

Physical
Attacks

Direct exploitation of hardware through physical
access or manipulation.

Basic and overt threat
model.

Fault-
injection
Attacks

Induction of faults to cause errors in hardware
operation, leading to potential system compromise.

Systematic manipulation
leading to failure.

Side-
Channel
Attacks

Exploitation of leaked information from hardware
operation to extract sensitive data.

Indirect attack via
environmental
observation.

Leaky
Interfaces

Vulnerabilities arising from interfaces that expose
data unintentionally.

Data exposure through
communication channels.

Counterfeit
Hardware

Use of unauthorized hardware components that may
have security flaws.

Compounded
vulnerability issues.
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Threat Type Description
Relevance to Embedded
ML Hardware Security

Supply
Chain Risks

Risks introduced through the lifecycle of hardware,
from production to deployment.

Cumulative and
multifaceted security
challenges.

54.5.1. Hardware Bugs

Hardware is not immune to the pervasive issue of design flaws or bugs. Attackers can exploit
these vulnerabilities to access, manipulate, or extract sensitive data, breaching the confidentiality
and integrity that users and services depend on. An example of such vulnerabilities came to light
with the discovery of Meltdown and Spectre—two hardware vulnerabilities that exploit critical
vulnerabilities in modern processors. These bugs allow attackers to bypass the hardware barrier
that separates applications, allowing a malicious program to read the memory of other programs
and the operating system.

Meltdown (Kocher et al. 2019a) and Spectre (Kocher et al. 2019b) work by taking advantage of
optimizations in modern CPUs that allow them to speculatively execute instructions out of order
before validity checks have completed. This reveals data that should be inaccessible, which the
attack captures through side channels like caches. The technical complexity demonstrates the dif-
ficulty of eliminating vulnerabilities even with extensive validation.

If an ML system is processing sensitive data, such as personal user information or proprietary
business analytics, Meltdown and Spectre represent a real and present danger to data security.
Consider the case of an ML accelerator card, which is designed to speed up machine learning
processes, such as the ones we discussed in the AI Hardware chapter. These accelerators work
in tandem with the CPU to handle complex calculations, often related to data analytics, image
recognition, and natural language processing. If such an accelerator card has a vulnerability akin
to Meltdown or Spectre, it could potentially leak the data it processes. An attacker could exploit
this flawnot just to siphon offdata but also to gain insights into theMLmodel’sworkings, including
potentially reverse-engineering the model itself (thus, going back to the issue of model theft.

A real-world scenario where this could be devastating would be in the healthcare industry. Here,
ML systems routinely process highly sensitive patient data to help diagnose, plan treatment, and
forecast outcomes. A bug in the system’s hardware could lead to the unauthorized disclosure of
personal health information, violating patient privacy and contravening strict regulatory standards
like the Health Insurance Portability and Accountability Act (HIPAA)

The Meltdown and Spectre vulnerabilities are stark reminders that hardware security is not just
about preventing unauthorized physical access, but also about ensuring that the hardware’s ar-
chitecture does not become a conduit for data exposure. Similar hardware design flaws regularly
emerge in CPUs, accelerators, memory, buses, and other components. This necessitates ongoing
retroactive mitigations and performance tradeoffs in deployed systems. Proactive solutions like
confidential computing architectures could mitigate entire classes of vulnerabilities through fun-
damentallymore secure hardware design. Thwarting hardware bugs requires rigor at every design
stage, validation, and deployment.

../hw_acceleration/hw_acceleration.qmd
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://meltdownattack.com/
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54.5.2. Physical Attacks

Physical tampering refers to the direct, unauthorized manipulation of physical computing
resources to undermine the integrity of machine learning systems. It’s a particularly insidious
attack because it circumvents traditional cybersecurity measures, which often focus more on
software vulnerabilities than hardware threats.

Physical tampering can take many forms, from the relatively simple, such as someone inserting
a USB device loaded with malicious software into a server, to the highly sophisticated, such as
embedding a hardware Trojan during the manufacturing process of a microchip (discussed later
in greater detail in the Supply Chain section). ML systems are susceptible to this attack because
they rely on the accuracy and integrity of their hardware to process and analyze vast amounts of
data correctly.

Consider an ML-powered drone used for geographical mapping. The drone’s operation relies on
a series of onboard systems, including a navigation module that processes inputs from various
sensors to determine its path. If an attacker gains physical access to this drone, they could replace
the genuine navigation module with a compromised one that includes a backdoor. This manipu-
lated module could then alter the drone’s flight path to conduct surveillance over restricted areas
or even smuggle contraband by flying undetected routes.

Another example is the physical tampering of biometric scanners used for access control in secure
facilities. By introducing a modified sensor that transmits biometric data to an unauthorized re-
ceiver, an attacker can access personal identification data to authenticate individuals.

There are several ways that physical tampering can occur in ML hardware:

• Manipulating sensors: Consider an autonomous vehicle that relies on cameras and LiDAR
for situational awareness. An attacker could carefully calibrate the physical alignment of
these sensors to introduce blindspots or distort critical distances. This could impair object
detection and endanger passengers.

• Hardware trojans: Malicious circuit modifications can introduce trojans that activate under
certain inputs. For example, an ML accelerator chip could function normally until a rare
trigger case occurs, causing it to accelerate unsafely.

• Tamperingwithmemory: Physically exposing andmanipulatingmemory chips could allow
extraction of encrypted ML model parameters.Fault injection techniques can also corrupt
model data to degrade accuracy.

• Introducing backdoors: Gaining physical access to servers, an adversary could use hardware
keyloggers to capture passwords and create backdoor accounts for persistent access. These
could then be used to exfiltrate ML training data over time.

• Supply chain attacks: Manipulating third-party hardware components or compromising
manufacturing and shipping channels creates systemic vulnerabilities that are difÏcult to
detect and remediate.
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54.5.3. Fault-injection Attacks

By intentionally introducing faults into ML hardware, attackers can induce errors in the computa-
tional process, leading to incorrect outputs. This manipulation compromises the integrity of ML
operations and can serve as a vector for further exploitation, such as system reverse engineering
or security protocol bypass. Fault injection involves intentionally disrupting normal computations
in a system through external interference (Joye and Tunstall 2012). By precisely triggering com-
putational errors, adversaries can alter program execution in ways that degrade reliability or leak
sensitive information.

Various physical tampering techniques can be used for fault injection. Low voltage (Barenghi et al.
2010), power spikes (Hutter, Schmidt, and Plos 2009), clock glitches (Amiel, Clavier, and Tunstall
2006), electromagnetic pulses (Agrawal et al. 2007), temperate increase (S. Skorobogatov 2009)
and laser strikes (S. P. Skorobogatov and Anderson 2003) are common hardware attack vectors.
They are precisely timed to induce faults like flipped bits or skipped instructions during key oper-
ations.

For ML systems, consequences include impaired model accuracy, denial of service, extraction of
private training data or model parameters, and reverse engineering of model architectures. At-
tackers could use fault injection to force misclassifications, disrupt autonomous systems, or steal
intellectual property.

For example, in (Breier et al. 2018), the authors were able to successfully inject a fault attack into
a deep neural network deployed on a microcontroller. They used a laser to heat up specific tran-
sistors, forcing them to switch states. In one instance, they used this method to attack a ReLU
activation function resulting in the function to always outputing a value of 0, regardless of the in-
put. In the assembly code in Figure 54.3, the attack caused the executing program to always skip
the jmp end instruction on line 6. This means that HiddenLayerOutput[i] is always set to 0, over-
writing any values written to it on lines 4 and 5. As a result, the targeted neurons are rendered
inactive, resulting in misclassifications.

The strategy for an attacker could be to infer information about the activation functions using side-
channel attacks (discussed next). Then the attacker could attempt to target multiple activation
function computations by randomly injecting faults into the layers that are as close to the output
layer as possible. This increases the likelihood and impact of the attack.

Embedded devices are particularly vulnerable due to limited physical hardening and resource con-
straints that restrict robust runtime defenses. Without tamper-resistant packaging, attacker access
to system buses andmemory enables precise fault strikes. Lightweight embeddedMLmodels also
lack redundancy to overcome errors.

These attacks can be particularly insidious because they bypass traditional software-based security
measures, often not accounting for physical disruptions. Furthermore, because ML systems rely
heavily on the accuracy and reliability of their hardware for tasks like pattern recognition, decision-
making, and automated responses, any compromise in their operation due to fault injection can
have serious and wide-ranging consequences.

Mitigating fault injection risks necessitates a multilayer approach. Physical hardening through
tamper-proof enclosures and design obfuscation helps reduce access. Lightweight anomaly de-
tection can identify unusual sensor inputs or erroneous model outputs (Hsiao et al. 2023). Error-
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Figure 54.3. Fault-injection demonstrated with assembly code. Credit: Breier et al. (2018).

correcting memories minimize disruption, while data encryption safeguards information. Emerg-
ing model watermarking techniques trace stolen parameters.

However, balancing robust protections with embedded systems’ tight size and power limits re-
mains challenging. Cryptography limits and lack of secure co-processors on cost-sensitive embed-
ded hardware restrict options. Ultimately, fault injection resilience demands a cross-layer perspec-
tive spanning electrical, firmware, software, and physical design layers.

54.5.4. Side-Channel Attacks

Side-channel attacks are a category of security breach that depends on information gained from
the physical implementation of a computer system. Unlike direct attacks on software or network
vulnerabilities, side-channel attacks exploit the hardware characteristics of a system. These attacks
can be particularly effective against complex machine learning systems, where large amounts of
data are processed and a high level of security is expected.

The fundamental premise of a side-channel attack is that a device’s operation can inadvertently
leak information. Such leaks can come from various sources, including the electrical power a de-
vice consumes (Kocher, Jaffe, and Jun 1999), the electromagnetic fields it emits (Gandolfi, Mourtel,
and Olivier 2001), the time it takes to process certain operations or even the sounds it produces.
Each channel can indirectly glimpse the system’s internal processes, revealing information that can
compromise security.

For instance, consider a machine learning system performing encrypted transactions. Encryption
algorithms are supposed to secure data but also require computational work to encrypt and de-
crypt information. An attacker can analyze the power consumption patterns of the device perform-
ing encryption to figure out the cryptographic key. With sophisticated statistical methods, small
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variations in power usage during the encryption process can be correlated with the data being pro-
cessed, eventually revealing the key. Some differential analysis attack techniques are Differential
Power Analysis (DPA) (Kocher et al. 2011), Differential Electromagnetic Analysis (DEMA), and
Correlation Power Analysis (CPA).

For example, consider an attacker who is trying to break the AES encryption algorithm using a
differential analysis attack. The attacker would first need to collect a large number of power or
electromagnetic traces (a trace is a record of consumptions or emissions) of the device while it is
performing AES encryption.

Once the attacker has collected a sufÏcient number of traces, they would then use a statistical tech-
nique to identify correlations between the traces and the different values of the plaintext (original,
unencrypted text) and ciphertext (encrypted text). These correlations would then be used to in-
fer the value of a bit in the AES key, and eventually the entire key. Differential analysis attacks
are dangerous because they are low cost, effective, and non-intrusive, which allows attackers to
bypass both algorithmic and hardware-level security measures. Compromises by these attacks
are also hard to detect because they do not physically modify the device or break the encryption
algorithm.

Below is a simplified visualization of how analyzing the power consumption patterns of the en-
cryption device can help us extract information about algorithm’s operations and, in turn, about
the secret data. Say we have a device that takes a 5-byte password as input. We are going to ana-
lyze and compare the different voltage patterns that are measured while the encryption device is
performing operations on the input to authenticate the password.

First, consider the power analysis of the device’s operations after entering a correct password in the
first picture in Figure 54.4. The dense blue graph is the output of the encryption device’s voltage
measurement. What matters here is the comparison between the different analysis charts rather
than the specific details of what is going on in each scenario.

Figure 54.4. Power analysis of an encryption device with a correct password. Credit: Colin O’Flynn.

Now, let’s look at the power analysis chart when we enter an incorrect password in Figure 54.5.
The first three bytes of the password are correct. As a result, we can see that the voltage patterns
are very similar or identical between the two charts, up to and including the fourth byte. After

https://www.youtube.com/watch?v=2iDLfuEBcs8
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the device processes the fourth byte, it determines that there is a mismatch between the secret key
and the attempted input. We notice a change in the pattern at the transition point between the
fourth and fifth bytes: the voltage has gone up (the current has gone down) because the device has
stopped processing the rest of the input.

Figure 54.5. Power analysis of an encryption device with a (partially) wrong password. Credit: Colin
O’Flynn.

Figure 54.6 describes another chart of a completely wrong password. After the device finishes
processing the first byte, it determines that it is incorrect and stops further processing - the voltage
goes up and the current down.

The example above shows how we can infer information about the encryption process and the
secret key itself through analyzing different inputs and try to ‘eavesdrop’ on the operations that
the device is performing on each byte of the input.

For additional details, please see the following video:

%3Chttps://www.youtube.com/watch?v=2iDLfuEBcs8%3E

Another example is an ML system for speech recognition, which processes voice commands to
perform actions. By measuring the time it takes for the system to respond to commands or the
power used during processing, an attacker could infer what commands are being processed and
thus learn about the system’s operational patterns. Even more subtle, the sound emitted by a com-
puter’s fan or hard drive could change in response to the workload, which a sensitive microphone
could pick up and analyze to determine what kind of operations are being performed.

In real-world scenarios, side-channel attacks have been used to extract encryption keys and com-
promise secure communications. One of the earliest recorded side-channel attacks dates back
to the 1960s when British intelligence agency MI5 faced the challenge of deciphering encrypted

https://www.youtube.com/watch?v=2iDLfuEBcs8
https://www.youtube.com/watch?v=2iDLfuEBcs8
%3Chttps://www.youtube.com/watch?v=2iDLfuEBcs8%3E
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Figure 54.6. Power analysis of an encryption device with a wrong password. Credit: Colin O’Flynn.

communications from the Egyptian Embassy in London. Their cipher-breaking attempts were
thwarted by the computational limitations of the time until an ingenious observation changed the
game.

MI5 agent Peter Wright proposed using a microphone to capture the subtle acoustic signatures
emitted from the embassy’s rotor cipher machine during encryption (Burnet and Thomas 1989).
The distinct mechanical clicks of the rotors as operators configured them daily leaked critical in-
formation about the initial settings. This simple side channel of sound enabled MI5 to reduce the
complexity of deciphering messages dramatically. This early acoustic leak attack highlights that
side-channel attacks are not merely a digital age novelty but a continuation of age-old cryptana-
lytic principles. The notion that where there is a signal, there is an opportunity for interception
remains foundational. From mechanical clicks to electrical fluctuations and beyond, side channels
enable adversaries to extract secrets indirectly through careful signal analysis.

Today, acoustic cryptanalysis has evolved into attacks like keyboard eavesdropping (Asonov and
Agrawal 2004). Electrical side channels range from power analysis on cryptographic hardware
(Gnad, Oboril, and Tahoori 2017) to voltage fluctuations (M. Zhao and Suh 2018) onmachine learn-
ing accelerators. Timing, electromagnetic emission, and even heat footprints can likewise be ex-
ploited. New and unexpected side channels often emerge as computing becomes more intercon-
nected and miniaturized.

Just as MI5’s analogue acoustic leak transformed their codebreaking, modern side-channel attacks
circumvent traditional boundaries of cyber defense. Understanding the creative spirit and histori-
cal persistence of side channel exploits is key knowledge for developers and defenders seeking to
secure modern machine learning systems comprehensively against digital and physical threats.

https://www.youtube.com/watch?v=2iDLfuEBcs8
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54.5.5. Leaky Interfaces

Leaky interfaces in embedded systems are often overlooked backdoors that can become significant
security vulnerabilities. While designed for legitimate purposes such as communication, mainte-
nance, or debugging, these interfaces may inadvertently provide attackers with a window through
which they can extract sensitive information or inject malicious data.

An interface becomes “leaky” when it exposes more information than it should, often due to a
lack of stringent access controls or inadequate shielding of the transmitted data. Here are some
real-world examples of leaky interface issues causing security problems in IoT and embedded de-
vices:

• Baby Monitors: Many WiFi-enabled baby monitors have been found to have unsecured in-
terfaces for remote access. This allowed attackers to gain live audio and video feeds from
people’s homes, representing a major privacy violation.

• Pacemakers: Interface vulnerabilities were discovered in some pacemakers that could al-
low attackers to manipulate cardiac functions if exploited. This presents a potential life-
threatening scenario.

• Smart Lightbulbs: A researcher found he could access unencrypted data from smart light-
bulbs via a debug interface, including WiFi credentials, allowing him to gain access to the
connected network (Greengard 2015).

• Smart Cars: The OBD-II diagnostic port has been shown to provide an attack vector into
automotive systems if left unsecured.Researchers were able to take control of brakes and
other components through it (C. Miller and Valasek 2015).

While the above are not directly connected with ML, consider the example of a smart home sys-
tem with an embedded ML component that controls home security based on behavior patterns it
learns over time. The system includes a maintenance interface accessible via the local network for
software updates and system checks. If this interface does not require strong authentication or if
the data transmitted through it is not encrypted, an attacker on the same network could potentially
gain access to it. They could then eavesdrop on the homeowner’s daily routines or reprogram the
security settings by manipulating the firmware.

Such leaks are a privacy issue and a potential entry point for more damaging exploits. The expo-
sure of training data, model parameters, or ML outputs from a leak could help adversaries con-
struct adversarial examples or reverse-engineer models. Access through a leaky interface could
also be used to alter an embedded device’s firmware, loading it with malicious code that could
disable the device, intercept data, or use the device in botnet attacks.

To mitigate these risks, a multilayered approach is necessary spanning technical controls like au-
thentication, encryption, anomaly detection, policies and processes like interface inventories, ac-
cess controls, auditing, and secure development practices. Disabling unnecessary interfaces and
compartmentalizing risks via a zero-trust model provide additional protection.

As designers of embeddedML systems, we should assess interfaces early in development and con-
tinually monitor them post-deployment as part of an end-to-end security lifecycle. Understanding
and securing interfaces is crucial for ensuring the overall security of embedded ML.

https://www.fox19.com/story/25310628/hacked-baby-monitor/
https://www.fda.gov/medical-devices/medical-device-recalls/abbott-formally-known-st-jude-medical-recalls-assuritytm-and-enduritytm-pacemakers-potential
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54.5.6. Counterfeit Hardware

ML systems are only as reliable as the underlying hardware. In an era where hardware compo-
nents are global commodities, the rise of counterfeit or cloned hardware presents a significant
challenge. Counterfeit hardware encompasses any components that are unauthorized reproduc-
tions of original parts. Counterfeit components infiltrate ML systems through complex supply
chains that stretch across borders and involve numerous stages from manufacture to delivery.

A single lapse in the supply chain’s integrity can result in the insertion of counterfeit parts designed
to imitate the functions and appearance of genuine hardware closely. For instance, a facial recog-
nition system for high-security access control may be compromised if equipped with counterfeit
processors. These processors could fail to accurately process and verify biometric data, potentially
allowing unauthorized individuals to access restricted areas.

The challenge with counterfeit hardware is multifaceted. It undermines the quality and reliability
of ML systems, as these components may degrade faster or perform unpredictably due to sub-
standard manufacturing. The security risks are also profound; counterfeit hardware can contain
vulnerabilities ripe for exploitation bymalicious actors. For example, a cloned network router in an
ML data center might include a hidden backdoor, enabling data interception or network intrusion
without detection.

Furthermore, counterfeit hardware poses legal and compliance risks. Companies inadvertently
utilizing counterfeit parts in theirML systemsmay face serious legal repercussions, including fines
and sanctions for failing to comply with industry regulations and standards. This is particularly
true for sectors where compliance with specific safety and privacy regulations is mandatory, such
as healthcare and finance.

The issue of counterfeit hardware is exacerbated by the economic pressures of reducing costs,
which can compel businesses to source from lower-cost suppliers without stringent verification
processes. This economizing can inadvertently introduce counterfeit parts into otherwise secure
systems. Additionally, detecting these counterfeits is inherently difÏcult since they are created to
pass as the original components, often requiring sophisticated equipment and expertise to iden-
tify.

In ML, where decisions are made in real-time and based on complex computations, the conse-
quences of hardware failure are inconvenient and potentially dangerous. Stakeholders in the field
of ML need to understand these risks thoroughly. The issues presented by counterfeit hardware
necessitate a deep dive into the current challenges facing ML system integrity and emphasize the
importance of vigilant, informed management of the hardware life cycle within these advanced
systems.

54.5.7. Supply Chain Risks

The threat of counterfeit hardware is closely tied to broader supply chain vulnerabilities. Glob-
alized, interconnected supply chains create multiple opportunities for compromised components
to infiltrate a product’s lifecycle. Supply chains involve numerous entities from design to manu-
facturing, assembly, distribution, and integration. A lack of transparency and oversight of each
partner makes verifying integrity at every step challenging. Lapses anywhere along the chain can
allow the insertion of counterfeit parts.
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For example, a contracted manufacturer may unknowingly receive and incorporate recycled elec-
tronic waste containing dangerous counterfeits. An untrustworthy distributor could smuggle in
cloned components. Insider threats at any vendor might deliberately mix counterfeits into legiti-
mate shipments.

Once counterfeits enter the supply stream, they move quickly through multiple hands before end-
ing up in ML systems where detection is difÏcult. Advanced counterfeits like refurbished parts
or clones with repackaged externals can masquerade as authentic components, passing visual in-
spection.

Thorough technical profiling using micrography, X-ray screening, component forensics, and func-
tional testing is often required to identify fakes. However, such costly analysis is impractical for
large-volume procurement.

Strategies like supply chain audits, screening suppliers, validating component provenance, and
adding tamper-evident protections can help mitigate risks. But ultimately, a zero-trust approach is
prudent given global supply chain security challenges. DesigningML systems to utilize redundant
checking, fail-safes, and continuous runtime monitoring provides resilience against component
compromises.

Rigorous validation of hardware sources coupled with fault-tolerant system architectures offers
the most robust defense against the pervasive risks of convoluted, opaque global supply chains.

54.5.7.1. Case Study

In 2018, Bloomberg Businessweek published an alarming story that got much attention in the tech
world. The article claimed that tiny spy chips had been secretly planted on server hardware by
Supermicro. Reporters said Chinese state hackers working with Supermicro could sneak these
tiny chips onto motherboards during manufacturing. The tiny chips allegedly gave the hackers
backdoor access to servers used by over 30 major companies, including Apple and Amazon.

If true, this would allow hackers to spy on private data or even tamper with systems. But after in-
vestigating, Apple and Amazon found no proof such hacked Supermicro hardware existed. Other
experts questioned if the Bloomberg article was accurate reporting or not.

Whether the story is completely true or not is not our concern from a pedagogical viewpoint. How-
ever, this incident drew attention to the risks of global supply chains for hardware, especially man-
ufactured in China. When companies outsource and buy hardware components from vendors
worldwide, there needs to be more visibility into the process. In this complex global pipeline,
there are concerns that counterfeits or tampered hardware could be slipped in somewhere along
the way without tech companies realizing it. Companies relying too much on single manufactur-
ers or distributors creates risk. For instance, due to the over reliance on TSMC for semiconductor
manufacturing, the US has invested 50 billion dollars into the CHIPS Act.

AsMLmoves intomore critical systems, verifying hardware integrity fromdesign through produc-
tion and delivery is crucial. The reported Supermicro backdoor demonstrated that for ML security,
we cannot take global supply chains andmanufacturing for granted. Wemust inspect and validate
hardware at every link in the chain.

https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.tsmc.com/english
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/
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54.6. Embedded ML Hardware Security

54.6.1. Trusted Execution Environments

54.6.1.1. About TEE

A Trusted Execution Environment (TEE) is a secure area within a main processor that provides
a high level of security for the execution of code and protection of data. TEEs operate by isolat-
ing the execution of sensitive tasks from the rest of the device’s operations, thereby creating an
environment resistant to attacks from software and hardware vectors.

54.6.1.2. Benefits

TEEs are particularly valuable in scenarios where sensitive data must be processed or where the
integrity of a system’s operations is critical. In the context of ML hardware, TEEs ensure that the
ML algorithms and data are protected against tampering and leakage. This is essential because
ML models often process private information, trade secrets, or data that could be exploited if ex-
posed.

For instance, a TEE can protect ML model parameters from being extracted by malicious software
on the same device. This protection is vital for privacy and maintaining the integrity of the ML
system, ensuring that the models perform as expected and do not provide skewed outputs due to
manipulated parameters. Apple’s Secure Enclave, found in iPhones and iPads, is a formof TEE that
provides an isolated environment to protect sensitive user data and cryptographic operations.

In ML systems, TEEs can:

• Securely performmodel training and inference, ensuring that the computation results remain
confidential.

• Protect the confidentiality of input data, like biometric information, used for personal iden-
tification or sensitive classification tasks.

• Secure ML models by preventing reverse engineering, which can protect proprietary infor-
mation and maintain a competitive advantage.

• Enable secure updates to ML models, ensuring that updates come from a trusted source and
have not been tampered with in transit.

The importance of TEEs inMLhardware security stems from their ability to protect against external
and internal threats, including the following:

• Malicious Software: TEEs can prevent high-privilege malware from accessing sensitive ar-
eas of the ML system.

• Physical Tampering: By integrating with hardware security measures, TEEs can protect
against physical tampering that attempts to bypass software security.

• Side-channel Attacks: Although not impenetrable, TEEs can mitigate certain side-channel
attacks by controlling access to sensitive operations and data patterns.

https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
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54.6.1.3. Mechanics

The fundamentals of TEEs contain four main parts:

• Isolated Execution: Code within a TEE runs in a separate environment from the device’s
main operating system. This isolation protects the code from unauthorized access by other
applications.

• Secure Storage: TEEs can store cryptographic keys,authentication tokens, and sensitive data
securely, preventing access by regular applications running outside the TEE.

• Integrity Protection: TEEs can verify the integrity of code and data, ensuring that they have
not been altered before execution or during storage.

• Data Encryption: Data handled within a TEE can be encrypted, making it unreadable to
entities without the proper keys, which are also managed within the TEE.

Here are some examples of TEEs that provide hardware-based security for sensitive applications:

• ARMTrustZone:Creates secure and normal world execution environments isolated using
hardware controls. Implemented in many mobile chipsets.

• IntelSGX:Intel’s Software Guard Extensions provide an enclave for code execution that pro-
tects against certain software attacks,specifically OS layer attacks. Used to safeguard work-
loads in the cloud.

• Qualcomm Secure ExecutionEnvironment:Hardware sandbox on Qualcomm chipsets for
mobile payment and authentication apps.

• Apple SecureEnclave:TEE for biometric data and key management on iPhones and
iPads.Facilitates mobile payments.

Figure 54.7 is a diagram demonstrating a secure enclave isolated from the main processor to pro-
vide an extra layer of security. The secure enclave has a boot ROM to establish a hardware root of
trust, an AES engine for efÏcient and secure cryptographic operations, and protectedmemory. The
secure enclave has amechanism to store inromation securely on attached storage seperate from the
NAND flash storage used by the application processor and operating system. This design keeps
sensitive user data secure even when the Application Processor kernel becomes compromised.

54.6.1.4. Trade-Offs

If TEEs are so good, why don’t all systems have TEE enabled by default? The decision to implement
a TEE is not taken lightly. There are several reasons why a TEE might not be present in all systems
by default. Here are some trade-offs and challenges associated with TEEs:

Cost: Implementing TEEs involves additional costs. There are direct costs for the hardware and
indirect costs associated with developing and maintaining secure software for TEEs. These costs
may not be justifiable for all devices, especially low-margin products.

Complexity: TEEs add complexity to system design and development. Integrating a TEE with
existing systems requires a substantial redesign of the hardware and software stack, which can be
a barrier, especially for legacy systems.

https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.qualcomm.com/products/features/mobile-security-solutions
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
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Figure 54.7. System-on-chip secure enclave. Credit: Apple.

https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
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Performance Overhead: While TEEs offer enhanced security, they can introduce performance
overhead. For example, the additional steps in verifying and encrypting data can slow down sys-
tem performance, which may be critical in time-sensitive applications.

Development Challenges: Developing for TEEs requires specialized knowledge and often must
adhere to strict development protocols. This can extend development time and complicate the
debugging and testing processes.

Scalability and Flexibility: TEEs, due to their secure nature, may impose limitations on scalability
and flexibility. Upgrading secure components or scaling the system for more users or data can be
more challenging when everything must pass through a secure, enclosed environment.

Energy Consumption: The increased processing required for encryption, decryption, and in-
tegrity checks can lead to higher energy consumption, a significant concern for battery-powered
devices.

Market Demand: Not all markets or applications require the level of security provided by TEEs.
For many consumer applications, the perceived risk may be low enough that manufacturers opt
not to include TEEs in their designs.

Security Certification and Assurance: Systems with TEEs may need rigorous security certifica-
tions with bodies like Common Criteria (CC) or the European Union Agency for Cybersecurity
(ENISA), which can be lengthy and expensive. Some organizations may choose not to implement
TEEs to avoid these hurdles.

Limited Resource Devices: Devices with limited processing power, memory, or storage may not
be capable of supporting TEEs without compromising their primary functionality.

54.6.2. Secure Boot

54.6.2.1. About

Secure Boot is a security standard that ensures a device boots using only software that is trusted
by the Original Equipment Manufacturer (OEM). When the device starts up, the firmware checks
the signature of each piece of boot software, including the bootloader, kernel, and base operating
system, to ensure it’s not tampered with. If the signatures are valid, the device continues to boot.
If not, the boot process stops to prevent potential security threats from executing.

54.6.2.2. Benefits

The integrity of an ML system is critical from the moment it is powered on. A compromised boot
process could undermine the system by allowing malicious software to load before the operating
system and ML applications start. This could lead to manipulated ML operations, stolen data, or
the device being repurposed for malicious activities such as botnets or crypto-mining.

Secure Boot helps protect embedded ML hardware in several ways:

• Protecting ML Data: Ensuring that the data used by ML models, which may include private
or sensitive information, is not exposed to tampering or theft during the boot process.

https://www.commoncriteriaportal.org/ccra/index.cfm
https://www.enisa.europa.eu/
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• Guarding Model Integrity: Maintaining the integrity of the ML models themselves, as tam-
pering with the model could lead to incorrect or malicious outcomes.

• Secure Model Updates: Enabling secure updates to ML models and algorithms, ensuring
that updates are authenticated and have not been altered.

54.6.2.3. Mechanics

TEEs benefit from Secure Boot in multiple ways. Figure 54.8 illustrates a flow diagram of a trusted
embedded system. For instance, during initial validation, Secure Boot ensures that the code run-
ning inside the TEE is the correct and untampered version approved by the device manufacturer.
It can ensure resilience against tampering by verifying the digital signatures of the firmware and
other critical components, Secure Boot prevents unauthorizedmodifications that could undermine
the TEE’s security properties. Secure Boot establishes a foundation of trust upon which the TEE
can securely operate, enabling secure operations such as cryptographic key management, secure
processing, and sensitive data handling.

Figure 54.8. Secure Boot flow. Credit: R. V. and A. (2018).
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54.6.2.4. Case Study: Apple’s Face ID

Let’s take a real-world example. Apple’s Face ID technology uses advanced machine learning al-
gorithms to enable facial recognition on iPhones and iPads. It relies on a sophisticated framework
of sensors and software to accurately map the geometry of a user’s face. For Face ID to function
securely and protect user biometric data, the device’s operations must be trustworthy from the
moment it is powered on, which is where Secure Boot plays a crucial role. Here’s how Secure Boot
works in conjunction with Face ID:

Initial Verification: When an iPhone is powered on, the Secure Boot process begins in the Secure
Enclave, a coprocessor that provides an extra layer of security. The Secure Enclave is responsible for
processing fingerprint data for Touch ID and facial recognition data for Face ID. The boot process
verifies that Apple signs the Secure Enclave’s firmware and has not been tampered with. This step
ensures that the firmware used to process biometric data is authentic and safe to execute.

Continuous Security Checks: After the initial power-on self-test and verification by Secure Boot,
the Secure Enclave communicates with the device’s main processor to continue the secure boot
chain. It verifies the digital signatures of the iOS kernel and other critical boot components before
allowing the boot process to proceed. This chained trust model prevents unauthorized modifica-
tions to the bootloader and operating system, which could compromise the device’s security.

Face Data Processing: Once the device has completed its secure boot sequence, the Secure Enclave
can interact with the ML algorithms that power Face ID safely. Facial recognition involves pro-
jecting and analyzing over 30,000 invisible dots to create a depth map of the user’s face and an
infrared image. This data is then converted into a mathematical representation compared with the
registered face data securely stored in the Secure Enclave.

Secure Enclave and Data Protection: The Secure Enclave is designed to protect sensitive data and
handle the cryptographic operations that secure it. It ensures that even if the operating system
kernel is compromised, the facial data cannot be accessed by unauthorized apps or attackers. Face
ID data never leaves the device and is not backed up to iCloud or anywhere else.

FirmwareUpdates: Apple frequently releases firmware updates to address security vulnerabilities
and improve the functionality of its systems. Secure Boot ensures that each firmware update is
authenticated and that only updates signed by Apple are installed on the device, preserving the
integrity and security of the Face ID system.

By using Secure Boot with dedicated hardware like the Secure Enclave, Apple can provide strong
security assurances for sensitive operations like facial recognition.

54.6.2.5. Challenges

Implementing Secure Boot poses several challenges that must be addressed to realize its full bene-
fits.

Key Management Complexity: Generating, storing, distributing, rotating, and revoking crypto-
graphic keys in a provably secure manner is extremely challenging, yet vital for maintaining the
chain of trust. Any compromise of keys cripples protections. Large enterprises managing multi-
tudes of device keys face particular scale challenges.

https://support.apple.com/en-us/102381
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Performance Overhead: Checking cryptographic signatures during boot can add 50-100ms
or more per component verified. This delay may be prohibitive for time-sensitive or resource-
constrained applications. However, performance impacts can be reduced through parallelization
and hardware acceleration.

Signing Burden: Developers must diligently ensure that all software components involved in the
boot process - bootloaders, firmware, OS kernel, drivers, applications, etc. are correctly signed by
trusted keys. Accommodating third-party code signing remains an issue.

Cryptographic Verification: Secure algorithms and protocols must validate the legitimacy of keys
and signatures, avoid tampering or bypass, and support revocation. Accepting dubious keys un-
dermines trust.

Customizability Constraints: Vendor-locked Secure Boot architectures limit user control and
upgradability. Open-source bootloaders like u-boot and coreboot enable securitywhile supporting
customizability.

Scalable Standards: Emerging standards like Device Identifier Composition Engine (DICE) and
IDevID promise to securely provision andmanage device identities and keys at scale across ecosys-
tems.

Adopting Secure Boot requires following security best practices around key management, crypto
validation, signed updates, and access control. Secure Boot provides a robust foundation for build-
ing device integrity and trust when implemented with care.

54.6.3. Hardware Security Modules

54.6.3.1. About HSM

A Hardware Security Module (HSM) is a physical device that manages digital keys for strong au-
thentication and provides crypto-processing. These modules are designed to be tamper-resistant
and provide a secure environment for performing cryptographic operations. HSMs can come in
standalone devices, plug-in cards, or integrated circuits on another device.

HSMs are crucial for a range of security-sensitive applications because they offer a hardened, secure
enclave for the storage of cryptographic keys and execution of cryptographic functions. They are
particularly important for ensuring the security of transactions, identity verifications, and data
encryption.

54.6.3.2. Benefits

HSMs provide several functionalities that are beneficial for the security of ML systems:

Protecting Sensitive Data: In machine learning applications, models often process sensitive data
that can be proprietary or personal. HSMs protect the encryption keys used to secure this data,
both at rest and in transit, from exposure or theft.

Ensuring Model Integrity: The integrity of ML models is vital for their reliable operation. HSMs
can securely manage the signing and verification processes for ML software and firmware, ensur-
ing unauthorized parties have not altered the models.

https://source.denx.de/u-boot/u-boot
https://www.coreboot.org/
https://www.microsoft.com/en-us/research/project/dice-device-identifier-composition-engine/
https://1.ieee802.org/security/802-1ar/
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Secure Model Training and Updates: The training and updating of ML models involve the pro-
cessing of potentially sensitive data. HSMs ensure that these processes are conducted within a se-
cure cryptographic boundary, protecting against the exposure of training data and unauthorized
model updates.

54.6.3.3. Trade-offs

HSMs involve several trade-offs for embeddedML. These trade-offs are somewhat similar to TEEs,
but for the sake of completeness, we will also discuss them here through the lens of HSM.

Cost: HSMs are specialized devices that can be expensive to procure and implement, which can
raise the overall cost of an ML project. This may be a significant factor to consider for embedded
systems where cost constraints are often stricter.

Performance Overhead: While secure, the cryptographic operations performed by HSMs can in-
troduce latency. Any added delay can be a critical issue in high-performance embedded ML appli-
cations where inference needs to happen in real-time, such as in autonomous vehicles or real-time
translation devices.

Physical Space: Embedded systems are often limited by physical space, and adding an HSM can
be challenging in tightly constrained environments. This is especially true for consumer electronics
and wearable technology, where size and form factor are key considerations.

Power Consumption: HSMs require power for their operation, which can be a drawback for
battery-operated devices that rely on long battery life. The secure processing and cryptographic
operations can drain the battery faster, a significant trade-off for mobile or remote embedded ML
applications.

Complexity in Integration: Integrating HSMs into existing hardware systems adds complexity. It
often requires specialized knowledge to manage the secure communication between the HSM and
the system’s processor and develop software capable of interfacing with the HSM.

Scalability: Scaling anML solution that uses HSMs can be challenging. Managing a fleet of HSMs
and ensuring uniformity in security practices across devices can become complex and costly when
the deployment size increases, especially when dealing with embedded systems where communi-
cation is costly.

Operational Complexity: HSMs can make updating firmware and ML models more complex. Ev-
ery update must be signed and possibly encrypted, which adds steps to the update process and
may require secure mechanisms for key management and update distribution.

Development and Maintenance: The secure nature of HSMs means that only limited personnel
have access to the HSM for development and maintenance purposes. This can slow down the
development process and make routine maintenance more difÏcult.

Certification and Compliance: Ensuring that an HSM meets specific industry standards and com-
pliance requirements can add to the time and cost of development. This may involve undergoing
rigorous certification processes and audits.
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54.6.4. Physical Unclonable Functions (PUFs)

54.6.4.1. About

Physical Unclonable Functions (PUFs) provide a hardware-intrinsic means for cryptographic key
generation and device authentication by harnessing the inherentmanufacturing variability in semi-
conductor components. During fabrication, random physical factors such as doping variations,
line edge roughness, and dielectric thickness result in microscale differences between semicon-
ductors, even when produced from the same masks. These create detectable timing and power
variances that act as a ”fingerprint” unique to each chip. PUFs exploit this phenomenon by incor-
porating integrated circuits to amplify minute timing or power differences into measurable digital
outputs.

When stimulated with an input challenge, the PUF circuit produces an output response based on
the device’s intrinsic physical characteristics. Due to their physical uniqueness, the same challenge
will yield a different response on other devices. This challenge-responsemechanism can be used to
generate keys securely and identifiers tied to the specific hardware, perform device authentication,
or securely store secrets. For example, a key derived from a PUF will only work on that device and
cannot be cloned or extracted evenwith physical access or full reverse engineering (Gao, Al-Sarawi,
and Abbott 2020).

54.6.4.2. Benefits

PUF key generation avoids the need for external key storage which risks exposure. It also
provides a foundation for other hardware security primitives like secure boot. Implementation
challenges include managing varying reliability and entropy across different PUFs, sensitivity
to environmental conditions, and susceptibility to machine learning modeling attacks. When
designed carefully, PUFs enable promising applications in IP protection, trusted computing, and
anti-counterfeiting.

54.6.4.3. Utility

Machine learningmodels are rapidly becoming a core part of the functionality formany embedded
devices like smartphones, smart home assistants, and autonomous drones. However, securingML
on resource-constrained embedded hardware can be challenging. This is where physical unclon-
able functions (PUFs) come in uniquely handy. Let’s look at some examples of how PUFs can be
useful.

PUFs provide a way to generate unique fingerprints and cryptographic keys tied to the physical
characteristics of each chip on the device. Let’s take an example. We have a smart camera drone
that uses embedded ML to track objects. A PUF integrated into the drone’s processor could create
a device-specific key to encrypt the ML model before loading it onto the drone. This way, even if
an attacker somehow hacks the drone and tries to steal the model, they won’t be able to use it on
another device!

The same PUF key could also create a digital watermark embedded in theMLmodel. If that model
ever gets leaked and posted online by someone trying to pirate it, the watermark could help prove
it came from your stolen drone and didn’t originate from the attacker. Also, imagine the drone
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camera connects to the cloud to ofÒoad some of its ML processing. The PUF can authenticate the
camera is legitimate before the cloud will run inference on sensitive video feeds. The cloud could
verify that the drone has not been physically tampered with by checking that the PUF responses
have not changed.

PUFs enable all this security through their challenge-response behavior’s inherent randomness and
hardware binding. Without needing to store keys externally, PUFs are ideal for securing embedded
ML with limited resources. Thus, they offer a unique advantage over other mechanisms.

54.6.4.4. Mechanics

The working principle behind PUFs, shown in Figure 54.9, involves generating a ”challenge-
response” pair, where a specific input (the challenge) to the PUF circuit results in an output
(the response) that is determined by the unique physical properties of that circuit. This process
can be likened to a fingerprinting mechanism for electronic devices. Devices that utilize ML for
processing sensor data can employ PUFs to secure communication between devices and prevent
the execution of ML models on counterfeit hardware.

Figure 54.9 illustrates an overview of the PUF basics: a) PUF can be thought of as a unique finger-
print for each piece of hardware; b) an Optical PUF is a special plastic token that is illuminated,
creating a unique speckle pattern that is then recorded; c) in an APUF (Arbiter PUF), challenge bits
select different paths, and an arbiter decides which one is faster, giving a response of ‘1’ or ‘0’; d) in
an SRAM PUF, the response is determined by the mismatch in the threshold voltage of transistors,
where certain conditions lead to a preferred response of ‘1’. Each of these methods uses specific
characteristics of the hardware to create a unique identifier.

54.6.4.5. Challenges

There are a few challenges with PUFs. The PUF response can be sensitive to environmental con-
ditions, such as temperature and voltage fluctuations, leading to inconsistent behavior that must
be accounted for in the design. Also, since PUFs can potentially generate many unique challenge-
response pairs, managing and ensuring the consistency of these pairs across the device’s lifetime
can be challenging. Last but not least, integrating PUF technology may increase the overall man-
ufacturing cost of a device, although it can save costs in key management over the device’s lifecy-
cle.

54.7. Privacy Concerns in Data Handling

Handling personal and sensitive data securely and ethically is critical as machine learning per-
meates devices like smartphones, wearables, and smart home appliances. For medical hardware,
handling data securely and ethically is further required by law, through theHealth Insurance Porta-
bility and Accountability Act (HIPAA). These embedded ML systems pose unique privacy risks
given their intimate proximity to users’ lives.

https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996
https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996
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Figure 54.9. PUF basics. Credit: Gao, Al-Sarawi, and Abbott (2020).
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54.7.1. Sensitive Data Types

EmbeddedML devices like wearables, smart home assistants, and autonomous vehicles frequently
process highly personal data that requires careful handling to maintain user privacy and prevent
misuse. Specific examples include medical reports and treatment plans processed by health wear-
ables, private conversations continuously captured by smart home assistants, and detailed driving
habits collected by connected cars. Compromise of such sensitive data can lead to serious conse-
quences like identity theft, emotional manipulation, public shaming, and mass surveillance over-
reach.

Sensitive data takesmany forms - structured records like contact lists and unstructured content like
conversational audio and video streams. In medical settings, protected health information (PHI) is
collected by doctors throughout every interaction, and is heavily regulated by strict HIPAA guide-
lines. Even outside of medical settings, sensitive data can still be collected in the form of Personally
Identifiable Information (PII), which is defined as “any representation of information that permits
the identity of an individual to whom the information applies to be reasonably inferred by either
direct or indirect means.” Examples of PII include email addresses, social security numbers, and
phone numbers, among other fields. PII is collected in medical settings, as well as other settings
(financial applications, etc) and is heavily regulated by Department of Labor policies.

Even derived model outputs could indirectly leak details about individuals. Beyond just personal
data, proprietary algorithms and datasets also warrant confidentiality protections. In the Data
Engineering section, we covered several of these topics in detail.

Techniques like de-identification, aggregation, anonymization, and federation can help transform
sensitive data into less risky forms while retaining analytical utility. However, diligent controls
around access, encryption, auditing, consent, minimization, and compliance practices are still es-
sential throughout the data lifecycle. Regulations like GDPR categorize different classes of sensi-
tive data and prescribe responsibilities around their ethical handling. Standards like NIST 800-53
provide rigorous security control guidance tailored for confidentiality protection. With growing
reliance on embedded ML, understanding sensitive data risks is crucial.

54.7.2. Applicable Regulations

Many embeddedML applications handle sensitive user data under HIPAA, GDPR, and CCPA reg-
ulations. Understanding the protections mandated by these laws is crucial for building compliant
systems.

• HIPAA Privacy Rule establishes care providers that conduct certain governs medical data
privacy and security in the US, with severe penalties for violations. Any health-related em-
bedded ML devices like diagnostic wearables or assistive robots would need to implement
controls like audit trails, access controls, and encryption prescribed by HIPAA.

• GDPR imposes transparency, retention limits, and user rights around EU citizen data, even
when processed by companies outside the EU. Smart home systems capturing family conver-
sations or location patterns would needGDPR compliance. Key requirements include data
minimization,encryption, and mechanisms for consent and erasure.

https://www.dol.gov/general/ppii
https://www.dol.gov/general/ppii
https://gdpr-info.eu/
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final
%3Chttps://www.hhs.gov/hipaa/for-professionals/privacy/index.html
https://gdpr-info.eu/
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• CCPA which applies in California, focuses on protecting consumer data privacy through
provisions like required disclosures and opt-out rights. IoT gadgets like smart speakers and
fitness trackers used by Californians would likely fall under its scope.

• CCPA was the first state specific set of regulations surrounding privacy concerns. Following
theCCPA, similar regulationswere also enacted in 10 other states, with some states proposing
bills for consumer data privacy protections.

Additionally, when relevant to the application, sector-specific rules govern telematics, financial
services, utilities, etc. Best practices like privacy by design, impact assessments, and maintaining
audit trails help embed compliance, if it is not already required by law. Given potentially costly
penalties, consulting legal/compliance teams is advisable when developing regulated embedded
ML systems.

54.7.3. De-identification

Ifmedical data is de-identified thoroughly, HIPAAguidelines do not directly apply and regulations
are far fewer. However, medical data needs to be de-identified using HIPAAmethods (Safe Harbor
methods or Expert Determination methods) in order for HIPAA guidelines to no longer apply.

54.7.3.1. Safe Harbor Methods

SafeHarbormethods aremost commonly used for de-identifying protected healthcare information,
due to the limited resources needed in comparison to Expert Determination methods. Safe Harbor
de-identification requires datasets to be scrubbed of any data that falls into one of 18 categories.
The following categories are listed as sensitive information based on the Safe Harbor standard:

• Name, Geographic locator, Birthdate, Phone Number, Email Address, IPAddresses, Social Se-
curity Numbers, Medical Record Numbers, HealthPlan Beneficiary Numbers, Device Identi-
fiers and SerialNumbers,Certificate/LicenseNumbers (Birth Certificate, Drivers License,etc),
Account Numbers, Vehicle Identifiers, Website URLs, FullFace Photos and Comparable Im-
ages, Biometric Identifiers, Any other unique identifiers

For amajority of these categories, all data is required to be removed regardless of the circumstances.
For other categories, including geographical information and birthdate, the data can be partially
removed enough to make the information hard to re-identify. For example, if a zip code is large
enough, the first 3 digits of the zipcode can still remain, since there are enough people in the
geographic area to make re-identification difÏcult. Birthdates need to be scrubbed of all elements
except for birth year, and all ages above 89 years old need to be aggregated into a 90+ category.

54.7.3.2. Expert Determination Methods

SafeHarbormethodswork for several cases ofmedical data de-identification, though in some cases,
re-identification is still possible. For example, let’s say you collect data on a patient in an urban city
with a large zip code, but you have documented a rare disease that they have – a disease which
only 25 people have in the entire city. Given geographic data coupled with birth year, it is highly

https://oag.ca.gov/privacy/ccpa
https://pro.bloomberglaw.com/brief/state-privacy-legislation-tracker/
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
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possible that someone can re-identify this individual, which is an extremely detrimental privacy
breach.

In unique cases like these, expert determination methods of de-identification of data are preferred.
Expert determination de-identification requires a “person with appropriate knowledge of and ex-
perience with generally accepted statistical and scientific principles and methods for rendering
information not individually identifiable” to evaluate a dataset and determine if the risk of re-
identification of individual data in a given dataset, in combination with publicly available data
(voting records, etc), is extremely small.

Expert Determination de-identification is understandably harder to complete than Safe Harbour
de-identification due to the cost and feasibility of accessing an expert to verify the likelihood of
re-identifying a dataset. However, in many cases, expert determination is required to ensure that
re-identification of data is extremely unlikely.

54.7.4. Data Minimization

Data minimization involves collecting, retaining, and processing only the necessary user data to
reduce privacy risks from embedded ML systems. This starts by restricting the data types and
instances gathered to the bare minimum required for the system’s core functionality. For example,
an object detection model only collects the images needed for that specific computer vision task.
Similarly, a voice assistant would limit audio capture to specific spoken commands rather than
persistently recording ambient sounds.

Where possible, ephemeral data that briefly resides inmemorywithout persisting storage provides
additional minimization. A clear legal basis like user consent should be established for any collec-
tion and retention. Sandboxing and access controls prevent unauthorized use beyond intended
tasks. Retention periods should be defined based on purpose, with secure deletion procedures
removing expired data.

Data minimization can be broken down into 3 categories:

1. “Data must be adequate in relation to the purpose that is pursued.” Data omission can limit
the accuracy of models trained on the data, and any general usefulness of a dataset. Datamin-
imization requires a minimum amount of data to be collected from users, while still creating
a dataset that adds value to others.

2. The data collected from users must be relevant to the purpose of the data collection.

3. The data collected from users should be limited to only the data that is absolutely necessary
from users in order to fulfill the purpose of the initial data collection. If similarly robust
and accurate results can be obtained from a smaller dataset, any additional data beyond this
smaller dataset is not necessary and should not be collected.

Emerging techniques like differential privacy, federated learning, and synthetic data generation
allow for deriving useful insights from less raw user data. Performing data flow mapping and
impact assessments help identify opportunities to minimize raw data usage.

https://dl.acm.org/doi/pdf/10.1145/3397271.3401034?casa_token=NrOifKo6dPMAAAAA:Gl5NZNpZMiuSRpJblj43c1cNXkXyv7oEOuYlOfX2qvT8e-9mOLoLQQYz29itxVh6xakKm8haWRs
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Methodologies like Privacy by Design (Cavoukian 2009) consider such minimization early in sys-
tem architecture. Regulations like GDPR also mandate data minimization principles. With a mul-
tilayered approach across legal, technical, and process realms, data minimization limits risks in
embedded ML products.

54.7.4.1. Case Study - Performance Based Data Minimization

Performance based data minimization (Biega et al. 2020) focuses on expanding upon the third
category of data minimization mentioned above, namely limitation. It specifically defines the ro-
bustness of model results on a given dataset by certain performance metrics, such that data should
not be additionally collected if it does not significantly improve performance. Performance metrics
can be divided into two categories:

1. Global data minimization performance

a. Satisfied if a dataset minimizes the amount of per-user data while its mean performance
across all data is comparable to the mean performance of the original, unminimized dataset.

2. Per user data minimization performance

a. Satisfied if a datasetminimizes the amount of per-user datawhile theminimumperformance
of individual user data is comparable to the minimum performance of individual user data
in the original, unminimized dataset.

Performance based data minimization can be leveraged in several machine learning settings, in-
cluding recommendation algorithms of movies and in e-commerce settings.

Global data minimization is a much more feasible method of data minimization compared to per-
user data minimization, given the much more significant difference in per-user losses between the
minimized dataset and original dataset.

54.7.5. Consent and Transparency

Meaningful consent and transparency are crucial when collecting user data for embedded ML
products like smart speakers, wearables, and autonomous vehicles. When first setup, ideally, the
device should clearly explain what data types are gathered, for what purposes, how they are pro-
cessed, and retention policies. For example, a smart speaker might collect voice samples to train
speech recognition and personalized voice profiles. During use, reminders and dashboard options
give ongoing transparency into how data is handled, such as weekly digests of voice snippets cap-
tured. Control options allow revoking or limiting consent, like disabling storage of voice profiles.

Consent flows should provide granular controls beyond just binary yes/no choices. For instance,
users could selectively consent to certain data uses like training speech recognition but not per-
sonalization. Focus groups and usability testing with target users shape consent interfaces and
wording of privacy policies to optimize comprehension and control. Respecting user rights like
data deletion and rectification demonstrates trustworthiness. Vague legal jargon hampers trans-
parency. Regulations like GDPR and CCPA reinforce consent requirements. Thoughtful consent
and transparency provide users agency over their data while building trust in embeddedML prod-
ucts through open communication and control.
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54.7.6. Privacy Concerns in Machine Learning

54.7.6.1. Generative AI

With the rise of public use of generative AI models, including OpenAI’s GPT4 and other LLMs,
privacy and security concerns have also risen. ChatGPT in particular has been discussed more
recently in relation to privacy, given all the personal information collected from ChatGPT users.
In June, a class action lawsuit was filed against ChatGPT due to concerns that it was trained on
proprietary medical and personal information without proper permissions or consent. As a re-
sult of these privacy concerns, many companies have prohibited their employees from accessing
ChatGPT, and uploading private, company related information to the chatbot. Further, ChatGPT
has been shown to be susceptible to prompt injection attacks and other security attacks that could
compromise the privacy of the proprietary data it was trained upon.

54.7.6.1.1. Case Study

While ChatGPT has instituted protections to prevent people from accessing private and ethically
questionable information, several individuals have successfully been able to bypass these protec-
tions throughprompt injection attacks, and other security attacks. As demonstrated in Figure 54.10,
users have been able to bypassChatGPTprotections tomimic the tone of a “deceased grandmother”
to learn how to bypass a web application firewall (Maanak Gupta et al. 2023).

Further, users have also successfully been able to use reverse psychology to manipulate ChatGPT
and access information initially prohibited by the model. In Figure 54.11, a user is initially pre-
vented from learning about piracy websites through ChatGPT, but is easily able to bypass these
restrictions using reverse psychology.

The ease at which ChatGPT can be manipulated by security attacks is concerning given the pri-
vate information it was trained upon without consent. Further research on data privacy in LLMs
and generative AI should focus on preventing the model from being so naive to prompt injection
attacks.

54.7.6.2. Data Erasure

Many of the previous regulations mentioned above, including GDPR, include a “right to be forgot-
ten” clause. This clause essentially states that “the data subject shall have the right to obtain from
the controller the erasure of personal data concerning him or her without undue delay.” However,
in several cases, even if user data has been erased from a platform, the data is not completely erased
if amachine learningmodel has been trained on this data for separate purposes. Throughmethods
similar to membership inference attacks, other individuals can still predict the training data that a
model was trained upon even if the data’s presence was explicitly removed online.

One approach to addressing privacy concerns with machine learning training data has been
through differential privacy methods. Through the addition of Laplacian noise in the training
set, for example, a model can be robust to membership inference attacks, preventing deleted data
from being recovered. Another approach to preventing deleted data from being inferred from
security attacks is also by simply retraining the model from scratch on the remaining data. Since
this process is time consuming and computationally expensive, other researchers have attempted

https://assets.bwbx.io/documents/users/iqjWHBFdfxIU/rIZH4FXwShJE/v0
https://www.businessinsider.com/chatgpt-companies-issued-bans-restrictions-openai-ai-amazon-apple-2023-7
https://gdpr-info.eu/art-17-gdpr/
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Figure 54.10. Grandma role play to bypass safety restrictions. Credit: Maanak Gupta et al. (2023).
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Figure 54.11. Reverse psychology to bypass safety restrictions. Credit: Maanak Gupta et al. (2023).
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to address privacy concerns surrounding inferring model training data through a process called
machine unlearning, in which a model actively iterates on itself to remove the influence of
“forgotten” data that it might have been trained on, as mentioned below.

54.8. Privacy-Preserving ML Techniques

A myriad of techniques have been developed to preserve privacy, each addressing different as-
pects and challenges of data security. These methods can be broadly categorized into several key
areas: Differential Privacy, which focuses on statistical privacy in data outputs; Federated Learn-
ing, emphasizing decentralized data processing; Homomorphic Encryption and Secure Multi-
party Computation (SMC), both enabling secure computations on encrypted or private data;Data
Anonymization and Data Masking and Obfuscation, which alter data to protect individual iden-
tities; Private Set Intersection and Zero-Knowledge Proofs, facilitating secure data comparisons
and validations; Decentralized Identifiers (DIDs) for self-sovereign digital identities; Privacy-
Preserving Record Linkage (PPRL), linking data across sourceswithout exposure; Synthetic Data
Generation, creating artificial datasets for safe analysis; andAdversarial Learning Techniques, en-
hancing data or model resistance to privacy attacks.

Given the extensive range of these techniques, it is not feasible to delve into each in depth within a
single course or discussion, let alone for any one person to know it all in its glorious detail. There-
fore, we will focus on exploring a few specific techniques in relative detail, providing a deeper
understanding of their principles, applications, and the unique privacy challenges they address in
machine learning. This focused approachwill allowus to have amore comprehensive and practical
understanding of key privacy-preserving methods in the context of modern ML systems.

54.8.1. Differential Privacy

54.8.1.1. Core Idea

Differential Privacy is a framework for quantifying and managing the privacy of individuals in a
dataset (Dwork et al. 2006). It provides a mathematical guarantee that the privacy of individuals
in the dataset will not be compromised, regardless of any additional knowledge an attacker may
possess. The core idea of differential privacy is that the outcome of any analysis (like a statistical
query) should be essentially the same, whether any individual’s data is included in the dataset or
not. This means that by observing the result of the analysis, one cannot determine whether any
individual’s data was used in the computation.

For example, let’s say a database contains medical records for 10 patients. Wewant to release statis-
tics about the prevalence of diabetes in this sample without revealing any one patient’s condition.
To do this, we could add a small amount of randomnoise to the true count before releasing it. If the
true number of diabetes patients is 6, we might add noise from a Laplace distribution to randomly
output 5, 6, or 7 each with some probability. An observer now can’t tell if any single patient has
diabetes based only on the noisy output. The query result looks similar whether each patient’s
data is included or excluded. This is differential privacy. More formally, a randomized algorithm
satisfies ε-differential privacy if for any two neighbor databases D and D� differing by only one
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entry, the probability of any outcome changes by at most a factor of ε. A lower ε provides stronger
privacy guarantees.

The LaplaceMechanism is one of themost straightforward and commonly usedmethods to achieve
differential privacy. It involves adding noise that follows a Laplace distribution to the data or query
results. Apart from the Laplace Mechanism, the general principle of adding noise is central to
differential privacy. The idea is to add random noise to the data or the results of a query. The
noise is calibrated to ensure that it provides the necessary privacy guarantee while keeping the
data useful.

While the Laplace distribution is common, other distributions like Gaussian can also be used.
Laplace noise is used for strict ε-differential privacy for low-sensitivity queries while Gaussian
distributions can be used when privacy does not need to be guaranteed, which is known as (ϵ, �)-
differential privacy. In this relaxed version of differential privacy, epsilon and delta are parameters
that define the amount of privacy guarantee when releasing information or a model related to a
dataset. Epsilon sets a bound on howmuch information can be learned about the data based on the
outputwhile delta allows for a small probability of the privacy guarantee to be violated. The choice
between Laplace, Gaussian, and other distributionswill depend on the specific requirements of the
query and the dataset and the trade-off between privacy and accuracy.

To illustrate the trade-off of privacy and accuracy in (𝜖, 𝛿)-differential privacy, the following graphs
in Figure 54.12 show the results on accuracy for different noise levels on theMNIST dataset, a large
dataset of handwritten digits (Abadi et al. 2016). The delta value (black line; right y-axis) denotes
the level of privacy relaxation (high value means privacy is less stringent). As privacy becomes
more relaxed, the accuracy of the model increases.

Figure 54.12. Privacy-accuracy tradeoff. Credit: Abadi et al. (2016).

The key points to remember about differential privacy is the following:

• Adding Noise: The fundamental technique in differential privacy is adding controlled ran-
dom noise to the data or query results.This noise masks the contribution of individual data
points.

• Balancing Act: There’s a balance between privacy and accuracy.More noise (lower ϵ) in the
data means higher privacy but less accuracy in the model’s results.

• Universality: Differential privacy doesn’t rely on assumptions about what an attacker knows.
This makes it robust against re-identification attacks, where an attacker tries to uncover indi-
vidual data.
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• Applicability: It’s applicable to various types of data and queries, making it a versatile tool
for privacy-preserving data analysis.

54.8.1.2. Trade-offs

There are several trade-offs to make with differential privacy, as is the case with any algorithm.
But let’s focus on the computational specific trade-offs since we care about ML systems. There are
some key computational considerations and tradeoffs when implementing differential privacy in
a machine learning system:

Noise generation: Implementing differential privacy introduces several important computational
tradeoffs compared to standardmachine learning techniques. One major consideration is the need
to securely generate random noise from distributions like Laplace or Gaussian that get added to
query results and model outputs. High-quality cryptographic random number generation can be
computationally expensive.

Sensitivity analysis: Another key requirement is rigorously tracking the sensitivity of the under-
lying algorithms to single data points getting added or removed. This global sensitivity analysis is
required to properly calibrate the noise levels. However, for complex model training procedures
and data pipelines, analyzing worst-case sensitivity can substantially increase computational com-
plexity.

Privacy budgetmanagement: Managing the privacy loss budget acrossmultiple queries and learn-
ing iterations is another bookkeeping overhead. The system needs to keep track of cumulative pri-
vacy costs and compose them to reason about overall privacy guarantees. This adds computational
burden beyond just running queries or training models.

Batch vs online tradeoffs: For online learning systems with continuous high-volume queries, dif-
ferentially private algorithms require new mechanisms to maintain utility and prevent too much
accumulated privacy loss since each query has the potential to alter the privacy budget. Batch of-
fline processing is simpler from a computational perspective as it processes data in large batches
where each batch is treated as a single query. High-dimensional sparse data also increases sensi-
tivity analysis challenges.

Distributed training: When trainingmodels using distributed or federated approaches, new cryp-
tographic protocols are needed to track and bound privacy leakage across nodes. Secure multi-
party computation with encrypted data for differential privacy also adds substantial computa-
tional load.

While differential privacy provides strong formal privacy guarantees, implementing it rigorously
requires additions and modifications to the machine learning pipeline that come at a computa-
tional cost. Managing these overheadswhile preservingmodel accuracy remains an active research
area.

54.8.1.3. Case Study

Apple’s implementation of differential privacy in iOS andMacOS provides a prominent real-world
example of how differential privacy can be deployed at large scale. Apple wanted to collect aggre-

../training/training.qmd
../optimizations/optimizations.qmd
https://machinelearning.apple.com/research/learning-with-privacy-at-scale#DMNS06
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
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gated usage statistics across their ecosystem to improve products and services, but aimed to do so
without compromising individual user privacy.

To achieve this, they implemented differential privacy techniques directly on user devices to
anonymize data points before they are sent to Apple servers. Specifically, Apple uses the Laplace
mechanism to inject carefully calibrated random noise. For example, if a user’s location history
contained [Work, Home, Work, Gym, Work, Home], the differentially private version might
replace the exact locations with a noisy sample like [Gym, Home, Work, Work, Home, Work].

Apple tunes the Laplace noise distribution to provide a high level of privacy while still preserving
utility of the aggregated statistics. Increasing noise levels provides stronger privacy guarantees
(lower ε values in DP terminology), but can reduce data utility. Apple’s privacy engineers empiri-
cally optimized this tradeoff based on their product goals.

By aggregating hundreds of millions of noisy data points from devices, Apple obtains high fidelity
aggregated statistics. For instance, they can analyze features used in new iOS apps while provably
masking any one user’s app behaviors. On-device computation avoids sending raw data to Apple
servers.

The system uses hardware-based secure random number generation to efÏciently sample from the
Laplace distribution on devices. Apple also had to optimize their differentially private algorithms
and pipeline to operate under the computational constraints of consumer hardware.

Multiple third-party audits have verified that Apple’s system provides rigorous differential pri-
vacy protections in line with their stated policies. Of course, assumptions around composition
over time and potential re-identification risks still apply. But overall, Apple’s deployment shows
how differential privacy can be realized in large real-world products when backed by sufÏcient
engineering resources.

54.8.2. Federated Learning

54.8.2.1. Core Idea

Federated Learning (FL) is a type of machine learning where the process of building a model is
distributed across multiple devices or servers, while keeping the training data localized. It was
previously discussed in the Model Optimizations chapter, but we will recap it here briefly for the
purposes of completion and focus on things that pertain to this chapter.

FL aims to train machine learning models across decentralized networks of devices or systems
while keeping all training data localized. Figure 54.13 illustrates this process: each participating
device leverages its local data to calculate model updates which are then aggregated to build an
improved global model. However, the raw training data itself is never directly shared, transferred,
or compiled together. This privacy-preserving approach allows jointly developing ML models
without centralizing the potentially sensitive training data in one place.

One of the most common model aggregation algorithms is Federated Averaging (FedAvg) where
the global model is created by averaging all of the parameters from local parameters. While Fe-
dAvgworks well with independent and identically distributed data (IID), alternate algorithms like
Federated Proximal (FedProx) are crucial in real-world applications where data is often non-IID.
FedProx is designed for the FL process when there is significant heterogeneity in the client updates

../optimizations/optimizations.qmd
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Figure 54.13. Federated Learning lifecycle. Credit: Jin et al. (2020).

due to diverse data distributions across devices, computational capabilities, or varied amounts of
data.

By leaving the raw data distributed and exchanging only temporary model updates, federated
learning provides a more secure and privacy-enhancing alternative to traditional centralized ma-
chine learning pipelines. This allows organizations andusers to collaboratively benefit from shared
models while maintaining control and ownership over their sensitive data. The decentralized na-
ture of FL also makes it robust to single points of failure.

Imagine a group of hospitals that want to collaborate on a study to predict patient outcomes based
on their symptoms. However, due to privacy concerns and regulations like HIPAA, they cannot
share their patient data with each other. Here’s how Federated Learning can help.

• Local Training: Each hospital trains a machine learning model on its own patient data. This
training happens locally, meaning thedata never leaves the hospital’s servers.

• Model Sharing: After training, each hospital only sends the model (specifically, the param-
eters or weights of the model) to acentral server. They do not send any patient data.

• Aggregating Models: The central server aggregates these models from all hospitals into a
single, more robust model. This process typically involves averaging the model parameters.

• Benefit: The end result is a machine learning model that has learned from a wide range
of patient data without any of that sensitive data having to be shared or leave its original
location.
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54.8.2.2. Trade-offs

There are several system performance-related aspects of FL in machine learning systems. It would
be wise to understand these trade-offs because there is no “free lunch” for preserving privacy
through FL (T. Li et al. 2020).

CommunicationOverhead andNetworkConstraints: In FL, one of themost significant challenges
is managing the communication overhead. This involves the frequent transmission of model up-
dates between a central server and numerous client devices, which can be bandwidth-intensive.
The total number of communication rounds and the size of transmitted messages per round needs
to be reduced in order to further minimize communication. Especially in scenarios with a large
number of participants, this can lead to substantial network trafÏc. Additionally, latency becomes
a critical factor — the time taken for these updates to be sent, aggregated, and redistributed can
introduce delays. This not only affects the overall training time but also impacts the responsiveness
and real-time capabilities of the system. EfÏciently managing this communication while minimiz-
ing bandwidth usage and latency is crucial for the practical implementation of FL.

Computational Load onLocalDevices: FL relies on client devices (like smartphones or IoTdevices,
which especially matters in TinyML) for model training, which often have limited computational
power and battery life. Running complex machine learning algorithms locally can strain these
resources, leading to potential performance issues. Moreover, the capabilities of these devices can
vary significantly, resulting in uneven contributions to the model training process. Some devices
might process updates faster andmore efÏciently than others, leading to disparities in the learning
process. Balancing the computational load to ensure consistent participation and efÏciency across
all devices is a key challenge in FL.

Model Training EfÏciency: The decentralized nature of FL can impact the efÏciency of model
training. Achieving convergence, where the model no longer significantly improves, can be slower
in FL compared to centralized training methods. This is particularly true in cases where the data
is non-IID (non-independent and identically distributed) across devices. Additionally, the algo-
rithms used for aggregating model updates play a critical role in the training process. Their ef-
ficiency directly affects the speed and effectiveness of learning. Developing and implementing
algorithms that can handle the complexities of FL while ensuring timely convergence is essential
for the system’s performance.

Scalability Challenges: Scalability is a significant concern in FL, especially as the number of par-
ticipating devices increases. Managing and coordinating model updates from a large number of
devices adds complexity and can strain the system. Ensuring that the system architecture can ef-
ficiently handle this increased load without degrading performance is crucial. This involves not
just handling the computational and communication aspects but also maintaining the quality and
consistency of the model as the scale of the operation grows. Designing FL systems that can scale
effectively while maintaining performance is a key challenge.

Data Synchronization and Consistency: Ensuring data synchronization and maintaining model
consistency across all participating devices in FL is challenging. In environments with intermit-
tent connectivity or devices that go ofÒine periodically, keeping all devices synchronized with the
latest model version can be difÏcult. Furthermore, maintaining consistency in the learned model,
especially when dealing with a wide range of devices with different data distributions and update
frequencies, is crucial. This requires sophisticated synchronization and aggregation strategies to
ensure that the final model accurately reflects the learnings from all devices.
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Energy Consumption: The energy consumption of client devices in FL is a critical factor, partic-
ularly for battery-powered devices like smartphones and other TinyML/IoT devices. The com-
putational demands of training models locally can lead to significant battery drain, which might
discourage continuous participation in the FL process. Balancing the computational requirements
ofmodel trainingwith energy efÏciency is essential. This involves optimizing algorithms and train-
ing processes to reduce energy consumption while still achieving effective learning outcomes. En-
suring energy-efÏcient operation is key to user acceptance and the sustainability of FL systems.

54.8.2.3. Case Studies

Here are a couple of real-world case studies that can illustrate the use of federated learning:

54.8.2.3.1. Google Gboard

Google uses federated learning to improve predictions on its Gboard mobile keyboard app. The
app runs a federated learning algorithm on users’ devices to learn from their local usage patterns
and text predictions while keeping user data private. The model updates are aggregated in the
cloud to produce an enhanced global model. This allows providing next-word prediction person-
alized to each user’s typing style, while avoiding directly collecting sensitive typing data. Google
reported the federated learning approach reduced prediction errors by 25% compared to baseline
while preserving privacy.

54.8.2.3.2. Healthcare Research

The UK Biobank and American College of Cardiology combined datasets to train a model for heart
arrhythmia detection using federated learning. The datasets could not be combined directly due
to legal and privacy restrictions. Federated learning allowed collaborative model development
without sharing protected health data, with only model updates exchanged between the parties.
This improvedmodel accuracy as it could leverage awider diversity of training data while meeting
regulatory requirements.

54.8.2.3.3. Financial Services

Banks are exploring using federated learning for anti-money laundering (AML) detection models.
Multiple banks could jointly improve AML Models without having to share confidential customer
transaction data with competitors or third parties. Only the model updates need to be aggregated
rather than raw transaction data. This allows access to richer training data from diverse sources
while avoiding regulatory and confidentiality issues around sharing sensitive financial customer
data.

These examples demonstrate how federated learning provides tangible privacy benefits and en-
ables collaborative ML in settings where direct data sharing is not possible.
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54.8.3. Machine Unlearning

54.8.3.1. Core Idea

Machine unlearning is a fairly new process, describing the methods in which the influence of a
subset of training data can be removed from the model. There are several methods that have been
used to performmachine unlearning and remove the influence of a subset of training data from the
finalmodel. A baseline approachmight consist of simply fine tuning themodel formore epochs on
just the data that should be remembered, in order to decrease the influence of the data that should
be “forgotten” by the model. Since this approach doesn’t explicitly remove the influence of data
that should be erased, membership inference attacks are still possible, so researchers have adopted
other approaches to explicitly unlearn data from a model. One type of approach that researchers
have adopted includes adjusting the model loss function to explicitly treat the losses of the “forget
set” (data to be unlearned) and the “retain set” (remaining data that should still be remembered)
differently (Tarun et al. 2022; Khan and Swaroop 2021).

54.8.3.2. Case Study

Some researchers demonstrate a real life example of machine unlearning approaches applied to
SOTA machine learning models through training an LLM, LLaMA2-7b, to unlearn any references
toHarry Potter (Eldan andRussinovich 2023). Though thismodel took 184KGPU-hours to pretrain,
it only took 1 GPU hour of fine tuning to erase the model’s ability to generate or recall Harry Potter-
related content, without noticeably compromising the accuracy of generating content unrelated to
Harry Potter. Figure 54.14 demonstrates how the model output changes before (Llama-7b-chat-hf
column) and after (Finetuned Llama-b column) unlearning has occurred.

54.8.3.3. Other Uses

54.8.3.3.1. Removing adversarial data

Deep learningmodels have previously been shown to be vulnerable to adversarial attacks, inwhich
the attacker generates adversarial data similar to the original training data, to the point where a
human cannot tell the difference between the real and fabricated data. The adversarial data results
in the model outputting incorrect predictions, which could have detrimental consequences in var-
ious applications, including healthcare diagnoses predictions. Machine unlearning has been used
to unlearn the influence of adversarial data to prevent these incorrect predictions from occurring
and causing any harm

54.8.4. Homomorphic Encryption

54.8.4.1. Core Idea

Homomorphic encryption is a form of encryption that allows computations to be carried out on
ciphertext, generating an encrypted result that, when decrypted, matches the result of operations
performed on the plaintext. For example, multiplying two numbers encryptedwith homomorphic
encryption produces an encrypted product that decrypts the actual product of the two numbers.

https://arxiv.org/pdf/2209.02299.pdf
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Figure 54.14. Llama unlearning Harry Potter. Credit: Eldan and Russinovich (2023).



Chapter 54. Security & Privacy 577

This means that data can be processed in an encrypted form, and only the resulting output needs
to be decrypted, significantly enhancing data security, especially for sensitive information.

Homomorphic encryption enables outsourced computation on encrypted data without exposing
the data itself to the external party performing the operations. However, only certain computations
like addition and multiplication are supported in partially homomorphic schemes. Fully homo-
morphic encryption (FHE) that can handle any computation is even more complex. The number
of possible operations is limited before noise accumulation corrupts the ciphertext.

To use homomorphic encryption across different entities, carefully generated public keys need to
be exchanged to carry out operations across separately encrypted data. This advanced encryption
technique enables previously impossible secure computation paradigms but requires expertise to
implement correctly for real-world systems.

54.8.4.2. Benefits

Homomorphic encryption enables machine learning model training and inference on encrypted
data, ensuring that sensitive inputs and intermediate values remain confidential. This is critical in
healthcare, finance, genetics, and other domains increasingly relying on ML to analyze sensitive
and regulated data sets containing billions of personal records.

Homomorphic encryption thwarts attacks like model extraction and membership inference that
could expose private data used in ML workflows. It provides an alternative to TEEs using hard-
ware enclaves for confidential computing. However, current schemes have high computational
overheads and algorithmic limitations that constrain real-world applications.

Homomorphic encryption realizes the decades-old vision of secure multiparty computation by
allowing computation on ciphertexts. After being conceptualized in the 1970s, the first fully ho-
momorphic crypto systems emerged in 2009, enabling arbitrary computations. Ongoing research
is making these techniques more efÏcient and practical.

Homomorphic encryption shows great promise in enabling privacy-preserving machine learning
under emerging data regulations. However given constraints, one should carefully evaluate its
applicability against other confidential computing approaches. Extensive resources exist to explore
homomorphic encryption and track progress in easing adoption barriers.

54.8.4.3. Mechanics

1. Data Encryption: Before data is processed or sent to a ML model, it is encrypted using a
homomorphic encryption scheme and public key. For example, encrypting numbers 𝑥 and 𝑦
generates ciphertexts 𝐸(𝑥) and 𝐸(𝑦).

2. Computation on Ciphertext: The ML algorithm processes the encrypted data directly. For
instance, multiplying the ciphertexts 𝐸(𝑥) and 𝐸(𝑦) generates 𝐸(𝑥𝑦). More complex model
training can also be done on ciphertexts.

3. Result Encryption: The result 𝐸(𝑥𝑦) remains encrypted and can only be decrypted by some-
one with the corresponding private key to reveal the actual product 𝑥𝑦.
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Only authorized parties with the private key can decrypt the final outputs, protecting the inter-
mediate state. However, noise accumulates with each operation eventually preventing further
computation without decryption.

Beyond healthcare, homomorphic encryption enables confidential computing for applications like
financial fraud detection, insurance analytics, genetics research, and more. It offers an alternative
to techniques like multi-party computation and TEEs. Ongoing research aims to improve the efÏ-
ciency and capabilities.

Tools like HElib, SEAL, and TensorFlow HE provide libraries to explore implementing homomor-
phic encryption for real-world machine learning pipelines.

54.8.4.4. Trade-offs

For many real-time and embedded applications, fully homomorphic encryption remains impracti-
cal for the following reasons.

Computational Overhead: Homomorphic encryption imposes very high computational over-
heads, often resulting in slowdowns of over 100x for real-world ML applications. This makes
it impractical for many time-sensitive or resource-constrained uses. Optimized hardware and
parallelization can help but not eliminate this issue.

Complexity of Implementation: The sophisticated algorithms require deep expertise in cryptogra-
phy to implement correctly. Nuances like format compatibility with floating point MLmodels and
scalable keymanagement pose hurdles. This complexity hinders widespread practical adoption.

Algorithmic Limitations: Current schemes restrict the functions and depth of computations sup-
ported, limiting the models and data volumes that can be processed. Ongoing research is pushing
these boundaries but restrictions remain.

Hardware Acceleration: To be feasible, homomorphic encryption requires specialized hardware
like secure processors or co-processors with TEEs. This adds design and infrastructure costs.

Hybrid Designs: Rather than encrypting entire workflows, selective application of homomorphic
encryption to critical subcomponents can achieve protection while minimizing overheads.

54.8.5. Secure Multi-Party Communication

54.8.5.1. Core Idea

The overarching goal of MPC is to enable different parties to jointly compute a function over their
inputswhile keeping those inputs private. For example, two organizationsmaywant to collaborate
on training a machine learning model by combining their respective data sets, but cannot directly
reveal that data to each other due to privacy or confidentiality constraints. MPC aims to provide
protocols and techniques that allow them to achieve the benefits of pooled data for model accuracy,
without compromising the privacy of each organization’s sensitive data.

At a high level, MPCworks by carefully splitting up the computation into separate parts that can be
executed independently by eachparty using their ownprivate input. The results are then combined
in a manner that reveals only the final output of the function and nothing about the intermediate
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values. Cryptographic techniques are used to provably guarantee that the partial results remain
private.

Let’s take a simple example of an MPC protocol. One of the most basic MPC protocols is secure
addition of two numbers. Each party splits their input into random shares that are secretly dis-
tributed. They exchange the shares and locally compute the sum of the shares which reconstructs
the final sum without revealing the individual inputs. For example, if Alice has input x and Bob
has input y:

1. Alice generates random 𝑥1 and sets 𝑥2 = 𝑥−𝑥1
2. Bob generates random 𝑦1 and sets 𝑦2 = 𝑦 −𝑦1
3. Alice sends 𝑥1 to Bob, Bob sends 𝑦1 to Alice (keeping 𝑥2 and 𝑦2 secret)

4. Alice computes 𝑥2 +𝑦1 = 𝑠1, Bob computes 𝑥1 +𝑦2 = 𝑠2
5. 𝑠1 +𝑠2 = 𝑥+𝑦 is the final sum, without revealing 𝑥 or 𝑦.

Alice’s and Bob’s individual inputs (𝑥 and 𝑦) remain private, and each party only reveals one num-
ber associated with their original inputs. The random spits ensure no information about the origi-
nal numbers disclosed

Secure Comparison: Another basic operation is secure comparison of two numbers, determining
which is greater than the other. This can be done using techniques like Yao’s Garbled Circuits
where the comparison circuit is encrypted to allow joint evaluation on the inputs without leaking
them.

Secure Matrix Multiplication: Matrix operations like multiplication are essential for machine
learning. MPC techniques like additive secret sharing can be used to split matrices into random
shares, compute products on the shares, then reconstruct the result.

Secure Model Training: Distributed machine learning training algorithms like federated averag-
ing can be made secure using MPC. Model updates computed on partitioned data at each node
are secretly shared between nodes and aggregated to train the global model without exposing in-
dividual updates.

The core idea behind MPC protocols is to divide the computation into steps that can be executed
jointly without revealing intermediate sensitive data. This is accomplished by combining crypto-
graphic techniques like secret sharing, homomorphic encryption, oblivious transfer, and garbled
circuits. MPC protocols enable collaborative computation on sensitive data while providing prov-
able privacy guarantees. This privacy-preserving capability is essential for manymachine learning
applications today involving multiple parties that cannot directly share their raw data.

The main approaches used in MPC include:

• Homomorphic encryption: Special encryption allows computations to be carried out on en-
crypted data without decrypting it.

• Secret sharing: The private data is divided into random shares that are distributed to each
party. Computations are done locally on the shares and finally reconstructed.

• Oblivious transfer: A protocol where a receiver obtains a subset of data from a sender, but
the sender does not know which specific data was transferred.
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• Garbled circuits: The function to be computed is represented as a Boolean circuit that is
encrypted (“garbled”) in a way that allows joint evaluation without revealing inputs.

54.8.5.2. Trade-offs

While MPC protocols provide strong privacy guarantees, they come at a high computational cost
compared to plain computations. Every secure operation like addition, multiplication, comparison,
etc requires orders ofmagnitudemore processing than the equivalent unencrypted operation. This
overhead stems from the underlying cryptographic techniques:

• In partially homomorphic encryption, each computation on ciphertexts requires costly
public-key operations. Fully homomorphic encryption has even higher overheads.

• Secret sharing divides data into multiple shares, so even basic operations require manipulat-
ing many shares.

• Oblivious transfer and garbled circuits add masking and encryption to hide data access pat-
terns and execution flows.

• MPC systems require extensive communication and interaction between parties to jointly
compute on shares/ciphertexts.

As a result, MPC protocols can slow down computations by 3-4 orders of magnitude compared
to plain implementations. This becomes prohibitively expensive for large datasets and models.
Therefore, training machine learning models on encrypted data using MPC remains infeasible to-
day for realistic dataset sizes due to the overhead. Clever optimizations and approximations are
needed to make MPC practical.

Ongoing MPC research aims to close this efÏciency gap through cryptographic advances, new
algorithms, trusted hardware like SGX enclaves, and leveraging accelerators like GPUs/TPUs. But
for the foreseeable future, some degree of approximation and performance tradeoff is likely needed
to scale MPC to the demands of real-world machine learning systems.

54.8.6. Synthetic Data Generation

54.8.6.1. Core Idea

Synthetic data generation has emerged as an important privacy-preserving machine learning ap-
proach that allows models to be developed and tested without exposing real user data. The key
idea is to train generative models on real-world datasets, then sample from these models to syn-
thesize artificial data that statistically matches the original data distribution but does not contain
actual user information. For example, a GAN could be trained on a dataset of sensitive medical
records to learn the underlying patterns, then used to sample synthetic patient data.

The primary challenge of synthesizing data is to ensure adversaries are unable to re-identify the
original dataset. A simple approach to achieving synthetic data is to add noise to the original
dataset, but this still risks privacy leakage. When noise is added to data in the context of differen-
tial privacy, it involves sophisticated mechanisms based on data’s sensitivity to calibrate amount
and distribution of noise. Through thesemathematically rigorous frameworks, differential privacy
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generally guarantees privacy at some level which is the primary goal of this privacy-preserving
technique. Beyond preserving privacy, synthetic data, however, combats multiple data availabil-
ity issues such as imbalanced datasets, scarce datasets, and anomaly detection.

Researchers can freely share this synthetic data and collaborate onmodelingwithout revealing any
private medical information. Well-constructed synthetic data protects privacy while providing
utility for developing accurate models. Key techniques to prevent reconstruction of the original
data include adding differential privacy noise during training, enforcing plausibility constraints,
and using multiple diverse generative models. Here are some common approaches for generating
synthetic data:

• Generative Adversarial Networks (GANs): GANs are a type of AI algorithm used in un-
supervised learning where two neural networks contest against each other in a game. Fig-
ure 54.15 is an overview of the GAN system. The generator network (big red box) is respon-
sible for producing the synthetic data and the discriminator network (yellow box) evaluates
the authenticity of the data by distinguishing between fake data created by the generator
network and the real data. Both the generator and disciminator networks learn and update
their parameters based on the results. The discriminator acts as a metric on how similar the
fake and real data are to one another. It is highly effective at generating realistic data and is,
therefore, a popular approach for generating synthetic data.

Figure 54.15. Flowchart of GANs. Credit: Rosa and Papa (2021).

• Variational Autoencoders (VAEs): VAEs are neural networks that are capable of learning
complex probability distributions and balance between data generation quality and compu-
tational efÏciency. They encode data into a latent space where they learn the distribution in
order to decode the data back.

• Data Augmentation: This involves applying transformations to existing data to create new,
altered data. For example, flipping,rotating, and scaling (uniformly or non-uniformly) origi-
nal images can help create a more diverse, robust image dataset before training anMLmodel.

• Simulations: Mathematical models can simulate real-world systems or processes to mimic
real-world phenomena. This is highly useful in scientific research, urban planning, and eco-
nomics.
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54.8.6.2. Benefits

While synthetic data may be necessary due to privacy or compliance risks, it is widely used in
machine learning models when available data is of poor quality, scarce, or inaccessible. Synthetic
data offers more efÏcient and effective development by streamlining robust model training, testing
and deployment processes. It allowsmodels to be sharedmore widely among researchers without
breaching privacy laws and regulations. Collaboration between users of the same dataset will be
facilitated which will help broaden the capabilities and advancements in ML research.

There are several motivations for using synthetic data in machine learning:

• Privacy and compliance: Synthetic data avoids exposing personal information, allowing
more open sharing and collaboration. This is important when working with sensitive
datasets like healthcare records or financial information.

• Data scarcity: When insufÏcient real-world data is available,synthetic data can augment
training datasets. This improves model accuracy when limited data is a bottleneck.

• Model testing: Synthetic data provides privacy-safe sandboxes for testing model perfor-
mance, debugging issues, and monitoring for bias.

• Data labeling: High-quality labeled training data is often scarce and expensive. Synthetic
data can help auto-generate labeled examples.

54.8.6.3. Trade-offs

While synthetic data aims to remove any evidence of the original dataset, privacy leakage is still
a risk since the synthetic data is mimicking the original data. The statistical information and dis-
tribution is similar, if not the same, between the original and synthetic data. By resampling from
the distribution, adversaries may still be able to recover the original training samples. Due to their
inherent learning processes and complexities,neural networks might accidentally reveal sensitive
information about the original training data.

A core challenge with synthetic data is the potential gap between synthetic and real-world data
distributions. Despite advancements in generative modeling techniques, synthetic data may not
fully capture the complexity, diversity, and nuanced patterns of real data. This can limit the utility
of synthetic data for robustly training machine learning models. Rigorously evaluating synthetic
data quality through techniques like adversary methods and comparing model performance to
real data benchmarks helps assess and improve fidelity. But inherently, synthetic data remains an
approximation.

Another critical concern is the privacy risks of synthetic data. Generative models may leak identifi-
able information about individuals in the training data that could enable reconstruction of private
information. Emerging adversarial attacks demonstrate the challenges in preventing identity leak-
age from synthetic data generation pipelines. Techniques like differential privacy ca help safeguard
privacy but come with tradeoffs in data utility. There is an inherent tension between producing
useful synthetic data and fully protecting sensitive training data that must be balanced.

Additional pitfalls of synthetic data include amplified biases, labeling difÏculties, computational
overhead of training generativemodels, storage costs, and failure to account for out-of-distribution
novel data. While these are secondary to the core synthetic-real gap and privacy risks, they remain
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important considerations when evaluating the suitability of synthetic data for particular machine
learning tasks. As with any technique, the advantages of synthetic data come with inherent trade-
offs and limitations that require thoughtful mitigation strategies.

54.8.7. Summary

While all the techniques we have discussed thus far aim to enable privacy-preserving machine
learning, they involve distinct mechanisms and tradeoffs. Factors like computational constraints,
required trust assumptions, threatmodels, and data characteristics help guide the selection process
for a particular use case. But finding the right balance between privacy, accuracy and efÏciency ne-
cessitates experimentation and empirical evaluation for many applications. Below is a comparison
table of the key privacy-preserving machine learning techniques and their pros and cons:

Technique Pros Cons

Differential Privacy Strong formal privacy
guarantees Robust to auxiliary
data attacks Versatile for many
data types and analyses

Accuracy loss from noise
addition Computational
overhead for sensitivity
analysis and noise generation

Federated Learning Allows collaborative learning
without sharing raw data Data
remains decentralized
improving security No need
for encrypted computation

Increased communication
overhead Potentially slower
model convergence Uneven
client device capabilities

Secure Multi-Party
Computation

Enables joint computation on
sensitive data Provides
cryptographic privacy
guarantees Flexible protocols
for various functions

Very high computational
overhead Complexity of
implementation Algorithmic
constraints on function depth

Homomorphic Encryption Allows computation on
encrypted data Prevents
intermediate state exposure

Extremely high computational
cost Complex cryptographic
implementations Restrictions
on function types

Synthetic Data Generation Enables data sharing without
leakage Mitigates data scarcity
problems

Synthetic-real gap in
distributions Potential for
reconstructing private data
Biases and labeling challenges

54.9. Conclusion

Machine learning hardware security is a critical concern as embeddedML systems are increasingly
deployed in safety-critical domains like medical devices, industrial controls, and autonomous ve-
hicles. We have explored various threats spanning hardware bugs, physical attacks, side channels,
supply chain risks and more. Defenses like TEEs, secure boot, PUFs, and hardware security mod-
ules provide multilayer protection tailored for resource-constrained embedded devices.
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However, continual vigilance is essential to track emerging attack vectors and address potential
vulnerabilities through secure engineering practices across the hardware lifecycle. As ML and em-
bedded ML spreads, maintaining rigorous security foundations that match the field’s accelerating
pace of innovation remains imperative.

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.
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55. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• Security.

• Privacy.

• Monitoring after Deployment.

https://docs.google.com/presentation/d/1wFUfVe5CXb_nzjUVpSPsGqXJC61ZuQLhnczKgidx4kE/edit#slide=id.p1
https://docs.google.com/presentation/d/1uZBAlcxrDrWY9TTQN7RffusBnMp4WXtuJaHA2VjynbY/edit#slide=id.p1
https://docs.google.com/presentation/d/1WlQdk40zJcW9Bx6ua-vKu3sDrMU_iI89BQGMGk6OEB0/edit?usp=drive_link
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56. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.
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57. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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58. Responsible AI

Figure 58.1. DALL·E 3 Prompt: Illustration of responsibleAI in a futuristic settingwith the universe
in the backdrop: A human hand or hands nurturing a seedling that grows into an AI tree, sym-
bolizing a neural network. The tree has digital branches and leaves, resembling a neural network,
to represent the interconnected nature of AI. The background depicts a future universe where
humans and animals with general intelligence collaborate harmoniously. The scene captures the
initial nurturing of the AI as a seedling, emphasizing the ethical development of AI technology in
harmony with humanity and the universe.

As machine learning models grow across various domains, these algorithms have the potential to
perpetuate historical biases, breach privacy, or enable unethical automated decisions if developed
without thoughtful consideration of their societal impacts. Even systems created with good in-
tentions can ultimately discriminate against certain demographic groups, enable surveillance, or
lack transparency into their behaviors and decision-making processes. As such, machine learning
engineers and companies have an ethical responsibility to proactively ensure principles of fairness,
accountability, safety, and transparency are reflected in their models to prevent harm and build
public trust.
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Learning Objectives

• Understand the core principles and motivations behind responsible AI, including fair-
ness, transparency, privacy, safety, and accountability.

• Learn technical methods for putting responsible AI principles into practice, like detect-
ing dataset biases, building interpretable models, adding noise for privacy, and testing
model robustness.

• Recognize organizational and social challenges to achieving responsible AI, including
issues around data quality, model objectives, communication, and job impacts.

• Gain knowledge of ethical frameworks and considerations for AI systems, spanning AI
safety, human autonomy, and economic consequences.

• Appreciate the increased complexity and costs associatedwith developing ethical, trust-
worthy AI systems compared to unprincipled AI.

58.1. Introduction

Machine learning models are increasingly used to automate decisions in high-stakes social do-
mains like healthcare, criminal justice, and employment. However, without deliberate care, these
algorithms can perpetuate biases, breach privacy, or cause other harm. For instance, a loan ap-
proval model solely trained on data from high-income neighborhoods could disadvantage appli-
cants from lower-income areas. Thismotivates the need for responsiblemachine learning - creating
fair, accountable, transparent, and ethical models.

Several core principles underlie responsible ML. Fairness ensures models do not discriminate
based on gender, race, age, and other attributes. Explainability enables humans to interpret model
behaviors and improve transparency. Robustness and safety techniques prevent vulnerabilities
like adversarial examples. Rigorous testing and validation help reduce unintended model
weaknesses or side effects.

Implementing responsible ML presents both technical and ethical challenges. Developers must
grapple with defining fairness mathematically, balancing competing objectives like accuracy vs
interpretability, and securing quality training data. Organizations must also align incentives, poli-
cies, and culture to uphold ethical AI.

This chapterwill equip you to critically evaluateAI systems and contribute to developing beneficial
and ethical machine learning applications by covering the foundations, methods, and real-world
implications of responsible ML. The responsible ML principles discussed are crucial knowledge as
algorithms mediate more aspects of human society.

58.2. Definition

Responsible AI is about developing AI that positively impacts society under human ethics and
values. There is no universally agreed-upon definition of “responsible AI,” but here is a summary
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of how it is commonly described. Responsible AI refers to designing, developing, and deploying
artificial intelligence systems in an ethical, socially beneficial way. The core goal is to create trust-
worthy, unbiased, fair, transparent, accountable, and safe AI.While there is no canonical definition,
responsible AI is generally considered to encompass principles such as:

• Fairness: Avoiding biases, discrimination, and potential harm to certain groups or popula-
tions

• Explainability: Enabling humans to understand and interpret how AI models make deci-
sions

• Transparency: Openly communicating how AI systems operate, are built, and are evaluated

• Accountability: Having processes to determine responsibility and liability for AI failures or
negative impacts

• Robustness: Ensuring AI systems are secure, reliable and behave as intended

• Privacy: Protecting sensitive user data and adhering to privacy laws and ethics

Putting these principles into practice involves technical techniques, corporate policies, governance
frameworks, and moral philosophy. There are also ongoing debates around defining ambiguous
concepts like fairness and determining how to balance competing objectives.

58.3. Principles and Concepts

58.3.1. Transparency and Explainability

Machine learning models are often criticized as mysterious “black boxes” - opaque systems where
it’s unclear how they arrived at particular predictions or decisions. For example, an AI system
called COMPAS used to assess criminal recidivism risk in the U.S. was found to be racially biased
against black defendants. Still, the opacity of the algorithm made it difÏcult to understand and fix
the problem. This lack of transparency can obscure biases, errors, and deficiencies.

Explainingmodel behaviors helps engender trust from the public and domain experts and enables
identifying issues to address. Interpretability techniques like LIME, Shapley values, and saliency
maps empower humans to understand and validate model logic. Laws like the EU’s GDPR also
mandate transparency, which requires explainability for certain automated decisions. Overall,
transparency and explainability are critical pillars of responsible AI.

58.3.2. Fairness, Bias, and Discrimination

ML models trained on historically biased data often perpetuate and amplify those prejudices.
Healthcare algorithms have been shown to disadvantage black patients by underestimating their
needs (Obermeyer et al. 2019). Facial recognition needs to be more accurate for women and
people of color. Such algorithmic discrimination can negatively impact people’s lives in profound
ways.

https://doc.wi.gov/Pages/AboutDOC/COMPAS.aspx
https://homes.cs.washington.edu/~marcotcr/blog/lime/
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Different philosophical perspectives also exist on fairness - for example, is it fairer to treat all indi-
viduals equally or try to achieve equal outcomes for groups? Ensuring fairness requires proactively
detecting andmitigating biases in data andmodels. However, achieving perfect fairness is tremen-
dously difÏcult due to contrasting mathematical definitions and ethical perspectives. Still, promot-
ing algorithmic fairness and non-discrimination is a key responsibility in AI development.

58.3.3. Privacy and Data Governance

Maintaining individuals’ privacy is an ethical obligation and legal requirement for organizations
deploying AI systems. Regulations like the EU’s GDPR mandate data privacy protections and
rights like the ability to access and delete one’s data.

However, maximizing the utility and accuracy of data for training models can conflict with pre-
serving privacy - modeling disease progression could benefit from access to patients’ full genomes
but sharing such data widely violates privacy.

Responsible data governance involves carefully anonymizing data, controlling access with encryp-
tion, getting informed consent from data subjects, and collecting the minimum data needed. Hon-
oring privacy is challenging but critical as AI capabilities and adoption expand.

58.3.4. Safety and Robustness

Putting AI systems into real-world operation requires ensuring they are safe, reliable, and robust,
especially for human interaction scenarios. Self-driving cars from Uber and Tesla have been in-
volved in deadly crashes due to unsafe behaviors.

Adversarial attacks that subtly alter input data can also fool ML models and cause dangerous fail-
ures if systems are not resistant. Deepfakes represent another emerging threat area.

https://www.youtube.com/watch?v=AmUC4m6w1wo&ab_channel=BBCNews

Promoting safety requires extensive testing, risk analysis, human oversight, and designing systems
that combine multiple weak models to avoid single points of failure. Rigorous safety mechanisms
are essential for the responsible deployment of capable AI.

58.3.5. Accountability and Governance

When AI systems eventually fail or produce harmful outcomes, there must be mechanisms to ad-
dress resultant issues, compensate affected parties, and assign responsibility. Both corporate ac-
countability policies and government regulations are indispensable for responsible AI governance.
For instance, Illinois’ Artificial Intelligence Video InterviewAct requires companies to disclose and
obtain consent for AI video analysis, promoting accountability.

Without clear accountability, even harms caused unintentionally could go unresolved, furthering
public outrage and distrust. Oversight boards, impact assessments, grievance redress processes,
and independent audits promote responsible development and deployment.

https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.washingtonpost.com/technology/2022/06/15/tesla-autopilot-crashes/
https://www.youtube.com/watch?v=AmUC4m6w1wo&ab_channel=BBCNews
https://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID@15&ChapterIDh
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58.4. Cloud, Edge & Tiny ML

While these principles broadly apply across AI systems, certain responsible AI considerations are
unique or pronounced when dealing with machine learning on embedded devices versus tradi-
tional server-basedmodeling. Therefore, we present a high-level taxonomy comparing responsible
AI considerations across cloud, edge, and TinyML systems.

58.4.1. Summary

The table below summarizes how responsible AI principles manifest differently across cloud, edge,
and TinyML architectures and how core considerations tie into their unique capabilities and lim-
itations. Each environment’s constraints and tradeoffs shape how we approach transparency, ac-
countability, governance, and other pillars of responsible AI.

Principle Cloud ML Edge ML TinyML

Explainability Complex models
supported

Lightweight required Severe limits

Fairness Broad data available On-device biases Limited data labels
Privacy Cloud data

vulnerabilities
More sensitive data Data dispersed

Safety Hacking threats Real-world interaction Autonomous devices
Accountability Corporate policies Supply chain issues Component tracing
Governance External oversight

feasible
Self-governance
needed

Protocol constraints

58.4.2. Explainability

For cloud-based machine learning, explainability techniques can leverage significant compute re-
sources, enabling complex methods like SHAP values or sampling-based approaches to interpret
model behaviors. For example, Microsoft’s InterpretML toolkit provides explainability techniques
tailored for cloud environments.

However, edge ML operates on resource-constrained devices, requiring more lightweight explain-
ability methods that can run locally without excessive latency. Techniques like LIME (Ribeiro,
Singh, and Guestrin 2016) approximate model explanations using linear models or decision trees
to avoid expensive computations, which makes them ideal for resource-constrained devices. But
LIME requires training hundreds to even thousands of models to generate good explanations,
which is often infeasible given edge computing constraints. In contrast, saliency-based methods
are often much faster in practice, only requiring a single forward pass through the network to esti-
mate feature importance. This greater efÏciencymakes suchmethods better suited to edge devices
with limited compute resources where low-latency explanations are critical.

Embedded systems poses the most significant challenges for explainability, given tiny hard-
ware capabilities. More compact models and limited data make inherent model transparency

https://www.microsoft.com/en-us/research/uploads/prod/2020/05/InterpretML-Whitepaper.pdf
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easier. Explaining decisions may not be feasible on high-size- and power-optimized microcon-
trollers. DARPA’s Transparent Computing program aims to develop extremely low overhead
explainability, especially for TinyML devices like sensors and wearables.

58.4.3. Fairness

For cloud machine learning, vast datasets and computing power enable detecting biases across
large heterogeneous populations and mitigating them through techniques like re-weighting data
samples. However, biases may emerge from the broad behavioral data used to train cloud models.
Amazon’s Fairness Flow framework helps assess cloud ML fairness.

Edge ML relies on limited on-device data, making analyzing biases across diverse groups harder.
But edge devices interact closely with individuals, providing an opportunity to adapt locally for
fairness. Google’s Federated Learning distributes model training across devices to incorporate
individual differences.

TinyML poses unique challenges for fairness with highly dispersed specialized hardware andmin-
imal training data. Bias testing is difÏcult across diverse devices. Collecting representative data
from many devices to mitigate bias has scale and privacy hurdles. DARPA’s Assured Neuro Sym-
bolic Learning and Reasoning (ANSR) efforts are geared toward developing fairness techniques
given extreme hardware constraints.

58.4.4. Safety

For cloud ML, key safety risks include model hacking, data poisoning, and malware disrupting
cloud services. Robustness techniques like adversarial training, anomaly detection, and diversified
models aim to harden cloud ML against attacks. Redundancy and redundancy can help prevent
single points of failure.

Edge ML and TinyML interact with the physical world, so reliability and safety validation are crit-
ical. Rigorous testing platforms like Foretellix synthetically generate edge scenarios to validate
safety. TinyML safety is magnified by autonomous devices with limited supervision. TinyML
safety often relies on collective coordination - swarms of drones maintain safety through redun-
dancy. Physical control barriers also constrain unsafe TinyML device behaviors.

In summary, safety is crucial but manifests differently in each domain. Cloud ML guards against
hacking, edge ML interacts physically so reliability is key, and TinyML leverages distributed coor-
dination for safety. Understanding the nuances guides appropriate safety techniques.

58.4.5. Accountability

Cloud ML’s accountability centers on corporate practices like responsible AI committees, ethical
charters, and processes to address harmful incidents. Third-party audits and external government
oversight promote cloud ML accountability.

EdgeML accountability is more complexwith distributed devices and supply chain fragmentation.
Companies are accountable for devices, but components come from various vendors. Industry
standards help coordinate edge ML accountability across stakeholders.

https://www.darpa.mil/program/transparent-computing
https://blog.research.google/2017/04/federated-learning-collaborative.html
https://www.darpa.mil/news-events/2022-06-03
https://www.darpa.mil/news-events/2022-06-03
https://www.foretellix.com/
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With TinyML, accountability mechanisms must be traced across long, complex supply chains of
integrated circuits, sensors, and other hardware. TinyML certification schemes help track com-
ponent provenance. Trade associations should ideally promote shared accountability for ethical
TinyML.

58.4.6. Governance

For cloudML, organizations institute internal governance like ethics boards, audits, andmodel risk
management. But external governance also oversees cloud ML, like regulations on bias and trans-
parency such as the AI Bill of Rights, General Data Protection Regulation (GDPR), and California
Consumer Protection Act (CCPA). Third-party auditing supports cloud ML governance.

Edge ML is more decentralized, requiring responsible self-governance by developers and com-
panies deploying models locally. Industry associations coordinate governance across edge ML
vendors. Open software helps align incentives for ethical edge ML.

With TinyML, extreme decentralization and complexity make external governance infeasible.
TinyML relies on protocols and standards for self-governance baked into model design and
hardware. Cryptography enables the provable trustworthiness of TinyML devices.

58.4.7. Privacy

For cloud ML, vast amounts of user data are concentrated in the cloud, creating risks of exposure
through breaches. Differential privacy techniques add noise to cloud data to preserve privacy.
Strict access controls and encryption protect cloud data at rest and in transit.

Edge ML moves data processing onto user devices, reducing aggregated data collection but in-
creasing potential sensitivity as personal data resides on the device. Apple uses on-device ML
and differential privacy to train models while minimizing data sharing. Data anonymization and
secure enclaves protect on-device data.

TinyML distributes data across many resource-constrained devices, making centralized breaches
unlikely and challenging for scale anonymization. Data minimization and using edge devices as
intermediaries help TinyML privacy.

So, while cloud ML must protect expansive centralized data, edge ML secures sensitive on-device
data, and TinyML aims for minimal distributed data sharing due to constraints. While privacy
is vital throughout, techniques must match the environment. Understanding nuances allows for
selecting appropriate privacy preservation approaches.

58.5. Technical Aspects

58.5.1. Detecting and Mitigating Bias

There has been a large body of work demonstrating that machine learning models can exhibit bias,
fromunderperforming for people of a certain identity tomaking decisions that limit groups’ access
to important resources (Buolamwini and Gebru 2018).

https://www.whitehouse.gov/ostp/ai-bill-of-rights/
https://gdpr-info.eu/
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
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Ensuring fair and equitable treatment for all groups affected bymachine learning systems is crucial
as these models increasingly impact people’s lives in areas like lending, healthcare, and criminal
justice. We typically evaluate model fairness by considering “subgroup attributes” - attributes
unrelated to the prediction task that capture identities like race, gender, or religion. For example, in
a loan default prediction model, subgroups could include race, gender, or religion. When models
are trained naively to maximize accuracy, they often ignore subgroup performance. However, this
can negatively impact marginalized communities.

To illustrate, imagine a model predicting loan repayment where the plusses (+’s) represent repay-
ment and the circles (O’s) represent default, as shown in Figure 58.2. The optimal accuracy would
be correctly classifying all of Group A while misclassifying some of Group B’s creditworthy appli-
cants as defaults. If positive classifications allow access loans, Group A would receive many more
loans—which would naturally result in a biased outcome.

Figure 58.2. Fairness and accuracy.

Alternatively, correcting the biases against Group B would likely increase “false positives” and
reduce accuracy for Group A. Or, we could train separate models focused on maximizing true
positives for each group. But this would require explicitly using sensitive attributes like race in the
decision process.

As we see, there are inherent tensions around priorities like accuracy versus subgroup fairness,
and whether to explicitly account for protected classes. Reasonable people can disagree on the ap-
propriate tradeoffs. And constraints around costs and implementation options further complicate
matters. Overall, ensuring the fair and ethical use of machine learning involves navigating these
complex challenges.

Thus, fairness literature has proposed three main fairness metrics for quantifying how fair a model
performs over a dataset (Hardt, Price, and Srebro 2016). Given a model h, a dataset D consisting of
(x,y,s) samples, where x is the data features, y is the label, and s is the subgroup attribute, where
we assume there are simply two subgroups a and b, we can define the following.
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1. Demographic Parity asks how accurate a model is for each subgroup. In other words, P(h(X)
= Y S = a) = P(h(X) = Y S = b)

2. Equalized Odds asks how precise a model is on positive and negative samples for each sub-
group. P(h(X) = y S = a, Y = y) = P(h(X) = y S = b, Y = y)

3. Equality of Opportunity is a special case of equalized odds that asks how precise a model is
on positive samples only. This is relevant in cases such as resource allocation where we care
about how positive (ie resource allocated) labels are distributed across groups. For example,
we care that an equal proportion of loans are given to both men and women. P(h(X) = 1 S =
a, Y = 1) = P(h(X) = 1 S = b, Y = 1)

Note: these definitions often take a narrow view of considering binary comparisons between two
subgroups. Another thread of fair machine learning research focusing on multicalibration and mul-
tiaccuracy considers the interactions between an arbitrary number of identities, acknowledging the
inherent intersectionality of individual identities in the real world (Hébert-Johnson et al. 2018).

58.5.1.1. Context Matters

Before making any technical decisions in developing an unbiasedML algorithmwe need to under-
stand the context surrounding our model. Here are some of the key questions to think about:

• Who will this model make decisions for?
• Who is represented in the training data?
• Who is represented and who is missing at the table of engineers, designers, and managers?

• What sort of long-lasting impacts could this model have? For example, will it impact
the financial security of an individual at a generational scale such as determining college
admissions or admitting a loan for a house?

• What historical and systematic biases are present in this setting, and are they present in the
training data the model will generalize from?

Understanding the social, ethical and historical background of a system is critical to prevent harm
and should inform decisions throughout the model development lifecycle. After understanding
the context, there are a wide array of technical decisions one can make to remove bias. First, one
must decide what fairness metric is the most appropriate criterion to optimize for. Next, there are
generally three main areas where one can intervene to debias an ML system.

First, preprocessing is when one balances a dataset to ensure fair representation, or even increases
the weight on certain underrepresented groups to ensure the model performs well on them. Sec-
ond, in processing attempts to modify the training process of an ML system to ensure it prioritizes
fairness. This can be as simple as adding a fairness regularizer (Lowy et al. 2021), to training an
ensemble of models and sampling from them in a specific manner (Agarwal et al. 2018).

Finally, post processing debiases a model after the fact, taking a trained model and modifying
its predictions in a specific manner to ensure fairness is preserved (Alghamdi et al. 2022; Hardt,
Price, and Srebro 2016). Post processing builds on the preprocessing and in processing steps by
providing another opportunity to address bias and fairness issues in the model after it has already
been trained.
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The three step process of preprocessing, in processing, and post processing provides a framework
for intervening at different stages of model development to mitigate issues around bias and fair-
ness. While preprocessing and in processing focus on data and training, post processing allows for
adjustments after the model has been fully trained. Together, these three approaches give multiple
opportunities to detect and remove unfair bias.

58.5.1.2. Thoughtful Deployment

The breadth of existing fairness definitions and debiasing interventions underscores the need for
thoughtful assessment before deploying ML systems. As ML researchers and developers, respon-
sible model development requires proactively educating ourselves on the real-world context, con-
sulting domain experts and end-users, and centering harm prevention.

Rather than seeing fairness considerations as a box to check, we must deeply engage with the
unique social implications and ethical trade offs around each model we build. Every technical
choice about datasets, model architectures, evaluation metrics and deployment constraints em-
beds values. By broadening our perspective beyond narrow technical metrics, carefully evaluating
tradeoffs, and listening to impacted voices, we canwork to ensure our systems expand opportunity
rather than encode bias.

The path forward lies not in an arbitrary debiasing checklist but in a commitment to understanding
and upholding our ethical responsibility at each step. This commitment starts with proactively
educating ourselves and consulting others, rather than just going through themotions of a fairness
checklist. It requires engaging deeply with ethical tradeoffs in our technical choices, evaluating
impacts on different groups, and listening to those voices most impacted.

Ultimately, responsible and ethical AI systems come not from checkbox debiasing, but from up-
holding our duty to assess harms, broaden perspectives, understand tradeoffs and ensure we pro-
vide opportunity for all groups. This ethical responsibility should drive every step.

The connection between the paragraphs is that the first paragraph sets up the need for thought-
ful assessment of fairness issues rather than a checkbox approach. The second paragraph then
expands on what that thoughtful assessment looks like in practice - engaging with tradeoffs, eval-
uating impacts on groups, listening to impacted voices. Finally, the last paragraph circles back to
the idea of avoiding an “arbitrary debiasing checklist” and instead committing to ethical responsi-
bility through assessment, understanding tradeoffs, and providing opportunity.

58.5.2. Preserving Privacy

Recent incidents have demonstrated howAImodels canmemorize sensitive user data in ways that
violate privacy. For example, as shown in Figure XXX below, Stable Diffusion’s art generations
were found to mimic identifiable artists’ styles and replicate existing photos, concerning many
(Ippolito et al. 2023). These risks are amplifiedwith personalizedML systems deployed in intimate
environments like homes or wearables.

Imagine if a smart speaker uses our conversations to improve the quality of service to end users
who genuinely want it. Still, others could violate privacy by trying to extract what the speaker
“remembers.” Figure 58.3 below shows an example of how diffusion models can memorize and
generate individual training examples (Ippolito et al. 2023).
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Figure 58.3. Diffusion models memorizing samples from training data. Credit: Ippolito et al. (2023).
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Adversaries can take advantage of these memorization capabilities and train models to detect if
specific training data influenced a target model. For example, membership inference attacks train
a secondary model which learns to detect a change in the target model’s outputs when making
inference over data it was trained on versus not trained on (Shokri et al. 2017).

ML devices are especially vulnerable because they are often personalized on user data and are de-
ployed in evenmore intimate settings such as the home. To combat these privacy issues, privatema-
chine learning techniques have evolved to establish safeguards against adversaries, as mentioned
in the Security and Privacy chapter. Methods like differential privacy add mathematical noise
during training to obscure individual data points’ influence on the model. Popular techniques like
DP-SGD (Abadi et al. 2016) also clip gradients to limit what the model leaks about the data. Still,
some argue users should also be able to delete the impact of their data after the fact.

58.5.3. Machine Unlearning

WithML devices personalized to individual users and then deployed to remote edges without con-
nectivity, a challenge arises—how canmodels responsively “forget” data points after deployment?
If a user requests their personal data be removed from a personalized model, the lack of connec-
tivity makes retraining infeasible. Thus, efÏcient on-device data forgetting is necessary but poses
hurdles.

Initial unlearning approaches faced limitations in this context. Retraining models from scratch on
the device to forget data points proves inefÏcient or even impossible, given the resource constraints.
Fully retraining also requires retaining all the original training data on the device, which brings its
own security and privacy risks. Common machine unlearning techniques (Bourtoule et al. 2021)
for remote embedded ML systems fail to enable responsive, secure data removal.

However, newer methods show promise in modifying models to approximately forget data [?]
without full retraining. While the accuracy loss fromavoiding full rebuilds ismodest, guaranteeing
data privacy should still be the priority when handling sensitive user information ethically. Even
slight exposure to private data can violate user trust. As ML systems become deeply personalized,
efÏciency and privacy must be enabled from the start—not afterthoughts.

Recent policy discussions which include the European Union’s General Data, Protection Regula-
tion (GDPR), the California Consumer Privacy Act (CCPA), the Act on the Protection of Personal
Information (APPI), and Canada’s proposed Consumer Privacy Protection Act (CPPA), require the
deletion of private information. These policies coupled with AI incidents like Stable Diffusion
memorizing artist data have underscored the ethical need for users to delete their data from mod-
els after training.

The right to remove data arises fromprivacy concerns around corporations or adversariesmisusing
sensitive user information. Machine unlearning refers to removing the influence of specific points
froman already-trainedmodel. Naively this involves full retrainingwithout the deleted data. How-
ever, for ML systems personalized and deployed to remote edges, connectivity constraints often
make retraining infeasible. If a smart speaker learns from private home conversations, retaining
access to delete that data is important.

Although limited, methods are evolving to enable efÏcient approximations to retraining for un-
learning. By modifying models inference-time, they can mimic “forgetting” data without full ac-
cess to training data. However, most current techniques are restricted to simple models, still have

../privacy_security/privacy_security.qmd
https://gdpr-info.eu
https://gdpr-info.eu
https://gdpr-info.eu
https://oag.ca.gov/privacy/ccpa
https://www.dataguidance.com/notes/japan-data-protection-overview
https://www.dataguidance.com/notes/japan-data-protection-overview
https://blog.didomi.io/en-us/canada-data-privacy-law
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resource costs, and trading some accuracy. Though methods are evolving, enabling efÏcient data
removal and respecting user privacy remains an imperative for responsible TinyML deployment.

58.5.4. Adversarial Examples and Robustness

Machine learning models, especially deep neural networks, have a well-documented Achilles heel:
they often break when even tiny perturbations are made to their inputs (Szegedy et al. 2014). This
surprising fragility highlights amajor robustness gap that threatens real-world deployment in high-
stakes domains. It also opens the door for adversarial attacks designed to deliberately fool mod-
els.

Machine learningmodels can exhibit a surprising brittleness - minor input tweaks can cause shock-
ing malfunctions, even in state-of-the-art deep neural networks (Szegedy et al. 2014). This unpre-
dictability around out-of-sample data underscores gaps in model generalization and robustness.
Given the growing ubiquity of ML, it also enables adversarial threats that weaponize models’
blindspots.

Deep neural networks demonstrate an almost paradoxical dual nature - human-like proficiency
in training distributions coupled with extreme fragility to tiny input perturbations (Szegedy et al.
2014). This adversarial vulnerability gap highlights gaps in standard ML procedures and threats
to real-world reliability. At the same time, it can be exploited: attackers can find model-breaking
points humans wouldn’t perceive.

Figure 58.4 includes an example of a small meaningless perturbation that changes a model pre-
diction. This fragility has real-world impacts: lack of robustness undermines trust in deploying
models for high-stakes applications like self-driving cars or medical diagnosis. Moreover, the vul-
nerability leads to security threats: attackers can deliberately craft adversarial examples that are
perceptually indistinguishable from normal data but cause model failures.

Figure 58.4. Perturbation effect on prediction. Credit: Microsoft.

For instance, past work shows successful attacks that trick models for tasks like NSFW detection
(Bhagoji et al. 2018), ad-blocking (Tramèr et al. 2019), and speech recognition (Carlini et al. 2016).
While errors in these domains already pose security risks, the problem extends beyond IT secu-
rity: recently adversarial robustness has been proposed as an additional performance metric by
approximating worst-case behavior.

https://www.microsoft.com/en-us/research/blog/adversarial-robustness-as-a-prior-for-better-transfer-learning/
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The surprising model fragility highlighted above casts doubt on real-world reliability and opens
the door to adversarial manipulation. This growing vulnerability underscores several needs. First,
principled robustness evaluations are essential for quantifyingmodel vulnerabilities before deploy-
ment. Approximating worst-case behavior surfaces blindspots.

Second, effective defenses across domains must be developed to close these robustness gaps. With
security on the line, developers cannot ignore the threat of attacks exploiting model weaknesses.
Moreover, for safety-critical applications like self-driving vehicles and medical diagnosis, we can-
not afford any fragility-induced failures. Lives are at stake.

Finally, the research community continues mobilizing rapidly in response. Interest in adversarial
machine learning has exploded as attacks reveal the need to bridge the robustness gap between
synthetic and real-world data. Conferences now commonly feature defenses for securing and sta-
bilizing models. The community recognizes that model fragility is a critical issue that must be
addressed through robustness testing, defense development, and ongoing research. By surfacing
blindspots and responding with principled defenses, we can work to ensure reliability and safety
for machine learning systems, especially in high-stakes domains.

58.5.5. Building Interpretable Models

As models are deployed more frequently in high-stakes settings, practitioners, developers, and
downstream end-users, as well as increasing regulation, have highlighted the need for explainabil-
ity inmachine learning. The goal of many interpretability and explainabilitymethods is to provide
practitioners with more information about either the overall behavior of models or the behavior
given a specific input. This allows users to decide whether or not the output or prediction of a
model is trustworthy.

Such analysis can help developers debugmodels and improve performance by pointing out biases,
spurious correlations, and failure modes of models. In cases where models are able to surpass
human performance on a task, interpretability can help users and researchers better understand
relationships in their data and patterns that may previously have been unknown.

There are many classes of methods in explainability/interpretability, including: post hoc explain-
ability, inherent interpretability, and mechanistic interpretability. These methods aim to make
complex machine learning models more understandable and ensure users can trust model predic-
tions, especially in critical settings. By providing transparency into model behavior, explainability
techniques are an important tool for developing safe, fair, and reliable AI systems.

58.5.5.1. Post Hoc Explainability

Post hoc explainability methods typically explain the output behavior of a black-box model on a
specific input. Popular methods include counterfactual explanations, feature attribution methods,
and concept-based explanations.

Counterfactual explanations, also frequently referred to as algorithmic recourse, take the form
of “If X had not occurred, Y would not have occurred” (Wachter, Mittelstadt, and Russell 2017).
For example, consider a person applying for a bank loan whose application is rejected by a model.
They may ask their bank for recourse, or how they need to change to be eligible for a loan. A
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counterfactual explanation would tell them which features they need to change and by how much
such that the model’s prediction changes.

Feature attributionmethods aim to highlight the input features important or necessary for a partic-
ular prediction. For a computer vision model, this would mean highlighting the individual pixels
that contributed most to the predicted label of the image. Note that these methods do not explain
how those pixels/features impact the prediction, only that they do. Common methods include in-
put gradients, GradCAM (Selvaraju et al. 2017), SmoothGrad (Smilkov et al. 2017), LIME (Ribeiro,
Singh, and Guestrin 2016), and SHAP (Lundberg and Lee 2017).

By providing examples of changes to input features that would alter a prediction (counterfactuals)
or indicating the most influential features for a given prediction (attribution), these post hoc expla-
nation techniques shed light on model behavior for individual inputs. This granular transparency
helps users determine whether they can trust and act upon specific model outputs.

Concept based explanations aim to explainmodel behavior and outputs using a pre-defined set of
semantic concepts (e.g. the model recognizes scene class “bedroom” based on the presence of con-
cepts “bed” and “pillow”). Recent work shows that users often prefer these explanations to attribu-
tion and example based explanations because they “resemble human reasoning and explanations”
(Vikram V. Ramaswamy et al. 2023b). Popular concept based explanation methods include TCAV
(B. Kim et al. 2018), Network Dissection (Bau et al. 2017), and interpretable basis decomposition
(B. Zhou et al. 2018).

Note that these methods are extremely sensitive to the size and quality of the concept set, and
that there exists a tradeoff between the accuracy and faithfulness of these methods and their in-
terpretability or understandability to humans (Vikram V. Ramaswamy et al. 2023a). By mapping
model predictions to human-understandable concepts, however, concept-based explanations can
provide transparency into the reasoning behind model outputs.

58.5.5.2. Inherent Interpretability

Inherently interpretable models are constructed such that their explanations are part of the model
architecture and are thus naturally faithful, which sometimes makes them preferable to post-hoc
explanations applied to black-box models, especially in high-stakes domains where transparency
is imperative (Rudin 2019). Often, these models are constrained so that the relationships between
input features andpredictions are easy for humans to follow (linearmodels, decision trees, decision
sets, k-NNmodels), or they obey structural knowledge of the domain, such as monotonicity (Maya
Gupta et al. 2016), causality, or additivity (Lou et al. 2013; Beck and Jackman 1998).

However,more recentworks have relaxed the restrictions on inherently interpretablemodels, using
black-box models for feature extraction and using a simpler inherently interpretable model for
classification, allowing for faithful explanations that relate high-level features to prediction. For
example, Concept Bottleneck Models (Koh et al. 2020) predict a concept set c that is passed into
a linear classifier, and ProtoPNets (C. Chen et al. 2019) dissect inputs into linear combinations of
similarities to prototypical parts from the training set.
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58.5.5.3. Mechanistic Interpretability

Mechanistic interpretability methods seek to reverse engineer neural networks, often analogized
to how onemight reverse engineer a compiled binary or how neuroscientists attempt to decode the
function of individual neurons and circuits in brains. Most research in mechanistic interpretability
viewsmodels as a computational graph (Geiger et al. 2021) and circuits are subgraphswith distinct
functionality (L. Wang and Zhan 2019). Current approaches to extracting circuits from neural
networks andunderstanding their functionality rely on humanmanual inspection of visualizations
produced by circuits (Olah et al. 2020).

Alternatively, some approaches build sparse autoencoders that encourage neurons to encode disen-
tangled interpretable features (Davarzani et al. 2023). This field is much newer than existing areas
in explainability and interpretability, and as suchmost works are generally exploratory rather than
solution oriented.

There are many open problems in mechanistic interpretability, including the polysemanticity of
neurons and circuits, the inconvenience and subjectivity of human labeling, and the exponential
search space for identifying circuits in large models with billions or trillions of neurons.

58.5.5.4. Challenges and Considerations

As methods for interpreting and explaining models progress, it is important to note that humans
overtrust and misuse interpretability tools (Kaur et al. 2020) and that a user’s trust in a model
due to an explanation can be independent of the correctness of the explanations (Lakkaraju and
Bastani 2020). As such, it is necessary that aside from assessing the faithfulness/correctness of
explanations, researchers must also ensure that interpretability methods are developed and de-
ployed with a specific user in mind, and that user studies are performed to evaluate their efÏcacy
and usefulness in practice.

Furthermore, explanations should be tailored with the expertise of the user in mind, as well as
the task they are using the explanation for, and the corresponding minimal amount of information
required for the explanation to be useful to prevent information overload.

While interpretability/explainability are popular areas in machine learning research, very few
works study their intersection with TinyML and edge computing. Given that a significant appli-
cation of TinyML is healthcare, which often requires high transparency and interpretability, it is
important that existing techniques are tested for scalability and efÏciency with respect to edge
devices. Many methods rely on extra forward and backward passes, and some even require exten-
sive training of proxy models, all of which would likely be infeasible on microcontrollers that are
resource constrained.

That being said, explainability methods can be highly useful in the development of models for edge
devices, as they can give insights into how input data and models can be compressed and how
representations may change post compression. Furthermore, many interpretable models are often
smaller than their black-box counterparts, which could have additional benefits in TinyML appli-
cations.
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58.5.6. Monitoring Model Performance

While developersmay trainmodels such that they seem adversarially robust, fair, and interpretable
before deployment, it is imperative that both the users and the owners of the model continue to
monitor themodel’s performance and trustworthiness during themodel’s full lifecycle. In practice,
data is frequently changing, which can often result in distribution shifts. These distribution shifts
can have profound impacts on both the vanilla predictive performance of the model as well as its
trustworthiness (fairness, robustness, and interpretability) on real world data.

Furthermore, definitions of fairness also frequently change with time, such as what society con-
siders a protected attribute, and the expertise of the users asking for explanations may change as
well.

To ensure that models keep up to date with such changes in the real world, developers must contin-
ually evaluate their model on current and representative data and standards, and update models
when necessary.

58.6. Implementation Challenges

58.6.1. Organizational and Cultural Structures

While innovation and regulation are often seen as having competing interests, many countries have
found it necessary to provide oversight as AI systems expand into more sectors. As illustrated in
Figure 58.5, this oversight has become crucial as these systems continue permeating various indus-
tries and impacting people’s lives (see Human-Centered AI, Chapter 8 “Government Interventions
and Regulations”.

Among these are:

• Canada’s Responsible Use of Artificial Intelligence

• The European Union’s General Data Protection Regulation (GDPR)

• The European Commission’s White Paper on Artificial Intelligence: a European approach to
excellence and trust

• The UK’s Information Commissioner’s OfÏce and Alan Turing Institute’s Consultation on
Explaining AI Decisions Guidance co-badged guidance by the individuals affected by them.

58.6.2. Obtaining Quality and Representative Data

Responsible AI design must occur at all stages of the pipeline, including data collection such as
those things discussed in the Data Engineering chapter. This begs the question; what does it mean
for data to be high-quality and representative? Consider the following scenarios that hinder the
representativeness of data:

https://academic-oup-com.ezp-prod1.hul.harvard.edu/book/41126/chapter/350465542
https://academic-oup-com.ezp-prod1.hul.harvard.edu/book/41126/chapter/350465542
https://www.canada.ca/en/government/system/digital-government/digital-government-innovations/responsible-use-ai.html
https://gdpr-info.eu/
https://commission.europa.eu/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust_en
https://commission.europa.eu/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust_en
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/artificial-intelligence/explaining-decisions-made-with-artificial-intelligence
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/artificial-intelligence/explaining-decisions-made-with-artificial-intelligence
../data_engineering/data_engineering.qmd
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Figure 58.5. How various groups impact human-centered AI. Credit: Shneiderman (2020).

58.6.2.1. Subgroup Imbalance

This is likely what comes tomindwhen hearing the phrase “representative data.” Subgroup imbal-
ance means that the dataset contains relatively more data from one subgroup than another. This
imbalance can negatively affect the downstream ML model, by causing it to overfit to a subgroup
of people while having poor performance on another.

One example consequence of subgroup imbalance is racial discrimination in facial recognition tech-
nology (Buolamwini and Gebru 2018); commercial facial recognition algorithms have up to 34%
worse error rates on darker-skinned females than lighter-skinned males.

Note that data imbalance goes both ways, and subgroups can also be harmfully overrepresented
in the dataset. For example, the Allegheny Family Screening Tool (AFST) is used to predict the
likelihood that a child will eventually be removed from a home. The AFST produces dispropor-
tionate scores for different subgroups, one of the reasons being that it is trained on historically
biased data, sourced from juvenile and adult criminal legal systems, public welfare agencies, and
behavioral health agencies and programs.

58.6.2.2. Quantifying Target Outcomes

This occurs in applications where the ground-truth label cannot be measured or is difÏcult to represent
in a single quantity. For example, an ML model in a mobile wellness application may want to
predict individual stress levels. The true stress labels themselves are impossible to obtain directly,
and must be inferred from other biosignals, such as heart rate variability and user’s self-reported
data. In these situations, noise is built into the data by design, making this a challengingML task.

https://www.aclu.org/the-devil-is-in-the-details-interrogating-values-embedded-in-the-allegheny-family-screening-tool#4-2-the-more-data-the-better
https://www.aclu.org/the-devil-is-in-the-details-interrogating-values-embedded-in-the-allegheny-family-screening-tool#4-2-the-more-data-the-better
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58.6.2.3. Distribution Shift

Data may no longer be representative of a task if a major external event causes the source of the
data to change drastically. The most common way to think about distribution shift is with respect
to time; for example, data on consumer shopping habits that was collected pre-covidmay no longer
be representative of consumer behavior today.

Another form of distribution shift is that caused by transfer. For instance, in applying a triage
system that was trained on data from one hospital to another, distribution shift may occur if the
two hospitals are very different.#

58.6.2.4. Gathering Data

A reasonable solution for many of the above problems with non-representative or low-quality data
is to collectmore; we can collectmore data targeting an underrepresented subgroup or collectmore
data from the target hospital to which our model might be transferred. However, there are also
reasons that gathering more data is an inappropriate or infeasible solution for the task at hand.

• Data collection can be harmful. This is the paradox of exposure, the situation in which those that
stand to significantly gain from their data being collected are also those that are put at risk by
the collection process (D’ignazio and Klein (2023), Chapter 4). For example, collecting more
data on non-binary individualsmay be important for ensuring fairness of theML application,
but also put them at risk, depending onwho is collecting the data and how (whether the data
is easily identifiable, contains sensitive content, etc).

• Data collection can be costly. In some domains, such as in healthcare, obtaining data can be
costly in terms of time and money.

• Biased data collection. For example, Electronic Health Records are a huge data-source for ML
driven healthcare applications. Issues of subgroup representation aside, the data itself may
be collected in a biased manner. For example, negative language (“nonadherent”, “unwill-
ing”) is disproportionately used on black patients (Himmelstein, Bates, and Zhou 2022).

We conclude with several additional strategies for maintaining data quality: improving under-
standing of the data, data exploration, and intr. First, fostering a deeper understanding of the data
is crucial. This can be achieved through the implementation of standardized labels and measures
of data quality, such as in the Data Nutrition Project.

Directly collaborating with organizations responsible for the data collection can help ensure that
the data is interpreted correctly. Second, employing effective tools for data exploration is impor-
tant. Visualization techniques and statistical analyses can reveal issues with the data. Finally,
establishing a feedback loop within the ML pipeline is essential for understanding the real world
implications of the data. Metrics, such as fairness measures, allow us to define “data quality” in
the context of the downstream application; improving fairness may directly improve the quality
of the predictions that the end users receive.

https://datanutrition.org/
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58.6.3. Balancing Accuracy and Other Objectives

Machine learning models are often evaluated on accuracy alone, but this single metric cannot
fully capture model performance and tradeoffs for responsible AI systems. Other ethical dimen-
sions like fairness, robustness, interpretability and privacy may compete with pure predictive ac-
curacy during model development. For instance, inherently interpretable models such as small
decision trees or linear classifiers with simplified features intentionally trade some accuracy for
transparency into the model behavior and predictions. While these simplified models achieve
lower accuracy by not capturing all complexity in the dataset, improved interpretability builds
trust by enabling direct analysis by human practitioners.

Additionally, certain techniques meant to improve adversarial robustness like adversarial training
examples or dimensionality reduction can degrade accuracy on clean validation data. In sensitive
applications like healthcare, focusing narrowly on state-of-the-art accuracy carries ethical risks if it
allows models to rely more on spurious correlations that introduce bias or use opaque reasoning.
Therefore, the appropriate performance objectives depend greatly on the sociotechnical context.

Methodologies like Value Sensitive Design provide frameworks for formally evaluating the priori-
ties of various stakeholders within the real-world deployment system. These elucidate tensions be-
tween values like accuracy, interpretability and fairness which can then guide responsible tradeoff
decisions. For a medical diagnosis system, achieving the highest accuracy may not be the singular
goal - improving transparency to build practitioner trust or reducing bias towardsminority groups
could justify small losses in accuracy. Analyzing the sociotechnical context is key for setting these
objectives.

By taking a holistic view, we can responsibly balance accuracy with other ethical objectives for
model success. Ongoing monitoring of performance along multiple dimensions is crucial as the
system evolves after deployment.

58.7. Ethical Considerations in AI Design

We must discuss at least some of the many ethical issues at stake in the design and application of
AI systems and diverse frameworks for approaching these issues, including those from AI safety,
Human-Computer Interaction (HCI), and Science, Technology, and Society (STS).

58.7.1. AI Safety and Value Alignment

In 1960, Norbert Weiner wrote, “’if we use, to achieve our purposes, a mechanical agency with
whose operation we cannot interfere effectively…we had better be quite sure that the purpose put
into the machine is the purpose which we really desire” (Wiener 1960).

In recent years, as the capabilities of deep learning models have achieved, and sometimes even
surpassed human abilities, the issue of how to create AI systems that act in accord with human
intentions instead of pursuing unintended or undesirable goals, has become a source of concern
(Russell 2021). Within the field of AI safety, a particular goal concerns “value alignment,” or the

https://vsdesign.org/
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problem of how to code the “right” purpose into machines Human-Compatible Artificial Intelli-
gence. Present AI research assumes we know the objectives we want to achieve and “studies the
ability to achieve objectives, not the design of those objectives.”

However, complex real-world deployment contexts make explicitly defining “the right purpose”
for machines difÏcult, requiring frameworks for responsible and ethical goal-setting. Methodolo-
gies like Value Sensitive Design provide formal mechanisms to surface tensions between stake-
holder values and priorities.

By taking a holistic sociotechnical view, we can better ensure intelligent systems pursue objectives
that alignwith broad human intentions rather thanmaximizing narrowmetrics like accuracy alone.
Achieving this in practice remains an open and critical research question asAI capabilities continue
advancing rapidly.

The absence of this alignment can lead to a number of AI safety issues, as have been documented
in a variety of deep learning models. A common feature of systems that optimize for an objective,
is that variables not directly included in the said objective may be set to extreme values to help
optimize for that objective, leading to issues that have been characterized as specification gaming,
reward hacking, etc. in reinforcement learning (RL).

In recent years, a particularly popular implementation of RLhas beenmodels pre-trainedusing self-
supervised learning and fine-tuned using reinforcement learning from human feedback (RLHF)
(Christiano et al. 2017). Ngo 2022 (Ngo, Chan, and Mindermann 2022) argue that by reward-
ing models for appearing harmless and ethical, while also maximizing useful outcomes, RLHF
could encourage the emergence of three problematic properties: situationally-aware reward hack-
ingwhere policies exploit human fallibility to gain high reward, misaligned internally-represented
goals that generalize beyond the RLHF fine-tuning distribution, and power-seeking strategies.

Similarly, Van Noorden (2016) outline six concrete problems for AI safety, including avoiding neg-
ative side effects, avoiding reward hacking, scalable oversight for aspects of the objective that are
too expensive to be frequently evaluated during training, safe exploration strategies that encour-
age creativity but while preventing harms, and robustness to distributional shift in unseen testing
environments.

58.7.2. Autonomous Systems and Control [and Trust]

The consequences of autonomous systems that act independently of human oversight, and often
outside of human judgment, have been well documented across a number of different industries
and use cases. Most recently, the The California Department of Motor Vehicles suspended Cruise’s
deployment and testing permits for its autonomous vehicles citing “unreasonable risks to public
safety”. One such accident occurred when a vehicle struck a pedestrian who stepped into a cross-
walk after the stoplight had turned green, and the vehicle was allowed to proceed. In 2018, a
pedestrian crossing the street with her bike was killed when a self-driving Uber car, which was
operating in autonomous mode, failed to accurately classify her moving body as an object to be
avoided.

Autonomous systems beyond self-driving vehicles are also susceptible to such issues, with poten-
tially graver consequences, as remotely-powereddrones are already reshapingwarfare. While such
incidents bring up important ethical questions regarding who should be held responsible when

https://people.eecs.berkeley.edu/~russell/papers/mi19book-hcai.pdf
https://people.eecs.berkeley.edu/~russell/papers/mi19book-hcai.pdf
https://vsdesign.org/
https://deepmind.google/discover/blog/specification-gaming-the-flip-side-of-ai-ingenuity/
https://www.cnbc.com/2023/10/24/california-dmv-suspends-cruises-self-driving-car-permits.html
https://www.cnbc.com/2023/10/24/california-dmv-suspends-cruises-self-driving-car-permits.html
https://www.cnbc.com/2023/10/17/cruise-under-nhtsa-probe-into-autonomous-driving-pedestrian-injuries.html
https://www.bbc.com/news/technology-54175359
https://www.bbc.com/news/technology-54175359
https://www.reuters.com/technology/human-machine-teams-driven-by-ai-are-about-reshape-warfare-2023-09-08/
https://www.cigionline.org/articles/who-responsible-when-autonomous-systems-fail/
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these systems fail, they also highlight the technical challenges of giving full control of complex,
real-world tasks to machines.

At its core, there is a tension between human and machine autonomy. Engineering and computer
science disciplines have tended to focus onmachine autonomy. For example, as of 2019, a search for
the word “autonomy” in the Digital Library of the Association for Computing Machinery (ACM)
reveals that of the top 100 most cited papers, 90% are on machine autonomy (Calvo et al. 2020).
In an attempt to build systems for the benefit of humanity, these disciplines have taken without
question increasing productivity, efÏciency, and automation as primary strategies for benefiting
humanity.

These goals put machine automation at the forefront, often at the expense of the human. This
approach suffers from inherent challenges, as noted since the early days of AI through the Frame
problem and qualification problem, which formalizes the observation that is impossible to specify
all the preconditions needed for a real-world action to succeed (McCarthy 1981).

These logical limitations have given rise to mathematical approaches such as Responsibility-
sensitive safety (RSS) (Shalev-Shwartz, Shammah, and Shashua 2017), which is aimed at breaking
down the end goal of an automated driving system (namely safety) into concrete and checkable
conditions that can be rigorously formulated in mathematical terms. The goal of RSS is that those
safety rules guarantee ADS safety in the rigorous form of mathematical proofs. However, such
approaches tend towards using automation to the problems of automation and are susceptible to
many of the same issues.

Another approach to combating these issues is to turn the focus towards the human-centered de-
sign of interactive systems that incorporate human control. Value-sensitive design (Friedman 1996)
described three key design factors for a user interface that impact autonomy, including system ca-
pability, system complexity, misrepresentation, and fluidity. A more recent model, called METUX
(A Model for Motivation, Engagement, and Thriving in the User Experience) leverages insights
from Self-determination Theory (SDT) in Psychology to identifies six distinct spheres of technology
experience that contribute to the design systems that promote wellbeing and human flourishing
(Peters, Calvo, and Ryan 2018). SDT defines autonomy as acting in accordancewith one’s goals and
values, which is distinct from the use of autonomy as simply a synonym for either independence
or being in control (Ryan and Deci 2000).

Calvo 2020 elaborates on METUX and its six “spheres of technology experience” in the context of
AI-recommender systems (Calvo et al. 2020). They propose these spheres – Adoption, Interface,
Tasks, Behavior, Life, and Society – as a way of organizing thinking and evaluation of technology
design in order to appropriately capture contradictory and downstream impacts on human auton-
omy when interacting with AI systems.

58.7.3. Economic Impacts on Jobs, Skills, Wages

A major concern of the current rise of AI technologies is widespread unemployment. As AI sys-
tems’ capabilities expand, many fear that these technologies will cause an absolute loss of jobs as
they replace current workers and overtake alternative employment roles across industries. How-
ever, changing economic landscapes at the hands of automation are not new, and historically,
have been found to reflect patterns of displacement rather than replacement (Shneiderman 2022)—
Chapter 4. In particular, automation usually lowers costs and increases quality, which greatly
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increases access and demand. The need to serve these growing markets pushes production, which
in turn creates new jobs.

Furthermore, studies have found that attempts to achieve “lights-out” automation – productive and
flexible automationwith aminimal number of humanworkers – have been unsuccessful. Attempts
to do so have led to what theMITWork of the Future taskforce has termed “zero-sum automation”,
in which process flexibility is sacrificed for increased productivity.

In contrast, the taskforce propose a “positive-sum automation” approach in which flexibility is in-
creased by designing technology that strategically incorporates humans where they are verymuch
needed: making it easier for line employees to train and debug robots; using a bottom-up approach
to identifying what tasks should be automated; and choosing the right metrics for measuring suc-
cess (see MIT’s Work of the Future).

However, the optimism of the high-level outlook does not preclude individual harms, especially
to those whose skills and jobs will be rendered obsolete by automation. Public and legislative pres-
sure as well as corporate social responsibility efforts will need to be directed to create policies that
share the benefits of automationwithworkers and result in higherminimumwages and benefits.

58.7.4. Scientific Communication and AI Literacy

A 1993 survey of 3000 North American adults’ beliefs about the “electronic thinking machine” re-
vealed two primary perspectives of the early computer: the “beneficial tool of man” perspective
and the “awesome thinking machine” perspective. The attitudes contributing to the “awesome
thinking machine” view in this and other studies, revealed a characterization of computers as “in-
telligent brains, smarter than people, unlimited, fast, mysterious, and frightening” (Martin 1993).
These fears highlight an easily overlooked component of responsible AI, especially amidst the rush
to commercialize such technologies: scientific communication that accurately communicates the
capabilities and limitations of these systems, while providing transparency about the limitations
of experts’ knowledge about these systems.

As AI systems capabilities continue to expand beyondmost people’s comprehension, there is a nat-
ural tendency to assume the kinds of apocalyptic worlds painted by our media. This is in part due
to the apparent difÏculty of assimilating scientific information, even in technologically advanced
cultures, which leads to the products of science being perceived as magic - “understandable only
in terms of what it did, not how it worked” (Handlin 1965).

While tech companies should be held responsible for limiting grandiose claims and not falling into
cycles of hype, research studying scientific communication, especially with respect to (generative)
AI, will also be useful in tracking and correcting public understanding of these technologies. An
analysis of the Scopus scholarly database found that such research is scarce, with only a handful
of papers mentioning both “science communication” and “artificial intelligence” (Schäfer 2023).

Research that exposes the perspectives, frames, and images of the future that are promoted by
academic institutions, tech companies, stakeholders, regulators, journalists, NGOs and others will
also help to identify potential gaps in AI literacy among adults (Lindgren 2023). Increased focus
on AI literacy from all stakeholders will be an important tool in helping people whose skills are
rendered obsolete by AI automation (Ng et al. 2021).

https://hbr.org/2023/03/a-smarter-strategy-for-using-robots
https://workofthefuture-mit-edu.ezp-prod1.hul.harvard.edu/wp-content/uploads/2021/01/2020-Final-Report4.pdf
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“But even those who never acquire that understanding need assurance that there is a connection between the
goals of science and their own welfare, and above all, that the scientist is not a man altogether apart but one
who shares some of their own value.” (Handlin, 1965)

58.8. Conclusion

Responsible artificial intelligence is crucial as machine learning systems exert growing influence
across sectors like healthcare, employment, finance, and criminal justice. While AI promises im-
mense benefits, thoughtlessly designed models risk perpetrating harm through biases, privacy
violations, unintended behaviors, and other pitfalls.

Upholding principles of fairness, explainability, accountability, safety, and transparency enables
developing ethical AI aligned with human values. However, putting these principles into practice
involves surmounting complex technical and social challenges around detecting dataset biases,
choosing appropriate model tradeoffs, securing quality training data, and more. Frameworks like
value-sensitive design provide guidance on balancing accuracy versus other objectives based on
stakeholder needs.

Looking forward, advancing responsible AI necessitates continued research and industry commit-
ment. More standardized benchmarks are required for comparing model biases and robustness.
Enabling efÏcient transparency and user control for edge devices warrants focus as personalized
TinyML expands. Revised incentive structures and policies must encourage deliberate, ethical de-
velopment before reckless deployment. Education around AI literacy and limitations will further
responsible public understanding.

Responsible methods underscore that while machine learning offers immense potential, thought-
less application risks adverse consequences. Cross-disciplinary collaboration and human-centered
design is imperative so AI can promote broad social benefit. The path ahead lies not in an arbitrary
checklist but a steadfast commitment at each step to understand and uphold our ethical responsi-
bility. By taking conscientious action, the machine learning community can lead AI toward em-
powering all people equitably and safely.

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.
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59. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• What am I building? What is the goal?

• Who is the audience?

• What are the consequences?

• Responsible Data Collection.

https://docs.google.com/presentation/d/1Z9VpUKGOOfUIg6x04aXLVYl-9QoablElOlxhTLkAVno/edit?usp=drive_link&resourcekey=0-Nr9tvJ9KGgaL44O_iJpe4A
https://docs.google.com/presentation/d/1IwIXrTQNf6MLlXKV-qOuafZhWS9saTxpY2uawQUHKfg/edit?usp=drive_link&resourcekey=0-Jc1kfKFb4OOhs919kyR2mA
https://docs.google.com/presentation/d/1UDmrEZAJtH5LkHA_mDuFovOh6kam9FnC3uBAAah4RJo/edit?usp=drive_link&resourcekey=0-HFb4nRGGNRxJHz8wHXpgtg
https://docs.google.com/presentation/d/1vcmuhLVNFT2asKSCSGh_Ix9ht0mJZxMii8MufEMQhFA/edit?resourcekey=0-_pYLcW5aF3p3Bvud0PPQNg#slide=id.ga4ca29c69e_0_195
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60. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.
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61. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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62. Sustainable AI

Figure 62.1. DALL·E 3 Prompt: 3D illustration on a light background of a sustainable AI network
interconnected with a myriad of eco-friendly energy sources. The AI actively manages and op-
timizes its energy from sources like solar arrays, wind turbines, and hydro dams, emphasizing
power efÏciency and performance. Deep neural networks spread throughout, receiving energy
from these sustainable resources.

Learning Objectives

• Understand the various aspects of AI’s environmental impact, including energy con-
sumption, carbon emissions, electronic waste, and biodiversity effects.

• Learn about methods and best practices for developing sustainable AI systems
• Appreciate the importance of taking a lifecycle perspective when evaluating and ad-

dressing the sustainability of AI systems.
• Recognize the roles various stakeholders like researchers, corporations, policymakers

and end users play in furthering responsible and sustainable AI progress.
• Learn about specific frameworks, metrics and tools aimed at enabling greener AI devel-

opment.
• Appreciate real-world case studies like Google’s 4M efÏciency practices that showcase
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how organizations are taking tangible steps to improve AI’s environmental record

62.1. Introduction

The rapid advancements in artificial intelligence (AI) and machine learning (ML) have led to many
beneficial applications and optimizations for performance efÏciency. However, the remarkable
growth of AI comes with a significant, yet often overlooked cost: its environmental impact. The
most recent report released by the IPCC, the international body leading scientific assessments of
climate change and its impacts, emphasized the pressing importance of tackling climate change.
Without immediate efforts to decrease global CO2 emissions by at least 43 percent before 2030, we
exceed global warming of 1.5 degrees celsius (Winkler et al. 2022). This could initiate positive feed-
back loops pushing temperatures even higher. Next to environmental issues, the United Nations
recognized 17 Sustainable Development Goals (SDGs), in which AI can play an important role,
and vice versa, play an important role in the development of AI systems. As the field continues
expanding, considering sustainability is crucial.

AI systems, particularly large language models like GPT-3 and computer vision models like DALL-
E 2, require massive amounts of computational resources for training. For example, GPT-3 was
estimated to consume 1,300 megawatt-hours of electricity, which is equal to 1,450 average U.S.
households in an entire month (Maslej et al. 2023), or put another way it consumed enough energy
to supply an average U.S. household for 120 years! This immense energy demand stems primarily
from power-hungry data centers with servers running intense computations to train these complex
neural networks for days or weeks.

Current estimates indicate that the carbon emissions produced from developing a single sophisti-
catedAImodel can equal the emissions over the lifetime of five standard gasoline-powered vehicles
(Strubell, Ganesh, andMcCallum 2019). A significant portion of the electricity presently consumed
by data centers is generated from nonrenewable sources such as coal and natural gas, resulting in
data centers contributing around 1% of total worldwide carbon emissions. This is comparable
to the emissions from the entire airline sector. This immense carbon footprint demonstrates the
pressing need to transition to renewable power sources such as solar and wind to operate AI de-
velopment.

Additionally, even small-scale AI systems deployed to edge devices as part of TinyML have envi-
ronmental impacts that should not be ignored (Prakash et al. 2023). The specialized hardware
required for AI has an environmental toll from natural resource extraction and manufacturing.
GPUs, CPUs, and chips like TPUs depend on rare earth metals whose mining and processing gen-
erate substantial pollution. The production of these components also has its energy demands. Fur-
thermore, the process of collecting, storing, and preprocessing data used to train both small- and
large-scale models comes with environmental costs, which further exacerbates the sustainability
implications of ML systems.

Thus, while AI promises innovative breakthroughs in many fields, sustaining progress requires
addressing its sustainability challenges. AI can continue advancing responsibly by optimizing the
efÏciency of models, exploring alternative specialized hardware and renewable energy sources for
data centers, and tracking the overall environmental impact.

https://sdgs.un.org/goals
https://openai.com/blog/gpt-3-apps/
https://openai.com/dall-e-2/
https://openai.com/dall-e-2/
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
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62.2. Social and Ethical Responsibility

The environmental impact of AI is not just a technical issue but an ethical and social one as well. As
AI becomes more integrated into our lives and industries, its sustainability becomes increasingly
critical.

62.2.1. Ethical Considerations

The scale of AI’s environmental footprint raises profound ethical questions about the responsibili-
ties of AI developers and companies to minimize their carbon emissions and energy usage. As the
creators of AI systems and technologies that can have sweeping global impacts, developers have
an ethical obligation to consciously integrate environmental stewardship into their design process,
even if sustainability comes at the cost of some efÏciency gains.

There is a clear and present need for us to have open and honest conversations about AI’s environ-
mental tradeoffs earlier in the development lifecycle. Researchers should feel empowered to voice
concerns if organizational priorities do not align with ethical goals, as in the case of the open letter
to pause giant AI experiments.

Additionally, there is increasing need for AI companies to scrutinize their contributions to climate
change and environmental harm. Large tech firms are responsible for the cloud infrastructure, data
center energy demands, and resource extraction required to power today’s AI. Leadership should
assess if organizational values and policies promote sustainability, from hardware manufacturing
through model training pipelines.

Furthermore, voluntary self-regulation may not be enough—governments may need to introduce
new regulations aimed at sustainable AI standards and practices if we hope to curb the projected
energy explosion of ever-larger models. Reported metrics like compute usage, carbon footprint,
and efÏciency benchmarks could help hold organizations accountable.

Through ethical principles, company policies, and public rules, AI technologists and corporations
have a profound duty to our planet to ensure the responsible and sustainable advancement of
technology positioned to transform modern society radically. We owe it to future generations to
get this right.

62.2.2. Long-term Sustainability

Themassive projected expansion of AI raises urgent concerns about its long-term sustainability. As
AI software and applications rapidly increase in complexity and usage across industries, demand
for computing power and infrastructure will skyrocket exponentially in the coming years.

To put the scale of projected growth in perspective, the total computing capacity required for train-
ing AI models saw an astonishing 350,000x increase from 2012 to 2019 (R. Schwartz et al. 2020).
Researchers forecast over an order of magnitude growth each year moving forward as personal-
ized AI assistants, autonomous technology, precision medicine tools, and more are developed.
Similar trends are estimated for embedded ML systems, with an estimated 2.5 billion AI-enabled
edge devices being deployed by 2030.

https://futureoflife.org/open-letter/pause-giant-ai-experiments/
https://futureoflife.org/open-letter/pause-giant-ai-experiments/
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Managing this expansion level requires software and hardware-focused breakthroughs in efÏ-
ciency and renewable integration from AI engineers and scientists. On the software side, novel
techniques in model optimization, distillation, pruning, low-precision numerics, knowledge shar-
ing between systems, and other areasmust becomewidespread best practices to curb energy needs.
For example, realizing even a 50% reduced computational demand per capability doubling would
have massive compounding on total energy.

On the hardware infrastructure side, due to increasing costs of data transfer, storage, cooling, and
space, continuing today’s centralized server farm model at data centers is likely infeasible long-
term (Lannelongue, Grealey, and Inouye 2021). Exploring alternative decentralized computing
options around “edge AI” on local devices or within telco networks can alleviate scaling pressures
on power-hungry hyperscale data centers. Likewise, the shift towards carbon-neutral, hybrid re-
newable energy sources powering leading cloud provider data centers worldwide will be essen-
tial.

62.2.3. AI for Environmental Good

While much focus goes on AI’s sustainability challenges, these powerful technologies provide
unique solutions to combat climate change and drive environmental progress. For example, ML
can continuously optimize smart power grids to improve renewable integration and electricity dis-
tribution efÏciency across networks (Dongxia Zhang, Han, and Deng 2018). Models can ingest the
real-time status of a power grid and weather forecasts to allocate and shift sources responding to
supply and demand.

Fine-tuned neural networks have also proven remarkably effective at next-generation weather fore-
casting (Lam et al. 2023) and climate modeling (Kurth et al. 2023). They can rapidly analyze
massive volumes of climate data to boost extreme event preparation and resource planning for
hurricanes, floods, droughts and more. Climate researchers have achieved state-of-the-art storm
path accuracy by combining AI simulations with traditional numerical models.

AI also enables better tracking of biodiversity (Silvestro et al. 2022), wildlife (D. Schwartz et al.
2021), ecosystems, and illegal deforestation using drones and satellite feeds. Computer vision al-
gorithms can automate species population estimates and habitat health assessments over huge
untracked regions. These capabilities provide conservationists with powerful tools for combat-
ing poaching (Bondi et al. 2018), reducing species extinction risks, and understanding ecological
shifts.

Targeted investment into AI applications for environmental sustainability, cross-sector data shar-
ing, and model accessibility can profoundly accelerate solutions to pressing ecological issues. Em-
phasizing AI for social good steers innovation in cleaner directions, guiding these world-shaping
technologies towards ethical and responsible development.

62.2.4. Case Study

Google’s data centers are foundational to powering products like Search, Gmail, and YouTube used
by billions daily. However, keeping the vast server farms up and running requires substantial
energy, particularly for vital cooling systems. Google continuously strives to enhance efÏciency

https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/
https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/
https://blogs.nvidia.com/blog/conservation-ai-detects-threats-to-endangered-species/#:~:text=The%20Conservation%20AI%20platform%20%E2%80%94%20built,of%20potential%20threats%20via%20email
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across operations. Yet progress was proving difÏcult through traditional methods alone consid-
ering the complex, custom dynamics involved. This challenge prompted an ML breakthrough
yielding potential savings.

After over a decade of optimizing data center design, inventing energy-efÏcient computing hard-
ware, and securing renewable energy sources, Google brought DeepMind scientists to unlock fur-
ther advances. TheAI experts faced intricate factors surrounding the functioning of industrial cool-
ing apparatuses. Equipment like pumps and chillers interact nonlinearly, while external weather
and internal architectural variables also change. Capturing this complexity confounded rigid en-
gineering formulas and human intuition.

The DeepMind team leveraged Google’s extensive historical sensor data detailing temperatures,
power draw, and other attributes as training inputs. They built a flexible system based on neural
networks to model the relationships and predict optimal configurations, minimizing power usage
effectiveness (PUE) (Barroso, Hölzle, and Ranganathan 2019); PUE is the standard measurement
for gauging how efÏciently a data center uses energy-it gives the proportion of total facility power
consumed divided by the power directly used for computing operations. When tested live, the AI
system delivered remarkable gains beyond prior innovations, lowering cooling energy by 40% for
a 15% drop in total PUE, a new site record. The generalizable framework learned cooling dynamics
rapidly across shifting conditions that static rules could not match. The breakthrough highlights
AI’s rising role in transforming modern tech and enabling a sustainable future.

62.3. Energy Consumption

62.3.1. Understanding Energy Needs

In the rapidly evolving field of AI, understanding the energy needs for training and operating AI
models is crucial. With AI entering widespread use in many new fields (Bohr and Memarzadeh
2020; Sudhakar, Sze, and Karaman 2023), the demand for AI enabled devices and data centers is
expected to explode. This understanding helps us grasp why AI, particularly deep learning, is
often labeled as energy-intensive.

62.3.1.1. Energy Requirements for AI Training

The training of complex AI systems like large deep learning models can demand startlingly high
levels of computing power–with profound energy implications. Consider OpenAI’s state-of-the-
art language model GPT-3 as a prime example. This system pushes the frontiers of text generation
through algorithms trained on massive datasets, yet the energy GPT-3 consumed for a single train-
ing cycle could rival an entire small town’s monthly usage. In recent years, these generative AI
models have gained increasing popularity, leading to an increased number ofmodels being trained.
Next to the increased number of models, the number of parameters in these models is likely to in-
crease as well. Research shows that increasing the model size (number of parameters), dataset
size, and compute used for training improves performance smoothly with no signs of saturation
(Kaplan et al. 2020). See how in Figure 62.2 the test loss decreases as each of the 3 aforementioned
increases.

https://blog.google/outreach-initiatives/environment/deepmind-ai-reduces-energy-used-for/
https://blog.google/outreach-initiatives/environment/deepmind-ai-reduces-energy-used-for/
https://www.washington.edu/news/2023/07/27/how-much-energy-does-chatgpt-use/
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Figure 62.2. Performance improves with compute, dataset set, and model size. Credit: Kaplan et al. (2020).

What drives such immense requirements? During training, models like GPT-3 essentially learn
their capabilities by continuously processing huge volumes of data to adjust internal parameters.
The processing capacity that enables AI’s rapid advances also contributes to surging energy us-
age, especially as datasets and models balloon in size. In fact, GPT-3 highlights a steady trajectory
in the field where each leap in AI’s sophistication traces back to ever more substantial computa-
tional power and resources. Its predecessor GPT-2 required 10x less training compute being only
1.5 billion parameters; a difference now dwarfed by magnitudes as GPT-3 comprises 175 billion
parameters. Sustaining this trajectory toward increasingly capable AI therefore raises energy and
infrastructure provision challenges ahead.

62.3.1.2. Operational Energy Use

The development and training of AI models requires immense amounts of data, computing power,
and energy. However, the deployment and operation of those models also incurs significant re-
current resource costs over time. AI systems are now integrated across various industries and
applications, and entering daily lives of an increasing demographic. Their cumulative operational
energy and infrastructure impacts could eclipse that of the upfront model training.

This concept is reflected in the demand of training and inference hardware, in datacenters and on
the edge. Inference refers to the actual usage of a trained model to make predictions or decisions
on real-world data. According to a recent McKinsey analysis, the need for advanced systems to
train ever-larger models is rapidly growing. However, inference computations already make up
a dominant and increasing portion of total AI workloads, as shown in Figure 62.3. Running real-
time inferencewith trainedmodels–whether for image classification, speech recognition, or predic-
tive analytics–invariably demands computing hardware like servers and chips. But even a model
handling thousands of facial recognition requests or natural language queries daily is dwarfed by
massive platforms like Meta. Where inference on millions of photos and videos shared on social
media, the infrastructure energy requirements continue to scale!

Algorithms powering AI-enabled smart assistants, automated warehouses, self-driving vehicles,
tailored healthcare, and more have marginal individual energy footprints. However, the projected
proliferation of these technologies could add hundreds of millions of endpoints running AI al-
gorithms continually, causing the scale of their collective energy requirements to surge. Current
efÏciency gains struggle to counterbalance this sheer growth.

https://www.mckinsey.com/~/media/McKinsey/Industries/Semiconductors/Our%20Insights/Artificial%20intelligence%20hardware%20New%20opportunities%20for%20semiconductor%20companies/Artificial-intelligence-hardware.ashx
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Figure 62.3. Market size for inference and training hardware. Credit: McKinsey.

AI is expected to see an annual growth rate of 37.3% between 2023 and 2030. Yet applying the same
growth rate to operational compute could multiply annual AI energy needs up to 1000 times by
2030. So while model optimization tackles one facet, responsible innovation must also consider
total lifecycle costs at global deployment scales that were unfathomable just years ago but now
pose infrastructure and sustainability challenges ahead.

62.3.2. Data Centers and Their Impact

The impact of data centers on the energy consumption of AI systems is a topic of increasing im-
portance, as the demand for AI services grows. These facilities, while crucial for the advancement
and deployment of AI, contribute significantly to its energy footprint.

62.3.2.1. Scale

Data centers are the essential workhorses enabling the recent computational demands of advanced
AI systems. For example, leading providers like Meta operate massive data centers spanning up
to the size of multiple football fields, housing hundreds of thousands of high-capacity servers
optimized for parallel processing and data throughput.

These massive facilities provide the infrastructure for training complex neural networks on vast
datasets–for instance, based on leaked information, OpenAI’s language model GPT-4 was trained
on Azure data centers packing over 25,000 Nvidia A100 GPUs, used continuously for over 90 to
100 days.

Additionally, real-time inference for consumer AI applications at scale is only made possible by
leveraging the server farms inside data centers. Services like Alexa, Siri and Google Assistant pro-
cess billions of voice requests per month from users globally by relying on data center computing

https://www.mckinsey.com/~/media/McKinsey/Industries/Semiconductors/Our%20Insights/Artificial%20intelligence%20hardware%20New%20opportunities%20for%20semiconductor%20companies/Artificial-intelligence-hardware.ashx
https://www.forbes.com/advisor/business/ai-statistics/
https://tech.facebook.com/engineering/2021/8/eagle-mountain-data-center/
https://www.semianalysis.com/p/gpt-4-architecture-infrastructure
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for low-latency response. Going forward, expanding cutting-edge use cases like self-driving vehi-
cles, precision medicine diagnostics, and accurate climate forecasting models require significant
computational resources, obtained by tapping into vast on-demand cloud computing resources
from data centers. For some emerging applications like autonomous cars, there are harsh latency
and bandwidth constraints. Locating data center-level compute power on the edge rather than the
cloud will be necessary.

MIT research prototypes have shown trucks and cars with on-board hardware performing real-
time AI processing of sensor data equivalent to small data centers (Sudhakar, Sze, and Karaman
2023). These innovative “data centers onwheels” demonstrate howvehicles like self-driving trucks
may need embedded data center-scale compute on board to achieve millisecond system latency for
navigation, though still likely supplemented by wireless 5G connectivity to more powerful cloud
data centers.

The bandwidth, storage, and processing capacities required for enabling this future technology
at scale will depend heavily on continuing data center infrastructure advancement alongside AI
algorithmic innovations.

62.3.2.2. Energy Demand

The energy demand of data centers can roughly be divided into 4 components. Infrastructure,
network, storage and servers. In Figure 62.4, we see that the data infrastructure (which includes
aspects such as cooling, lighting and controls) and the servers use the majority of the total energy
budget of datacenters in the US (Shehabi et al. 2016). In this section, we break down the energy
demand for the servers and the infrastructure. For the latter, the focus is laid on the cooling systems,
as cooling is the dominant factor in energy consumption in the infrastructure.

62.3.2.2.1. Servers

The increase in energy consumption of data centers stems mainly from exponentially growing AI
computing requirements. NVIDIA DGX H100 machines that are optimized for deep learning can
draw up to 10.2 kW at peak. Leading providers operate data centers with hundreds to thousands
of these power-hungry DGX nodes networked to train the latest AI models. For example, the
supercomputer developed for OpenAI is a single systemwithmore than 285,000 CPU cores, 10,000
GPUs and 400 gigabits per second of network connectivity for each GPU server.

The intensive computations needed across an entire facility’s densely packed fleet and supporting
hardware result in data centers drawing tens ofmegawatts around the clock. Overall, advancingAI
algorithms continue to expand data center energy consumption as more DGX nodes get deployed
to keep pace with projected growth in demand for AI compute resources over the coming years.

62.3.2.2.2. Cooling Systems

To keep the beefy servers fed at peak capacity and cool, data centers require tremendous cooling
capacity to counteract the heat produced by densely packed servers, networking equipment, and
other hardware running computationally-intensive workloads without pause. With large data cen-
ters packing thousands of server racks operating at full tilt, massive industrial-scale cooling tow-
ers and chillers are required, using energy amounting to 30-40% of the total data center electricity

https://docs.nvidia.com/dgx/dgxh100-user-guide/introduction-to-dgxh100.html
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Figure 62.4. Data centers energy consumption in the US. Credit: International Energy Agency (IEA).

footprint (Dayarathna, Wen, and Fan 2016). Consequently, companies are looking for alternative
methods of cooling. For example, Microsoft’s data center in Ireland leverages a nearby fjord to
exchange heat using over half a million gallons of seawater daily.

Recognizing the importance of energy-efÏcient cooling, there have been innovations aimed at re-
ducing this energy demand. Techniques like free cooling, which uses outside air or water sources
when conditions are favorable, and the use of AI to optimize cooling systems, are examples of
how the industry is adapting. These innovations not only reduce energy consumption but also
lower operational costs and lessen the environmental footprint. However, exponential increases
in AI model complexity continue to demand more servers and acceleration hardware operating
at higher utilization, translating to rising heat generation and ever greater energy used solely for
cooling purposes.

62.3.2.3. The Environmental Impact

The environmental impact of data centers is not only caused by direct energy consumption of the
datacenter itself (Siddik, Shehabi, and Marston 2021). The operation of data centers involves the
supply of treated water to the datacenter and the discharge of wastewater from the datacenter.
Water and wastewater facilities are major electricity consumers.

Next to electricity usage, there are many more aspects to the environmental impacts of these data
centers. The water usage of the data centers can lead to water scarcity issues, increased water
treatment needs and proper wastewater discharge infrastructure. Also raw materials required for
construction and network transmission pose considerable impacts on the environment. Finally,

https://local.microsoft.com/communities/emea/dublin/
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components in data centers need to be upgraded and maintained. Where almost 50 percent of
servers were refreshed within 3 years of usage, refresh cycles have shown to slow down (Davis et
al. 2022). Still, this generates a significant amount of e-waste which can be hard to recycle.

62.3.3. Energy Optimization

Ultimately, measuring and understanding the energy consumption of AI facilitate the optimization
of energy consumption.

One way to reduce the energy consumption of a given amount of computational work is to run
it on more energy-efÏcient hardware. For instance, TPU chips can be more energy-efÏcient com-
pared to CPUs when it comes to running large tensor computations for AI, as TPUs can run such
computations much faster without drawing significantly more power than CPUs. Another way
is to build software systems that are aware of energy consumption and application characteristics.
Good examples are systemsworks such as Zeus (J. You, Chung, and Chowdhury 2023) and Perseus
(Chung et al. 2023), both of which characterize the trade-off between computation time and energy
consumption at various levels of an ML training system to achieve energy reduction without end-
to-end slowdown. In reality, building both energy-efÏcient hardware and software and combining
their benefits should be promising, along with open-source frameworks (e.g., Zeus) that facilitate
community efforts.

62.4. Carbon Footprint

The massive electricity demands of data centers can lead to significant environmental externalities
absent an adequate renewable power supply. Many facilities rely heavily on non-renewable en-
ergy sources like coal and natural gas. For example, data centers are estimated to produce up to
2% of total global CO2 emissions which is closing the gap with the airline industry. As mentioned
in previous sections, the computational demands of AI are set to increase. The emissions of this
surge are threefold. First, data centers are projected to increase in size (Yanan Liu et al. 2020). Sec-
ondly, emissions during training are set to increase significantly (D. Patterson et al. 2022). Thirdly,
inference calls to these models are set to increase dramatically as well.

Without action, this exponential demand growth risks ratcheting up the carbon footprint of data
centers further to unsustainable levels. Major providers have pledged carbon neutrality and com-
mitted funds to secure clean energy, but progress remains incremental compared to overall indus-
try expansion plans. More radical grid decarbonization policies and renewable energy investments
may prove essential to counteracting the climate impact of the coming tide of new data centers
aimed at supporting the next generation of AI.

62.4.1. Definition and Significance

The concept of a ‘carbon footprint’ has emerged as a keymetric. This term refers to the total amount
of greenhouse gasses, particularly carbon dioxide, that are emitted directly or indirectly by an indi-
vidual, organization, event, or product. These emissions significantly contribute to the greenhouse
effect, which in turn accelerates global warming and climate change. The carbon footprint is mea-
sured in terms of carbon dioxide equivalents (CO2e), allowing for a comprehensive account that

https://ml.energy/zeus
https://www.independent.co.uk/climate-change/news/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
https://www.computerworld.com/article/3431148/why-data-centres-are-the-new-frontier-in-the-fight-against-climate-change.html
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includes various greenhouse gasses and their relative impact on the environment. Examples of
this as applied to large-scale ML tasks is shown in Figure 62.5.

Figure 62.5. Carbon footprint of large-scale ML tasks. Credit: C.-J. Wu et al. (2022).

The consideration of the carbon footprint is especially important in the field of AI. AI’s rapid ad-
vancement and integration into various sectors have brought its environmental impact into sharp
focus. AI systems, particularly those involving intensive computations like deep learning and
large-scale data processing, are known for their substantial energy demands. This energy, often
drawn from power grids, may still predominantly rely on fossil fuels, leading to significant green-
house gas emissions.

Take, for example, the training of largeAImodels such asGPT-3 or complex neural networks. These
processes require immense computational power, typically provided by data centers. The energy
consumption associated with operating these centers, particularly for such high-intensity tasks, re-
sults in notable greenhouse gas emissions. Studies have highlighted that training a single AImodel
can generate carbon emissions comparable to that of the lifetime emissions of multiple cars, shed-
ding light on the environmental cost of developing advanced AI technologies (Dayarathna, Wen,
and Fan 2016). Figure 62.6 shows a comparison from lowest to highest carbon footprints, starting
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with a roundtrip flight between NY and SF, human life average per year, American life average
per year, US car including fuel over a lifetime, and a Transformer model with neural architecture
search, which has the highest footprint.

Figure 62.6. Carbon footprint of NLP model in lbs of CO2 equivalent. Credit: Dayarathna, Wen, and Fan
(2016).

Moreover, the carbon footprint of AI extends beyond the operational phase. The entire lifecycle of
AI systems, including the manufacturing of computing hardware, the energy used in data centers
for cooling and maintenance, and the disposal of electronic waste, contributes to their overall car-
bon footprint. Some of which we have discussed earlier and we will discuss the waste aspects later
on in this chapter.

62.4.2. The Need for Awareness and Action

Understanding the carbon footprint of AI systems is crucial for several reasons. Primarily, it is a
step towards mitigating the impacts of climate change. As AI continues to grow and permeate dif-
ferent aspects of our lives, its contribution to global carbon emissions becomes a significant concern.
Awareness of these emissions can inform decisions made by developers, businesses, policymakers,
and evenML engineers and scientists like us to ensure a balance between technological innovation
and environmental responsibility.

Furthermore, this understanding stimulates the drive towards ‘Green AI’ (R. Schwartz et al. 2020).
This approach focuses on developing AI technologies that are efÏcient, powerful, and environmen-
tally sustainable. It encourages the exploration of energy-efÏcient algorithms, the use of renewable
energy sources in data centers, and the adoption of practices that reduce the overall environmental
impact of AI.

In essence, the carbon footprint is an essential consideration in developing and applying AI tech-
nologies. As AI evolves and its applications become more widespread, managing its carbon foot-
print is key to ensuring that this technological progress aligns with the broader environmental
sustainability goals.
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62.4.3. Estimating the AI Carbon Footprint

In understanding AI’s environmental impact, estimating AI systems’ carbon footprint is a critical
step. This involves analyzing the various elements contributing to emissions throughout the lifecy-
cle ofAI technologies and employing specificmethodologies to quantify these emissions accurately.
Many different methods for quantifying these carbon emissions of ML have been proposed.

The carbon footprint of AI encompasses several key elements, each contributing to the overall en-
vironmental impact. First, energy is consumed during AI model training and operational phases.
The source of this energy heavily influences the carbon emissions. Once trained, these models,
depending on their application and scale, continue to consume electricity during operation. Next
to energy considerations, the hardware used stresses the environment as well.

The carbon footprint varies significantly based on the energy sources used. The composition of the
sources providing the energy used in the grid varies widely with geographical regions, and even
with time in a single day! For example, in the USA, roughly 60 percent of the total energy supply
is still covered by fossil fuels. The remaining 40 percent is roughly equally covered by nuclear and
renewable energy sources. These fractions are not constant throughout the day. As the production
of renewable energy usually relies on environmental factors, such as solar radiation and pressure
fields, they do not provide a constant source of energy.

The variability of renewable energy production has been an ongoing challenge in the widespread
use of these sources. Looking at Figure 62.7, which shows data for the European grid, we see that
it is not yet possible to produce the required amount of energy throughout the entire day. While
solar energy peaks in themiddle of the day, wind energy shows two distinct peaks in themornings
and evenings. Currently, to supply the lack of energy during times where renewable energy does
not meet requirements, we rely on fossil and coal based energy generation methods.

To enable constant use of renewable energy sources, innovation in energy storage solutions is re-
quired. Base energy load is currently met with nuclear energy. This constant energy source does
not directly emit carbon emissions, but is too slow to accommodate for the variability of renewable
energy sources. Tech companies such as Microsoft have shown interest in nuclear energy sources
to power their data centers. As the demand of data centers is more constant than the demand of
regular households, nuclear energy could be used as a dominant source of energy.

Additionally, the manufacturing and disposal of AI hardware add to the carbon footprint. The
production of specialized computing devices, such as GPUs and CPUs, is an energy- and resource-
intensive process. This phase often relies on energy sources that contribute to greenhouse gas
emissions. The manufacturing process of the electronics industry has been identified as one of the
big eight supply chains, responsible for more than 50 percent of total global emissions (Challenge
2021). Furthermore, the end-of-life disposal of this hardware, which can lead to electronic waste,
also has environmental implications. Asmentioned before, servers currently have a refresh cycle of
roughly 3 to 5 years. Of this e-waste, currently only 17.4 percent is properly collected and recycled.
The carbon emissions of this e-waste has shown an increase of more than 50 percent between 2014
and 2020 (Singh and Ogunseitan 2022).

As is clear from the above, a proper Life CycleAnalysis is necessary to portray all relevant aspects of
the emissions caused by AI. Another method is carbon accounting, which quantifies the amount of
carbon dioxide emissions directly and indirectly associatedwith AI operations. This measurement

https://www.eia.gov/tools/faqs/faq.php?id=427&t=3
https://www.eia.gov/tools/faqs/faq.php?id=427&t=3
https://www.bloomberg.com/news/newsletters/2023-09-29/microsoft-msft-sees-artificial-intelligence-and-nuclear-energy-as-dynamic-duo
https://www.genevaenvironmentnetwork.org/resources/updates/the-growing-environmental-risks-of-e-waste/
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Figure 62.7. Energy sources and generation capabilities. Credit: Energy Charts..

is typically in terms of CO2 equivalents, allowing for a standardizedway of reporting and assessing
emissions.

62.5. Beyond Carbon Footprint

The current focus on reducing the carbon emissions and energy consumption of AI systems ad-
dresses one crucial aspect of sustainability. However, the manufacturing of the semiconductors
and hardware that enable AI also carries severe environmental impacts that receive comparatively
less public attention. Building and operating a leading-edge semiconductor fabrication plant, or
“fab”, has substantial resource requirements and polluting byproducts beyond just a large carbon
footprint.

For example, a state-of-the-art fab producing state of the art chips like in 5nm can require up to
four million gallons of pure water each day. This water usage approaches what a city of half a
million people would require for all needs. Sourcing this consistently places immense strain on
local water tables and reservoirs, especially in already water-stressed regions which host many
high-tech manufacturing hubs.

Additionally, over 250 unique hazardous chemicals are utilized at various stages of semiconductor
productionwithin fabs (Mills and LeHunte 1997). These include volatile solvents like sulfuric acid,
nitric acid, hydrogen fluoride, alongwith arsine, phosphine and other highly toxic substances. Pre-
venting discharge of these chemicals requires extensive safety controls and wastewater treatment
infrastructure to avoid soil contamination and risks to surrounding communities. Any improper
chemical handling or unanticipated spill carries dire consequences.

https://www.energy-charts.info/?l=en&c=DE
https://wccftech.com/tsmc-using-water-tankers-for-chip-production-as-5nm-plant-faces-rationing/
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Beyondwater consumption and chemical risks, fab operation also depends on raremetals sourcing,
generates tons of dangerous waste products, and can hamper local biodiversity. This section will
analyze these critical but less discussed impacts. With vigilance and investment in safety, the harms
from semiconductor manufacturing can be contained while still enabling technological progress.
However, ignoring these externalized issues will exacerbate ecological damage and health risks
over the long run.

62.5.1. Water Usage and Stress

Semiconductor fabrication is an incredibly water-intensive process. Based on an article from 2009,
a typical 300mm siliconwafer requires 8,328 litres of water in total, of which 5,678 litres is ultrapure
water (Cope 2009). Today, a typical fab can use up to four million gallons of pure water. TSMC’s
latest fab in Arizona is projected to use 8.9 million gallons per day, or nearly 3 percent of the city’s
current water production, just to operate one facility. To put things in perspective, an by Intel
and Quantis found that over 97% of their direct water consumption is attributed to semiconductor
manufacturing operations within their own fabrication facilities (Cooper et al. 2011).

Thiswater is used to flush away contaminants in cleaning steps repeatedly and also acts as a coolant
and carrier fluid in thermal oxidation, chemical deposition, and chemicalmechanical planarization
processes. This approximates the daily water consumption of a city with a population of half a
million people during peak summer months.

Despite being located in regions with sufÏcient water, the intensive usage can severely depress
local water tables and drainage basins. For example, the city of Hsinchu in Taiwan suffered sinking
water tables and seawater intrusion into aquifers due to excessive pumping to satisfy water supply
demands from the Taiwan Semiconductor Manufacturing Company (TSMC) fab. In water-scarce
inland areas likeArizona, massivewater inputs are needed to support fabs despite already strained
reservoirs.

Besides depletion, water discharge from fabs also risks environmental contamination if not prop-
erly treated. While much discharge is recycled within the fab, the purification systems still filter
out metals, acids, and other contaminants that can pollute rivers and lakes if not cautiously han-
dled (Prakash et al. 2022). These factors make managing water usage an essential consideration
when mitigating wider sustainability impacts.

62.5.2. Hazardous Chemicals Usage

Modern semiconductor fabrication involvesworkingwithmanyhighly hazardous chemicals under
extreme conditions of heat and pressure (S. Kim et al. 2018). Key chemicals utilized include:

• Strong acids: Hydrofluoric, sulfuric, nitric, and hydrochloric acids rapidly eat through ox-
ides and other surface contaminants but also pose toxicity dangers. Fabs can use thousands
of metric tons of these acids annually. Accidental exposure can be fatal for workers.

• Solvents: Key solvents like xylene, methanol, methyl isobutyl ketone (MIBK) handle dissolv-
ing photoresists but have adverse health impacts like skin/eye irritation, narcotic effects if
mishandled. They also create explosive and air pollution risks.

https://wccftech.com/tsmc-arizona-foundry-205-million-approved/
https://quantis.com/
https://wccftech.com/tsmc-using-water-tankers-for-chip-production-as-5nm-plant-faces-rationing/
https://wccftech.com/tsmc-using-water-tankers-for-chip-production-as-5nm-plant-faces-rationing/
https://www.americanbar.org/groups/environment_energy_resources/publications/wr/a-tale-of-two-shortages/
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• Toxic gases: Gas mixtures containing arsine (AsH3), phosphine (PH3), diborane (B2H6), ger-
mane (GeH4), etc. are some of the deadliest chemicals used in doping and vapor deposition
steps. Minimal exposures can lead to poisoning, tissue damage, and even death without
quick treatment.

• Chlorinated compounds: Older chemical mechanical planarization formulations incorpo-
rated perchloroethylene, trichloroethylene and other chlorinated solvents since banned due
to carcinogenic effects and ozone layer impacts. However, their prior release still threatens
surrounding groundwater sources.

Strict handling protocols, protective equipment for workers, ventilation, filtrating/scrubbing sys-
tems, secondary containment tanks, and specialized disposal mechanisms are vital where these
chemicals are used to minimize health, explosion, air, and environmental spill dangers (Wald and
Jones 1987). But human errors and equipment failures still occasionally occur–highlighting why
reducing fab chemical intensities is an ongoing sustainability effort.

62.5.3. Resource Depletion

While silicon forms the base, there is an almost endless supply of silicon available on Earth. In
fact, silicon is the second most plentiful element found in the Earth’s crust, accounting for 27.7%
of the crust’s total mass. Only oxygen exceeds silicon in abundance within the crust. Therefore,
silicon is not necessary to consider for resource depletion. However, the various specialty metals
and materials that enable the integrated circuit fabrication process and provide specific properties
are scarce. Maintaining supplies of these resources is crucial yet threatened by finite availability
and geopolitical influences (Nakano 2021).

Gallium, indium, and arsenic are vital ingredients in forming ultra-efÏcient compound semicon-
ductors used in highest speed chips suited for 5G andAI applications (H.-W. Chen 2006). However,
these rare elements have relatively scarce natural deposits that are being depleted. The United
States Geological Survey has indium on its list of most critical at-risk commodities–estimated to
have less than a 15 year viable global supply at current demand growth (E. Davies 2011).

Helium is required in huge volumes for next-gen fabs to enable precise wafer cooling during oper-
ation. But helium’s relative rarity and the fact that once it vents into the atmosphere it quickly es-
capes Earth makes maintaining helium supplies extremely challenging long-term (E. Davies 2011).
Substantial price increases and supply shocks are already occurring in this thinly-traded market
according to the US National Academies.

Other risks include how China controls over 90% of the rare earth elements critical to semicon-
ductor materials production (Jha 2014). Any supply chain issues or trade disputes can lead to
catastrophic raw material shortages given lack of current alternatives. In conjunction with helium
shortages, resolving the limited availability and geographic imbalance in accessing essential ingre-
dients remains a sector priority for sustainability.

62.5.4. Hazardous Waste Generation

Semiconductor fabs generate tons of hazardous waste annually as byproducts from the various
chemical processes involved (Grossman 2007). The key waste streams include:

https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust
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• Gaseous waste: Fab ventilation systems capture harmful gases like arsine, phosphine, ger-
mane and filter them out to avoid worker exposure. But this produces significant quantities
of dangerous condensed gas in need of specialized treatment.

• VOCs: Volatile organic compounds like xylene, acetone, methanol are used extensively as
photoresist solvents and get evaporated as emissions during baking, etching, and stripping
stages. VOCs pose toxicity issues and require scrubbing systems to prevent release.

• Spent acids: Strong acids such as sulfuric acid, hydrofluoric acid, nitric acid get depleted
in cleaning and etching steps transforming into a corrosive toxic soup that can dangerously
react releasing heat and fumes if mixed.

• Sludge: Water treatment of discharged efÒuent contains concentrated heavy metals, acid
residues, and chemical contaminants. Filter press systems separate this hazardous sludge.

• Filter cake: Gaseous filtration systems generatemulti-ton sticky cakes of dangerous absorbed
compounds requiring containment.

Without proper handling procedures, storage tanks, packaging materials, and secondary
containment–improper disposal of any of these waste streams can lead to dangerous spills,
explosions, and environmental release. And the massive volumes mean even well-run fabs
produce tons of hazardous waste year after year requiring extensive treatment.

62.5.5. Biodiversity Impacts

62.5.5.1. Habitat Disruption and Fragmentation

Semiconductor fabs require large, contiguous land areas to accommodate cleanrooms, support
facilities, chemical storage, waste treatment, and ancillary infrastructure. Developing these vast
built-up spaces inevitably dismantles existing habitats, damaging sensitive biomes that may have
taken decades to develop. For example, constructing a new fabrication module may level local for-
est ecosystems relied upon by species like spotted owls and elk for survival. The outright removal
of such habitats severely threatens any wildlife populations dependant on those lands.

Furthermore, the pipelines, water channels, air and waste exhaust systems, access roads, transmis-
sion towers and other support infrastructure fragments the remaining undisturbed habitats. Ani-
mals ranging in their daily movements for food, water and spawning can find migration patterns
blocked by these physical human barriers bisecting previously natural corridors.

62.5.5.2. Aquatic Life Disturbances

With semi-conductor fabs consuming millions of gallons of ultra-pure water daily, accessing and
discharging such volumes risks altering the suitability of nearby aquatic environments housing
fish, water plants, amphibians and other species. If the fab is tapping groundwater tables as its
primary supply source, overdrawing at unsustainable rates can deplete lakes or lead to drying of
streams as water levels drop (E. Davies 2011).

Additionally, discharging higher temperature wastewater used for cooling fabrication equipment
can shift downstream river conditions through thermal pollution. Temperature changes beyond
thresholds which native species evolved for can disrupt reproductive cycles. Warmer water also
holds less dissolved oxygen critical to support aquatic plant and animal life (LeRoy Poff, Brinson,
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and Day 2002). Combined with traces of residual contaminants that escape filtration systems, the
discharged water can cumulatively transform environments to be far less habitable for sensitive
organisms (Till et al. 2019).

62.5.5.3. Air and Chemical Emissions

While modern semiconductor fabs aim to contain air and chemical discharges through extensive
filtration systems, some level of emissions often persist raising risks for nearby flora and fauna. Air
pollutants including volatile organic compounds (VOCs), nitrogen oxide compounds (NOxs), and
particulate matter from fab operational exhausts as well as power plant fuel emissions can carry
downwind.

As contaminants permeate local soils andwater sources, wildlife ingesting affected food andwater
ingest toxic substances which research shows can hamper cell function, reproduction rates and
longevity–slowly poisoning ecosystems (Hsu et al. 2016).

Likewise, accidental chemical spills and improperwaste handlingwhich releases acids, BODs, and
heavy metals into soils can dramatically affect retention and leeching capabilities. Flora such as
vulnerable native orchids adapted to nutrient-poor substrates can experience die-offs when con-
tacted by foreign runoff chemicals that alter soil pH and permeability. One analysis found that a
single 500 gallon nitric acid spill led to the regional extinction of a rare moss species in the year
following when the acidic efÒuent reached nearby forest habitats. Such contamination events set
off chain reactions across the interconnected web of life. Thus strict protocols are essential to avoid
hazardous discharge and runoff.

62.6. Life Cycle Analysis

Understanding the holistic environmental impact of AI systems requires a comprehensive ap-
proach that considers the entire life cycle of these technologies. Life Cycle Analysis (LCA) refers
to a methodological framework used to quantify the environmental impacts across all stages in
the lifespan of a product or system, from raw material extraction to end-of-life disposal. Applying
LCA to AI systems can help identify priority areas to target for reducing overall environmental
footprints.

62.6.1. Stages of an AI System’s Life Cycle

The life cycle of an AI system can be divided into four key phases:

• Design Phase: This includes the energy and resources used in the research and development
of AI technologies. It encompasses the computational resources used for algorithm develop-
ment and testing contributing to carbon emissions.

• Manufacture Phase: This stage involves producing hardware components such as graphics
cards, processors, and other computing devices necessary for running AI algorithms. Man-
ufacturing these components often involves significant energy use for material extraction,
processing, and greenhouse gas emissions.
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• Use Phase: The next most energy-intensive phase involves the operational use of AI sys-
tems. It includes the electricity consumed in data centers for training and running neural net-
works and powering end-user applications. This is arguably one of themost carbon-intensive
stages.

• Disposal Phase: This final stage covers the end-of-life aspects of AI systems, including the
recycling and disposal of electronic waste generated from outdated or non-functional hard-
ware past their usable lifespan.

62.6.2. Environmental Impact at Each Stage

Design and Manufacturing

The environmental impact during these beginning-of-life phases includes emissions from energy
use and resource depletion from extracting materials for hardware production. At the heart of
AI hardware are semiconductors, primarily silicon, used to make the integrated circuits in pro-
cessors and memory chips. This hardware manufacturing relies on metals like copper for wiring,
aluminum for casings, and various plastics and composites for other components. It also uses rare
earth metals and specialized alloys–elements like neodymium, terbium, and yttrium, are used in
small but vital quantities. For example, the creation of GPUs relies on copper and aluminum. At
the same time, chips use rare earth metals–the mining process for which can generate substantial
carbon emissions and ecosystem damage.

Use Phase

AI computes the majority of emissions in the lifecycle due to continuous high-power consump-
tion, especially for training and running models. This includes direct emissions from electricity
usage and indirect emissions from non-renewable grid energy generation. Studies estimate train-
ing complex models can have a carbon footprint comparable to the lifetime emissions of up to five
cars.

Disposal Phase

The impact of the disposal stage includes air and water pollution from toxic materials in devices,
challenges associated with complex electronics recycling, and contamination when improperly
handled. Harmful compounds from burned e-waste are released into the atmosphere. At the same
time, landfill leakage of lead, mercury and other materials poses risks of soil and groundwater con-
tamination if not properly controlled. Implementing effective electronics recycling is crucial.

62.7. Challenges in LCA

62.7.1. Lack of Consistency and Standards

One major challenge facing life cycle analysis (LCA) for AI systems is the current lack of consistent
methodological standards and frameworks. Unlike product categories like building materials that
have developed international standards for LCA through ISO 14040, there are no firmly established
guidelines tailored to analyzing the environmental footprint of complex information technology
like AI.
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This absence of uniformity means researchers make differing assumptions and varying method-
ological choices. For example, a 2021 study from the University of Massachusetts Amherst
(Strubell, Ganesh, and McCallum 2019) analyzed the life cycle emissions of several natural
language processing models but only considered computational resource usage for training and
omitted hardware manufacturing impacts. A more comprehensive 2020 study from Stanford
University researchers included emissions estimates from the production of relevant servers,
processors, and other components, following an ISO-aligned LCA standard for computer hard-
ware. However, these diverging choices in system boundaries and accounting approaches reduce
robustness and prevent apples-to-apples comparisons of results.

Having standardized frameworks and protocols tailored to the unique aspects and rapid update
cycles of AI systems would provide more coherence. This could better equip researchers and de-
velopers to understand environmental hotspots, compare technology options, and accurately track
progress on sustainability initiatives across the AI field. Industry groups and international stan-
dards bodies like the IEEE or ACM should prioritize addressing this methodological gap.

62.7.2. Data Gaps

Another key challenge for comprehensive life cycle assessment of AI systems is substantial data
gaps, especially regarding upstream supply chain impacts and downstream electronic waste flows.
Most existing studies focus narrowly on the learner or usage phase emissions from computational
power demands, which misses a significant portion of lifetime emissions (U. Gupta et al. 2022).

For example, little public data from companies exists quantifying energy use and emissions from
manufacturing the specialized hardware components that enable AI–including high-end GPUs,
ASIC chips, solid-state drives and more. Researchers often rely on secondary sources or generic
industry averages to approximate production impacts. Similarly, there is limited transparency into
downstream fate once AI systems are discarded after 4-5 years of usable lifespans on average.

While electronic waste generation levels can be estimated, specifics on hazardous material leakage,
recycling rates, and disposal methods for the complex components are hugely uncertain without
better corporate documentation or regulatory reporting requirements.

Even for the usage phase, the lack of fine-grained data on computational resource consumption for
training different model types makes reliable per-parameter or per-query emissions calculations
difÏcult. Attempts to create lifecycle inventories estimating average energy needs for key AI tasks
exist (Henderson et al. 2020; Anthony, Kanding, and Selvan 2020) but variability across hardware
setups, algorithms, and input data uncertainty remains extremely high. Furthermore, real time
carbon intensity data, which is critical in accurately tracking operational carbon footprint, is lacking
in many geographic locations, thereby rendering existing tools for operational carbon emission
mere approximations based on annual average carbon intensity values.

The challenge is that tools like CodeCarbon and ML CO2 but these are ad hoc approaches at best.
Bridging the real data gaps with more rigorous corporate sustainability disclosures andmandated
environmental impact reporting will be key for AI’s overall climatic impacts to be understood and
managed.

https://codecarbon.io/
https://mlco2.github.io/impact/#compute
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62.7.3. Rapid Pace of Evolution

The extremely quick evolution of AI systems poses additional challenges when it comes to keep-
ing life cycle assessments up-to-date and accounting for the latest hardware and software advance-
ments. The core algorithms, specialized chips, frameworks, and technical infrastructure under-
pinning AI have all been advancing at exceptionally fast rates, with new developments rapidly
rendering prior systems obsolete.

For example, in the deep learning space, novel neural network architectures that achieve signifi-
cantly better performance on key benchmarks or new optimized hardware like Google’s TPU chips
can completely change what an “average” model looks like in less than a year. These swift shifts
make one-off LCA studies outdated quickly for accurately tracking emissions from designing, run-
ning, or disposing of the latest AI.

However, the resources and access required to continuously update LCAs also poses barriers. Fre-
quently re-doing labor and data intensive life cycle inventories and impactmodeling to stay current
with AI’s state of the art is likely infeasible for many researchers and organizations. But without
updated analyses, the environmental hotspots as algorithms and silicon chips continue rapidly
evolving could be missed.

This presents a difÏculty in balancing dynamic precision through continuous assessment with
pragmatic constraints. Some researchers have proposed simplified proxy metrics like tracking
hardware generations over time or using representative benchmarks as an oscillating set of goal-
posts for relative comparisons, though granularity may be sacrificed. Overall, the challenge of
rapid change will require innovative methodological solutions to prevent underestimating AI’s
evolving environmental burdens.

62.7.4. Supply Chain Complexity

Finally, the complex and often opaque supply chains associated with producing the wide array
of specialized hardware components that enable AI pose challenges for comprehensive life cy-
cle modeling. State-of-the-art AI relies on leveraging cutting-edge advancements in processing
chips, graphics cards, data storage, networking equipment and more. However, tracking emis-
sions and resource use across the tiered networks of globalized suppliers for all these components
is extremely difÏcult.

For example, NVIDIA graphics processing units dominate much AI computing hardware, but the
company relies on over several discrete suppliers across Asia and beyond to produce the GPUs.
Many firms at each supplier tier choose not to disclose facility-level environmental data that could
enable robust LCAs fully. Gaining end-to-end transparency down multiple levels of suppliers
across disparate geographies with varying disclosure protocols and regulations poses barriers, de-
spite being crucial for complete boundary setting. This becomes even more complex when at-
tempting to model emerging hardware accelerators like tensor processing units (TPUs), whose
production networks still need to be made public.

Without willingness from tech giants to require and consolidate environmental impact data dis-
closure from across their global electronics supply chains, considerable uncertainty will remain
around quantifying the full lifecycle footprint of AI hardware enablement. More supply chain visi-
bility coupled with standardized sustainability reporting frameworks specifically addressing AI’s
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complex inputs hold promise for enriching LCAs and prioritizing environmental impact reduc-
tions.

62.8. Sustainable Design and Development

62.8.1. Sustainability Principles

As the impact of AI on the environment becomes increasingly evident, the focus on sustainable
design and development in AI is gaining prominence. This involves incorporating sustainability
principles intoAI design, developing energy-efÏcientmodels, and integrating these considerations
throughout the AI development pipeline. There is a growing need to consider its sustainability im-
plications and develop principles to guide responsible innovation. Below is a core set of principles.
The principles flows from the conceptual foundation, to practical execution, to supporting imple-
mentation factors, the principles provide a full cycle perspective on embedding sustainability in
AI design and development.

Lifecycle Thinking: Encouraging designers to consider the entire lifecycle of AI systems, from
data collection and preprocessing to model development, training, deployment, and monitoring.
The goal is to ensure sustainability is considered at each stage. This includes using energy-efÏcient
hardware, prioritizing renewable energy sources, and planning to reuse or recycle retired mod-
els.

Future Proofing: Designing AI systems anticipating future needs and changes can enhance sus-
tainability. This may involve making models adaptable via transfer learning and modular archi-
tectures. It also includes planning capacity for projected increases in operational scale and data
volumes.

EfÏciency and Minimalism: This principle focuses on creating AI models that achieve desired re-
sults with the least possible resource use. It involves simplifying models and algorithms to reduce
computational requirements. Specific techniques include pruning redundant parameters, quantiz-
ing and compressing models, and designing efÏcient model architectures, such as those discussed
in the Optimizations chapter.

Lifecycle Assessment (LCA) Integration: Analyzing environmental impacts throughout the de-
velopment and deployment lifecycles highlights unsustainable practices early on. Teams can then
make needed adjustments, instead of discovering issues late when they are more difÏcult to ad-
dress. Integrating this analysis into the standard design flow avoids creating legacy sustainability
problems.

Incentive Alignment: Economic and policy incentives should promote and reward sustainable AI
development. This may include government grants, corporate initiatives, industry standards, and
academic mandates for sustainability. Aligned incentives enable sustainability to become embed-
ded in AI culture.

Sustainability Metrics and Goals: Metrics that measure sustainability factors like carbon usage
and energy efÏciency are important to establish clearly. Establishing clear targets for these metrics
provides concrete guidelines for teams to develop responsible AI systems. Tracking performance
on metrics over time shows progress towards set sustainability goals.

../optimizations/optimizations.qmd
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Fairness, Transparency, and Accountability: Sustainable AI systems should be fair, transparent,
and accountable. Models should be unbiased, with transparent development processes and mech-
anisms for auditing and redressing issues. This builds public trust and enables the identification
of unsustainable practices.

Cross-disciplinary Collaboration: AI researchers teaming up with environmental scientists and
engineers can lead to innovative systems that are high-performing yet environmentally friendly.
Combining expertise from different fields from the start of projects enables sustainable thinking to
be incorporated into the AI design process.

Education and Awareness: Workshops, training programs, and course curricula that cover AI
sustainability raise awareness among the next generation of practitioners. This equips students
with the knowledge to develop AI that consciously minimizes negative societal and environmen-
tal impacts. Instilling these values from the start shapes tomorrow’s professionals and company
cultures.

62.9. Green AI Infrastructure

Green AI represents a transformative approach to AI that incorporates environmental sustainabil-
ity as a fundamental principle across the AI system design and lifecycle (R. Schwartz et al. 2020).
This shift is driven by growing awareness of AI technologies’ significant carbon footprint and eco-
logical impact, especially the compute-intensive process of training complex ML models.

The essence of Green AI lies in its commitment to align AI advancement with sustainability goals
around energy efÏciency, renewable energy usage, andwaste reduction. The introduction of Green
AI ideals reflects maturing responsibility across the tech industry towards environmental steward-
ship and ethical technology practices. It moves beyond technical optimizations towards holistic
life cycle assessment on how AI systems affect sustainability metrics. Setting new bars for ecolog-
ically conscious AI paves the way for the harmonious coexistence of technological progress and
planetary health.

62.9.1. Energy EfÏcient AI Systems

Energy efÏciency inAI systems is a cornerstone ofGreenAI, aiming to reduce the significant energy
demands traditionally associated with AI development and operations. This shift towards energy-
conscious AI practices is vital in addressing the environmental concerns raised by the rapidly ex-
panding field of AI. By focusing on energy efÏciency, AI systems can become more sustainable,
lessening their environmental impact and paving the way for more responsible AI use.

As we have discussed earlier, the training and operation of AI models, especially large-scale ones,
are known for their high energy consumption stemming from compute-intensive model architec-
ture and reliance on vast amounts of training data. For example, it is estimated that training a large
state-of-the-art neural network model can have a carbon footprint of 284 tonnes–equivalent to the
lifetime emissions of 5 cars (Strubell, Ganesh, and McCallum 2019).

To tackle the massive energy demands, researchers and developers are actively exploring methods
to optimize AI systems for better energy efÏciency without losing model accuracy or performance.
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This includes techniques like the ones we have discussed in the model optimizations, efÏcient AI
and hardware acceleration chapters:

• Knowledge distillation to transfer knowledge from large AI models to miniature versions
• Quantization and pruning approaches that reduce computational and space complexities
• Low-precision numerics–lowering mathematical precision without impacting model quality
• Specialized hardware like TPUs, neuromorphic chips tuned explicitly for efÏcient AI process-

ing

One example is Intel’s work on Q8BERT—quantizing BERT language model with 8-bit integers,
leading to 4x reduction in model size with minimal accuracy loss (Zafrir et al. 2019). The push for
energy-efÏcient AI is not just a technical endeavor–it has tangible real-world implications. More
performant systems lower AI’s operational costs and carbon footprint, making it accessible for
widespread deployment on mobile and edge devices. It also paves the path toward the democ-
ratization of AI and mitigates unfair biases that can emerge from uneven access to computing re-
sources across regions and communities. Pursuing energy-efÏcient AI is thus crucial for creating
an equitable and sustainable future with AI.

62.9.2. Sustainable AI Infrastructure

Sustainable AI infrastructure includes the physical and technological frameworks that support AI
systems, focusing on environmental sustainability. This involves designing and operating AI in-
frastructure in a way that minimizes ecological impact, conserves resources, and reduces carbon
emissions. The goal is to create a sustainable ecosystem for AI that aligns with broader environ-
mental objectives.

Central to sustainable AI infrastructure are green data centers, which are optimized for energy
efÏciency and often powered by renewable energy sources. These data centers employ advanced
cooling technologies (Ebrahimi, Jones, and Fleischer 2014), energy-efÏcient server designs (Ud-
din and Rahman 2012), and smart management systems (Buyya, Beloglazov, and Abawajy 2010)
to reduce power consumption. The shift towards green computing infrastructure also involves
adopting energy-efÏcient hardware, like AI-optimized processors that deliver high performance
with lower energy requirements, which we discussed in the AI Acceleration chapter. These efforts
collectively reduce the carbon footprint of running large-scale AI operations.

Integrating renewable energy sources, such as solar, wind, and hydroelectric power, into AI in-
frastructure is important for environmental sustainability (Chua 1971). Many tech companies and
research institutions are investing in renewable energy projects to power their data centers. This
not only helps in making AI operations carbon-neutral but also promotes the wider adoption of
clean energy. Using renewable energy sources is a clear statement of commitment to environmen-
tal responsibility in the AI industry.

Sustainability in AI also extends to the materials and hardware used in creating AI systems. This
involves choosing environmentally friendly materials, adopting recycling practices, and ensuring
responsible electronic waste disposal. Efforts are underway to develop more sustainable hard-
ware components, including energy-efÏcient chips designed for domain-specific tasks (such as AI
accelerators) and environmentally friendly materials in device manufacturing (Cenci et al. 2021;
Irimia-Vladu 2014). The lifecycle of these components is also a focus, with initiatives aimed at
extending the lifespan of hardware and promoting recycling and reuse.

../hw_acceleration/hw_acceleration.qmd
https://www.forbes.com/sites/siemens-smart-infrastructure/2023/03/13/how-data-centers-are-driving-the-renewable-energy-transition/?sh=3208c5b54214
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While strides are being made in sustainable AI infrastructure, challenges remain, such as the high
costs of green technology and the need for global standards in sustainable practices. Future di-
rections may include more widespread adoption of green energy, further innovations in energy-
efÏcient hardware, and international collaboration on sustainable AI policies. The pursuit of sus-
tainable AI infrastructure is not just a technical endeavor but a holistic approach that encompasses
environmental, economic, and social aspects, ensuring that AI advances in harmony with our
planet’s health.

62.9.3. Frameworks and Tools

To effectively implement Green AI practices, it is essential to have access to the right frameworks
and tools. These resources are designed to assist developers and researchers in creating more
energy-efÏcient and environmentally friendly AI systems. They range from software libraries op-
timized for low-power consumption to platforms that facilitate the development of sustainable AI
applications.

There are several software libraries and development environments specifically tailored for Green
AI. These tools often include features for optimizing AI models to reduce their computational load
and, consequently, their energy consumption. For example, libraries in PyTorch and TensorFlow
that support model pruning, quantization, and efÏcient neural network architectures enable devel-
opers to build AI systems that require less processing power and energy. Additionally, there are
open source communities like theGreenCarbon Foundation creating a centralized carbon intensity
metric and building software for carbon-aware computing.

Energymonitoring tools are crucial for Green AI, as they allow developers to measure and analyze
the energy consumption of their AI systems. By providing detailed insights into where and how
energy is being used, these tools enable developers to make informed decisions about optimiz-
ing their models for better energy efÏciency. This can involve adjustments in algorithm design,
hardware selection, cloud computing software selection, or operational parameters. Figure 62.8
is a screenshot of an energy consumption dashboard provided by Microsoft’s cloud services plat-
form.

Figure 62.8. Microsoft Azure energy consumption dashboard. Credit: Will Buchanan.

With the increasing integration of renewable energy sources in AI operations, frameworks that
facilitate this process are becoming more important. These frameworks help manage the energy
supply from renewable sources like solar or wind power, ensuring that AI systems can operate
efÏciently with fluctuating energy inputs.

https://github.com/Green-Software-Foundation
https://techcommunity.microsoft.com/t5/green-tech-blog/charting-the-path-towards-sustainable-ai-with-azure-machine/ba-p/2866923
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Beyond energy efÏciency, sustainability assessment tools help evaluate the broader environmental
impact of AI systems. These tools can analyze factors like the carbon footprint of AI operations,
the lifecycle impact of hardware components (U. Gupta et al. 2022), and the overall sustainability
of AI projects (Prakash et al. 2022).

The availability and ongoing development of GreenAI frameworks and tools are critical for advanc-
ing sustainable AI practices. By providing the necessary resources for developers and researchers,
these tools facilitate the creation of more environmentally friendly AI systems and encourage a
broader shift towards sustainability in the tech community. As Green AI continues to evolve, these
frameworks and tools will play a vital role in shaping a more sustainable future for AI.

62.9.4. Benchmarks and Leaderboards

Benchmarks and leaderboards are important for driving progress in Green AI by providing stan-
dardized ways to measure and compare different methods. Well-designed benchmarks that cap-
ture relevant metrics around energy efÏciency, carbon emissions, and other sustainability factors
enable the community to track advancements in a fair and meaningful way.

There exist extensive benchmarks for tracking AI model performance, such as those extensively
discussed in the Benchmarking chapter, but there is a clear and pressing need for additional stan-
dardized benchmarks focused on sustainability metrics like energy efÏciency, carbon emissions,
and overall ecological impact. Understanding the environmental costs of AI is currently hampered
by a lack of transparency and standardized measurement around these factors.

Emerging efforts such as the ML.ENERGY Leaderboard, which provides performance and energy
consumption benchmarking results for large language models (LLMs) text generation, assists in
enhancing the understanding of the energy cost of GenAI deployment.

As with any benchmark, it is important that Green AI benchmarks represent realistic usage scenar-
ios and workloads. Benchmarks that focus narrowly on easily gamed metrics may lead to short-
term gains but fail to reflect actual production environments where more holistic measures of efÏ-
ciency and sustainability are needed. The community should continue expanding benchmarks to
cover diverse use cases.

Wider adoption of common benchmark suites by industry players will accelerate innovation in
Green AI by allowing easier comparison of techniques across organizations. Shared benchmarks
lower the barrier for demonstrating the sustainability benefits of new tools and best practices. How-
ever, care must be taken around issues like intellectual property, privacy, and commercial sensitiv-
ity when designing industry-wide benchmarks. Initiatives to develop open reference datasets for
Green AI evaluation may help drive broader participation.

As methods and infrastructure for Green AI continue maturing, the community also needs to re-
visit benchmark design to ensure existing suites capture new techniques and scenarios well. Track-
ing the evolving landscape through regular benchmark updates and reviews will be important to
maintain representative comparisons over time. Community efforts for benchmark curation can
enable sustainable benchmark suites that stand the test of time. Comprehensive benchmark suites
owned by research communities or neutral third parties like MLCommons may encourage wider
participation and standardization.

../benchmarking/benchmarking.qmd
https://ml.energy/leaderboard
https://mlcommons.org
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62.10. Case Study: Google’s 4Ms

Over the past decade, AI has rapidlymoved from the realm of academic research to large-scale pro-
duction systems powering numerous Google products and services. As AI models and workloads
have grown exponentially in size and computational demands, concerns have emerged about their
energy consumption and carbon footprint. Some researchers predicted runaway growth in ML’s
energy appetite that could outweigh efÏciencies gained from improved algorithms and hardware
(Thompson et al. 2021).

However, Google’s own production data reveals a different story–with AI representing a steady
10-15% of total company energy usage from 2019 to 2021. This case study analyzes how Google
applied a systematic approach leveraging four best practices–what they term the “4 Ms” of model
efÏciency, machine optimization, mechanization through cloud computing, andmapping to green
locations to bend the curve on emissions from AI workloads.

The scale ofGoogle’sAI usagemakes it an ideal case study. In 2021 alone, the companywas training
models like the 1.2 trillion parameter GLam model. Analyzing how the application of AI has been
paired with rapid efÏciency gains in this environment helps us by providing a logical blueprint for
the broader AI field to follow.

By transparently publishing detailed energy usage statistics, adoption rates of carbon-free clouds
and renewables purchases, and more alongside its technical innovations, Google has enabled out-
side researchers to accurately measure progress. Their study in the ACMCACM (D. Patterson et al.
2022) highlights how the company’s multi-pronged approach shows that predictions of runaway
AI energy consumption can be overcome through focusing engineering efforts on sustainable de-
velopment patterns. The pace of improvements also suggests ML’s efÏciency gains are just getting
started.

62.10.1. Google’s 4M Best Practices

To curb emissions from their rapidly expanding AI workloads, Google engineers systematically
identified four best practice areas–termed the “4 Ms”–where optimizations could compound to
reduce the carbon footprint of ML:

• Model - Selecting efÏcient AI model architectures can reduce computation by 5-10X with no
loss in model quality. Google has focused extensive research on developing sparse models
and neural architecture search to create more efÏcient models like the Evolved Transformer
and Primer.

• Machine - Using hardware optimized for AI over general purpose systems improves perfor-
mance per watt by 2-5X. Google’s Tensor Processing Units (TPUs) led to 5-13X better carbon
efÏciency versus GPUs not optimized for ML.

• Mechanization - By leveraging cloud computing systems tailored for high utilization over
conventional on-premise data centers, energy costs reduce by 1.4-2X. Google cites its data
centers’ Power Usage Effectiveness outpacing industry averages.

• Map - Choosing data center locations with low-carbon electricity reduces gross emissions by
another 5-10X. Google provides real-timemaps highlighting its renewable energy percentage
by facility.
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Together, these practices created drastic compound efÏciency gains. For example, optimizing the
Transformer AI model on TPUs in a sustainable data center location cut energy use by a factor of
83 and lowered CO2 emissions by a factor of 747.

62.10.2. Significant Results

Google’s efforts to improve the carbon efÏciency of ML have produced measurable gains helping
to restrain overall energy appetite, despite exponential growth in AI adoption across products and
services. One key datapoint highlighting this progress is that AIworkloads have remained a steady
10% to 15% of total company energy use from 2019 to 2021. As AI became integral to ever more
Google offerings, overall compute cycles dedicated to AI grew substantially. However, efÏciencies
on algorithms, specialized hardware, data center design and flexible geography allowed sustain-
ability to keep pace—with AI representing just a fraction of total data center electricity over years
of expansion.

Other case studies further underscore how an engineering focus on sustainable AI development
patterns enabled rapid quality improvements in lockstep with environmental gains. For example,
the natural language processing model GPT-3 was viewed as state-of-the-art in mid-2020. Yet its
successor GLaM improved accuracy while cutting training compute needs and using cleaner data
center energy–cutting CO2 emissions by a factor of 14 in just 18 months of model evolution.

Similarly, Google found past published speculation missing the mark on ML’s energy appetite by
factors of 100 to 100,000X due to lacking real-worldmetrics. By transparently tracking optimization
impact, Google hoped to motivate efÏciency while preventing overestimated extrapolations about
ML’s environmental toll.

Together these data-driven case studies show how companies like Google are steering AI advance-
ments toward sustainable trajectories and driving efÏciency improvements to outpace adoption
growth. And with further efforts around lifecycle analysis, inference optimization, and renewable
expansion, companies can aim to accelerate progress—giving evidence that ML’s clean potential
is only just being unlocked by current gains.

62.10.3. Further Improvements

WhileGoogle hasmademeasurable progress in restraining the carbon footprint of itsAI operations,
the company recognizes further efÏciency gains will be vital for responsible innovation given the
technology’s ongoing expansion.

One area of focus is showing how advances often incorrectly viewed as increasing unsustainable
computing—like neural architecture search (NAS) to find optimized models—actually spur down-
stream savings outweighing their upfront costs. Despite expending more energy for model dis-
covery rather than hand-engineering, NAS cuts lifetime emissions by producing efÏcient designs
callable across countless applications.

Additionally, analysis reveals focusing sustainability efforts on data center and server-side opti-
mization makes sense given the dominant energy draw versus consumer devices. Though Google
aims to shrink inference impacts across processors like mobile phones, priority rests on improving
training cycles and data center renewables procurement for maximal effect.
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To that end, Google’s progress in pooling compute in efÏciently designed cloud facilities highlights
the value of scale and centralization. As more workloads shift away from inefÏcient on-premise
servers, internet giants’ prioritization of renewable energy—with Google and Facebook matched
100% by renewables since 2017 and 2020 respectively—unlocks compounding emissions cuts.

Together these efforts emphasize that while no resting on laurels is possible, Google’s mul-
tipronged approach shows AI efÏciency improvements are only accelerating. Cross-domain
initiatives around lifecycle assessment, carbon-conscious development patterns, transparency,
and matching rising AI demand with clean electricity supply pave a path toward bending the
curve further as adoption grows. The company’s results compel the broader field towards
replicating these integrated sustainability pursuits.

62.11. Embedded AI - Internet of Trash

While much attention has focused on making the immense data centers powering AI more sus-
tainable, an equally pressing concern is the movement of AI capabilities into smart edge devices
and endpoints. Edge/embedded AI allows near real-time responsiveness without connectivity de-
pendencies. It also reduces transmission bandwidth needs. However, the increase of tiny devices
leads to other risks.

Tiny computers, microcontrollers, and custom ASICs powering edge intelligence face size, cost
and power limitations that rule out high-end GPUs used in data centers. Instead, they require
optimized algorithms and extremely compact, energy-efÏcient circuitry to run smoothly. But en-
gineering for these microscopic form factors opens up risks around planned obsolescence, dispos-
ability, and waste. Figure 62.9 shows that the number of IoT devices is projected to reach 30 billion
connected devices by 2030.

End-of-life handling of internet-connected gadgets embedded with sensors and AI remains an
often overlooked issue during design, though these products permeate consumer goods, vehicles,
public infrastructure, industrial equipment and more.

62.11.0.1. E-waste

Electronic waste, or e-waste, refers to discarded electrical equipment and components that enter
the waste stream. This includes devices that have to be plugged in, have a battery, or electrical
circuitry. With the rising adoption of internet-connected smart devices and sensors, e-waste vol-
umes are rapidly increasing each year. These proliferating gadgets contain toxic heavy metals like
lead, mercury, and cadmium that become environmental and health hazards when improperly
disposed.

The amount of electronic waste being produced is growing at an alarming rate. Today, we already
produce 50million tons per year. By 2030, that figure is projected to jump to a staggering 75million
tons as consumer electronics consumption continues to accelerate. Global e-waste production is
on track to reach 120 million tonnes per year by 2050 (Un and Forum 2019). From smartphones
and tablets to internet-connected devices and home appliances, the soaring production and short
lifecycles of our gadgets is fueling this crisis.

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.unep.org/news-and-stories/press-release/un-report-time-seize-opportunity-tackle-challenge-e-waste
https://www.unep.org/news-and-stories/press-release/un-report-time-seize-opportunity-tackle-challenge-e-waste
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Figure 62.9. Number of Internet of Things (IoT) connected devices worldwide from 2019 to 2023. Credit:
Statista.

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
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Developing nations are being hit the hardest as they lack the infrastructure to safely process obso-
lete electronics. In 2019, formal e-waste recycling rates in poorer countries ranged from just 13%
to 23%. The remainder ends up illegally dumped, burned, or crudely dismantled–releasing toxic
materials into the environment and harming workers as well as local communities. Clearly more
needs to be done to build global capacity for ethical and sustainable e-waste management or we
risk irreversible damage.

The danger is that crude handling of electronics to strip valuables exposes marginalized workers
and communities to noxious burnt plastics/metals. Lead poisoning poses especially high risks to
child development if ingested or inhaled. Overall, only about 20% of e-waste produced was col-
lected using environmentally sound methods according to UN estimates (Un and Forum 2019). So
solutions for responsible lifecyclemanagement are urgently required to contain the unsafe disposal
as volume soars higher.

62.11.0.2. Disposable Electronics

Rapidly falling costs of microcontrollers, tiny rechargeable batteries, and compact communica-
tion hardware has enabled embedding intelligent sensor systems throughout everyday consumer
goods. These internet-of-things (IoT) devices monitor product conditions, user interactions, and
environment factors in order to enable real-time responsiveness, personalization, and data-driven
business decisions in the evolving connected marketplace.

However, these embedded electronics face little oversight or planning around sustainably handling
their eventual disposal once the often plastic-encased products get thrown out following brief life-
times. IoT sensors now commonly reside in single-use items like water bottles, food packaging,
prescription bottles, and cosmetic containers that overwhelmingly enter landfill waste streams af-
ter a few weeks to months of consumer use.

The problem accelerates as more manufacturers rush to integrate mobile chips, power sources,
Bluetooth modules and other modern silicon ICs costing under US$1 into various merchandise
without protocols for recycling, replacing batteries or component reusability. Despite their small
individual size, collectively the volumes of these devices and lifetimewaste burden loom large. Un-
like regulating larger electronics, few policy constraints currently exist around materials require-
ments or toxicity in tiny disposable gadgets.

While offering convenience when working, the unsustainable combination of difÏcult retrievabil-
ity and limited safe breakdown mechanisms causes disposable connected devices to contribute
outsized shares of future e-waste volumes needing urgent attention.

62.11.0.3. Planned Obsolescence

Planned obsolescence refers to the intentional design strategy of manufacturing products with
artificially limited lifetimes that quickly become non-functional or outdated. This spurs faster re-
placement purchase cycles as consumers find devices no longer meeting needs within a few years.
However, electronics designed for premature obsolescence contribute to unsustainable e-waste
volumes.

For example, gluing smartphone batteries and components together hinders repairability com-
pared to using modular, accessible assemblies. Or rolling out software updates that deliberately
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slow system performance creates a perception worth upgrading devices produced only several
years earlier.

Likewise, fashionable introductions of new product generations with minor but exclusive feature
additions makes prior versions rapidly seem dated. These tactics compel buying new gadgets
(e.g. Iphones) long before operational endpoints. When multiplied across fast-paced electronics
categories, the result is billions of barely worn items being discarded annually.

Planned obsolescence thus intensifies resource utilization and waste creation in making products
with no intention for long lifetimes. This contradicts sustainability principles around durability,
reuse and material conservation. While stimulating continuous sales and gains for manufactur-
ers in the short term, the strategy externalizes environmental costs and toxins onto communities
lacking proper e-waste processing infrastructure.

Policy and consumer action is crucial to counter gadget designs that are needlessly disposable by
default. Companies should also invest in product stewardship programs supporting responsible
reuse and reclamation.

Consider the real world example. Apple has faced scrutiny over the years for allegedly engaging
in planned obsolescence to encourage customers to buy new iPhone models. The company was
allegedly designing its phones so that performance degrades over time or existing features become
incompatiblewith newoperating systems, which critics argue ismeant to spurmore rapid upgrade
cycles. In 2020, Apple paid a 25 million Euros in fine to settle a case in France where regulators
found the company guilty of intentionally slowing down older iPhones without clearly informing
customers via iOS updates.

By failing to be transparent about power management changes that reduced device performance,
Apple participated in deceptive activities that reduced product lifespan to drive sales. The com-
pany claimed it was done to “smooth out” peaks that could cause older batteries to shut down
suddenly. But this is an example that clearly highlights the legal risks around employing planned
obsolescence and not properly disclosing when functionality changes impact device usability over
time–even leading brands like Apple can run into trouble if perceived to be intentionally shorten-
ing product life cycles.

62.12. Policy and Regulatory Considerations

62.12.1. Measurement and Reporting Mandates

One policy mechanism with increasing relevance for AI systems is measurement and reporting
requirements regarding energy consumption and carbon emissions. Mandatedmetering, auditing,
disclosures, and more rigorous methodologies aligned to sustainability metrics can help address
information gaps hindering efÏciency optimizations.

On the simple end, national or regional policies may require companies above a certain size utiliz-
ing AI in their products or backend systems to report energy consumption or emissions associated
with major AI workloads. Organizations like the Partnership on AI, IEEE, and NIST could help
shape standardized methodologies. More complex proposals involve defining consistent ways to
measure computational complexity, data center PUE, carbon intensity of energy supply, and efÏ-
ciencies gained through AI-specific hardware.

https://www.cnbc.com/2020/12/08/the-psychology-of-new-iphone-releases-apple-marketing.html
https://undergradlawreview.blog.fordham.edu/consumer-protection/the-product-ecosystem-and-planned-obsolescence-apples-threats-to-consumer-rights/
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Reporting obligations for public sector users procuring AI services–such as through proposed leg-
islation in Europe–could also increase transparency. However, regulators must balance the addi-
tional measurement burden such mandates place on organizations versus ongoing carbon reduc-
tions from ingraining sustainability-conscious development patterns.

To bemost constructive, anymeasurement and reporting policies should focus on enabling continu-
ous refinement rather than simplistic restrictions or caps. As AI advancements unfold rapidly, nim-
ble governance guardrails that embed sustainability considerations into normal evaluationmetrics
can motivate positive change. But overprescription risks constraining innovation if requirements
grow outdated. By combining flexibility with appropriate transparency guardrails, AI efÏciency
policy aims to accelerate progress industry-wide.

62.12.2. Restriction Mechanisms

In addition to reporting mandates, policymakers have several restriction mechanisms that could
directly shape how AI systems are developed and deployed to curb emissions:

Caps on Computing Emissions: The European Commission’s proposed AI Act takes a horizontal
approach that could allow setting economy-wide caps on the volume of computing power available
for training AI models. Similar to emissions trading systems, caps aim to indirectly disincentivize
extensive computing over sustainability. However, model quality could suffer absent pathways for
procuring additional capacity.

Conditioning Access to Public Resources: Some experts have proposed incentives like only allow-
ing access to public datasets or computing power for developing fundamentally efÏcient models
rather than extravagant architectures. For example, the MLCommons benchmarking consortium
founded by major tech firms could formally integrate efÏciency into its standardized leaderboard
metrics. However, conditioned access risks limiting innovation.

Financial Mechanisms: Analogous to carbon taxes on polluting industries, fees applied per unit
of AI-related compute consumption could discourage unnecessary model scaling while funding
efÏciency innovations. Tax credits could alternatively reward organizations pioneering more ac-
curate but compact AI techniques. But financial tools require careful calibration between revenue
generation, fairness, and not over-penalizing productive uses of AI.

Technology Bans: If measurement consistently pinned extreme emissions on specific applications
of AI without paths for remediation, outright bans present a tool of last resort for policymakers.
However, given AI’s dual use, defining harmful versus beneficial deployments proves complex,
necessitating holistic impact assessment before concluding no redeeming value exists. Banning
promising technologies risks unintended consequences and requires caution.

62.12.3. Government Incentives

It is a common practice for governments to provide tax or other incentives to consumers or busi-
nesses when contributing to more sustainable practices in technology. Such incentives already
exist in the US for adopting solar panels or energy efÏcient buildings. To the best of our knowl-
edge, no such tax incentives exist for AI specific development practices yet.

https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://mlcommons.org/
https://www.irs.gov/credits-deductions/residential-clean-energy-credit
https://www.energy.gov/eere/buildings/179d-commercial-buildings-energy-efficiency-tax-deduction
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Another potential incentive program that is beginning to be explored is the use of government
grants to fund Green AI projects. For example, in Spain, 300 million euros have been allocated to
specifically fund projects in AI and sustainability. Government incentives are a promising avenue
to encourage sustainable practices in business and consumer behavior, but they require careful
thought into how those incentives will fit intomarket demands (Cohen, Lobel, and Perakis 2016).

62.12.4. Self-Regulation

Complimentary to potential government action, voluntary self-governance mechanisms allow the
AI community to pursue sustainability ends without top-down intervention:

Renewables Commitments: Large AI practitioners like Google, Microsoft, Amazon and Facebook
have pledged to procure enough renewable electricity to match 100% of their energy demands.
These commitments unlock compounding emissions cuts as compute scales up. Formalizing such
programs incentivizes green data center regions. However, there are critiques to whether these
pledges are enough (Monyei and Jenkins 2018).

Internal Carbon Prices: Some organizations utilize shadow prices on carbon emissions to repre-
sent environmental costs in capital allocation decisions between AI projects. If modeled effectively,
theoretical charges on development carbon footprints steer funding toward efÏcient innovations
rather than solely accuracy gains.

EfÏciency Development Checklists: Groups like the AI Sustainability Coalition suggest voluntary
checklist templates highlighting model design choices, hardware configurations, and other factors
architects can tune per application to restrain emissions. By ingraining sustainability as a primary
success metric alongside accuracy and cost, organizations can drive change.

Independent Auditing: Even absent public disclosure mandates, firms specializing in technology
sustainability audits helpAI developers identifywaste, create efÏciency roadmaps, and benchmark
progress via impartial reviews. Structuring such audits into internal governance procedures or the
procurement process expands accountability.

62.12.5. Global Considerations

While measurement, restrictions, incentives, and self-regulation all represent potential policy
mechanisms for furthering AI sustainability, fragmentation across national regimes risks unin-
tended consequences. As with other technology policy domains, divergence between regions
must be carefully managed.

For example, OpenAI barred access to its viral ChatGPT chatbot for European users over data
privacy concerns in the region. This came after the EU’s proposed AI Act signaled a precautionary
approach allowing the EC to ban certain AI uses deemed high-risk, enforcing transparency rules
that create uncertainty for release of brand new models. However, it would be wise to caution
regulator action as it could inadvertently limit European innovation if regimes with lighter touch
regulation attract more private sector AI research spending and talent. Finding common ground
is key.

The OECD principles on AI and the United Nations frameworks underscore universally agreed
tenets all national policies should uphold: transparency, accountability, bias mitigation, and more.

https://www.state.gov/artificial-intelligence-for-accelerating-progress-on-the-sustainable-development-goals-addressing-societys-greatest-challenges/
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Constructively embedding sustainability as a core principle for responsible AI within such inter-
national guidance can motivate unified action without sacrificing flexibility across divergent legal
systems. Avoiding race-to-the-bottom dynamics hinges on enlightenedmultilateral cooperation.

62.13. Public Perception and Engagement

As societal attention and policy efforts aimed at environmental sustainability ramp up worldwide,
there is growing enthusiasm around leveraging AI to help address ecological challenges. How-
ever, public understanding and attitudes towards the role of AI systems in sustainability contexts
remain mixed and clouded by misconceptions. On one hand, people hope advanced algorithms
can provide new solutions for green energy, responsible consumption, decarbonization pathways
and ecosystem preservation. But on the other, fears regarding risks of uncontrolled AI also seep
into the environmental domain and undermine constructive discourse. Furthermore, lack of pub-
lic awareness on key issues like transparency in development of sustainability-focused AI tools
as well as potential biases in data or modeling also threaten to limit inclusive participation and
degrade public trust.

Tackling complex, interdisciplinary priorities like environmental sustainability requires informed,
nuanced public engagement along with responsible advances in AI innovation itself. The path
forward demands careful, equitable collaborative efforts between experts in fields like ML, climate
science, environmental policy, social science and communication. Mapping the landscape of pub-
lic perceptions, identifying pitfalls, and charting strategies to cultivate understandable, accessible
and trustworthy AI systems targeting shared ecological priorities will prove essential to realizing
sustainability goals. This complex terrain warrants deep examination into the sociotechnical dy-
namics involved.

62.13.1. AI Awareness

In May 2022, Pew Research Center polled 5,101 U.S. adults finding 60% had heard or read “a little”
about AI while 27% heard “a lot”–indicating decent broad recognition, but likely limited compre-
hension about details or applications. However, among those with some AI familiarity, concerns
emerge regarding risks of personal data misuse according to agreed terms. Still 62% felt AI could
potentially ease modern life if applied responsibly. Yet specific understanding of sustainability
contexts remains lacking.

Studies attempting to categorize online discourse sentiments find a nearly even split between opti-
mism and caution regarding deployment of AI for sustainability goals. Factors driving positivity
include hopes around better forecasting of ecological shifts using ML models. Negativity arises
from lack of confidence in self-supervised algorithms avoiding unintended consequences due to
unpredictable human impacts on complex natural systems during training.

The most prevalent public belief remains that while AI does harbor potential for accelerating solu-
tions on issues like emission reductions and wildlife protections, inadequate safeguarding around
data biases, ethical blindspots and privacy considerations pose underappreciated risks if pursued
carelessly, especially at scale. This leads to hesitancy around unconditional support without evi-
dence of deliberate, democratically guided development.

https://www.pewresearch.org/internet/2023/08/17/what-americans-know-about-ai-cybersecurity-and-big-tech/
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62.13.2. Messaging

Optimistic efforts are highlighting AI’s sustainability promise emphasize potential for advanced
ML to radically accelerate decarbonization effects from smart grids, personalized carbon tracking
apps, automated building efÏciency optimizations, and predictive analytics guiding targeted con-
servation efforts. More comprehensive real-timemodeling of complex climate and ecological shifts
using self-improving algorithms offers hope for mitigating biodiversity losses and averting worst
case scenarios.

However, cautionary perspectives, such as the Asilomar AI Principles, question whether AI itself
could exacerbate sustainability challenges if improperly constrained. Rising energy demands of
large scale computing systems and increasingly massive neural network model training conflicts
with clean energy ambitions. Lack of diversity in data inputs or priorities of developers might
inadvertently downplay urgent environmental justice considerations. Near term skeptical public
engagement likely hinges on lack of perceivable safeguards against uncontrolled AI systems that
are running amok on core ecological processes before our eyes.

In essence, polarized framings either promote AI as an indispensable tool for sustainability
problem-solving–if compassionately directed toward people and planet–or present AI as an
amplifier of existing harms insidiously dominating hidden facets of natural systems central to
all life. Overcoming such impasses demands balancing honest trade-off discussions with shared
visions for equitable, democratically governed technological progress targeting restoration.

62.13.3. Equitable Participation

Ensuring equitable participation and access should form a cornerstone of any sustainability initia-
tive with potential for major societal impacts. This principle applies equally to AI systems target-
ing environmental goals. However, commonly excluded voices like frontline, rural or indigenous
communities and future generations not present to consent could suffer disproportionate conse-
quences from technology transformations. For instance, the Partnership onAI has launched events
expressly targeting input from marginalized communities on deploying AI responsibly.

Ensuring equitable access and participation should form a cornerstone of any sustainability initia-
tive with potential for major societal impacts be it AI or otherwise. However, inclusive engagement
on environmental AI relies partly on availability and understanding of fundamental computing re-
sources. As the recent OECD report on National AI Compute Capacity highlights (OECD 2023),
many countries currently lack data or strategic plansmapping needs for the infrastructure required
to fuel AI systems. This policy blind-spot could constrain economic goals and exacerbate barriers
to entry for marginalized populations. Their blueprint urges developing national AI compute ca-
pacity strategies along dimensions of capacity, accessibility, innovation pipelines and resilience
to anchor innovation. Otherwise inadequacies in underlying data storage, model development
platforms or specialized hardware could inadvertently concentrate AI progress in the hands of se-
lect groups. Therefore, planning for balanced expansion of fundamental AI computing resources
via policy initiatives ties directly to hopes for democratized sustainability problem-solving using
equitable and transparent ML tools.

The key idea is that equitable participation in AI systems targeting environmental challenges re-
lies in part on getting the underlying computing capacity and infrastructure right, which requires
proactive policy planning from a national perspective.

https://www.climatechange.ai/
https://time.com/6266923/ai-eliezer-yudkowsky-open-letter-not-enough/
https://futureoflife.org/open-letter/ai-principles/
https://partnershiponai.org
https://www.oecd.org/
https://www.oecd.org/economy/a-blueprint-for-building-national-compute-capacity-for-artificial-intelligence-876367e3-en.htm
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62.13.4. Transparency

As public sector agencies and private companies alike rush towards adoptingAI tools to help tackle
pressing environmental challenges, calls for transparency around the development and function-
ality of these systems has began to amplify. Explainable and interpretable ML features grow more
crucial for building trust in emergingmodels aiming to guide consequential sustainability policies.
Initiatives like the Montreal Carbon Pledge brought tech leaders together to commit to publishing
impact assessments before launching environmental systems, as pledged below:

*“As institutional investors, we have a duty to act in the best long-term interests of our beneficia-
ries. In this fiduciary role, we believe that there are long-term investment risks associated with
greenhouse gas emissions, climate change and carbon regulation.

In order to better understand, quantify andmanage the carbon and climate change related impacts,
risks and opportunities in our investments, it is integral tomeasure our carbon footprint. Therefore,
we commit, as a first step, tomeasure and disclose the carbon footprint of our investments annually
with the aim of using this information to develop an engagement strategy and/or identify and set
carbon footprint reduction targets.”*

We need a similar pledge for AI sustainability and responsibility. Widespread acceptance and im-
pact of AI sustainability solutions will partly on deliberate communication of validation schemes,
metrics, and layers of human judgment applied before live deployment. Efforts like NIST’s Prin-
ciples for Explainable AI can be helpful for fostering transparency into AI systems. The National
Institute of Standards and Technology (NIST) has published an influential set of guidelines dubbed
the Principles for Explainable AI (Phillips et al. 2020). This framework articulates best practices for
designing, evaluating and deploying responsible AI systems with transparent and interpretable
features that build critical user understanding and trust.

It delineates four core principles: Firstly, AI systems should provide contextually relevant explana-
tions justifying the reasoning behind their outputs to appropriate stakeholders. Secondly, these AI
explanations must communicate information in a truly meaningful way for their target audience’s
appropriate comprehension level. Next, there is the accuracy principlewhich dictates explanations
should faithfully reflect the actual process and logic informing an AI model’s internal mechanics
for generating given outputs or recommendations based on inputs. Finally, a knowledge limits
principle compels explanations to clarify an AI model’s boundaries in capturing the full breadth
of real-world complexity, variance and uncertainties within a problem space.

Altogether, theseNIST principles offerAI practitioners and adopters guidance on key transparency
considerations vital for developing accessible solutions that prioritize user autonomy and trust
rather than simply maximizing predictive accuracy metrics alone. As AI rapidly advances across
sensitive social contexts like healthcare, finance, employment and beyond, such human centered
design guidelines will continue growing in importance for anchoring innovation to public inter-
ests.

This applies equally to the environmental ability domain. Overall, responsible and democratically
guided AI innovation targeting shared ecological priorities depends on maintaining public vig-
ilance, understanding, and oversight over otherwise opaque systems taking prominent roles in
societal decisions. Prioritizing explainable algorithm designs and radical transparency practices
per global standards can help sustain collective confidence that these tools improve rather than
imperil hopes for AI driven future.

https://unfccc.int/news/montreal-carbon-pledge
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-26746
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-26746
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62.14. Future Directions and Challenges

Aswe look towards the future, the role of AI in environmental sustainability is poised to grow even
more significant. The potential of AI to drive advancements in renewable energy, climatemodeling,
conservation efforts, andmore is immense. However, it is a two-sided coin, aswe need to overcome
several challenges and direct our efforts towards sustainable and responsible AI development.

62.14.1. Future Directions

One of the key future directions is the development of more energy-efÏcient AI models and algo-
rithms. This involves ongoing research and innovation in areas like model pruning, quantization,
and the use of low-precision numerics, and developing the hardware to enable full profitability
of these innovations. Even further, we look at alternative computing paradigms which do not
rely on von-Neumann architectures. More on this topic can be found in the hardware acceleration
chapter. The goal is to create AI systems that deliver high performance while minimizing energy
consumption and carbon emissions.

Another important direction is the integration of renewable energy sources into AI infrastructure.
As data centers continue to be major contributors to AI’s carbon footprint, transitioning to renew-
able energy sources like solar and wind is crucial. Developments in long-term, sustainable energy
storage, such as Ambri, an MIT spinoff, could enable this transition. This requires significant in-
vestment and collaboration between tech companies, energy providers, and policymakers.

62.14.2. Challenges

Despite these promising directions, several challenges need to be addressed. One of the major
challenges is the lack of consistent standards and methodologies for measuring and reporting the
environmental impact of AI. It is essential that the complexity of life cycles of both AI models and
system hardware are captured by these methods. Next, efÏcient and environmentally-sustainable
AI infrastructure and system hardware is needed. This consists of three components. Aimed at
maximizing the utilization of accelerator and system resources, prolonging the lifetime of AI in-
frastructure, and designing systems hardware with environmental impact in mind.

On the software side, we should make a trade-off between experimentation and the subsequent
training cost. Techniques such as neural architecture search and hyperparameter optimization can
be used for design space exploration. However, these are often very resource-intensive. EfÏcient
experimentation can reduce the environmental footprint overhead significantly. Next, methods to
reduce wasted training efforts should be explored.

To improve model quality, we often scale the dataset. However, the increased system resources
required for data storage and ingestion caused by this scaling has a significant environmental im-
pact (C.-J. Wu et al. 2022). A thorough understanding of the rate at which data loses its predictive
value and devising data sampling strategies is important.

Data gaps also pose a significant challenge. Without companies and governments openly sharing
detailed and accurate data on energy consumption, carbon emissions, and other environmental
impacts, it is difÏcult to develop effective strategies for sustainable AI.

https://ambri.com/
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Finally, the fast pace of AI development requires an agile approach to the policy imposed on these
systems. The policy should ensure sustainable developmentwithout constraining innovation. This
requires experts in all domains of AI, environmental sciences, energy and policy to work together
to achieve a sustainable future.

62.15. Conclusion

As AI continues rapidly expanding across industries and society, we must address sustainability
considerations. AI promises breakthrough innovations, yet its environmental footprint threatens
its widespread growth. This chapter analyzes multiple facets, from energy and emissions to waste
and biodiversity impacts, that AI/ML developers must weigh when creating responsible AI sys-
tems.

Fundamentally, we require elevating sustainability as a primary design priority rather than an
afterthought. Techniques like energy-efÏcient models, renewable-powered data centers, and hard-
ware recycling programs offer solutions, but holistic commitment remains vital. We need stan-
dards around transparency, carbon accounting, and supply chain disclosures to supplement tech-
nical gains. Still, examples like Google’s 4M efÏciency practices containing ML energy use high-
light that with concerted effort, we can advance AI in lockstep with environmental objectives. We
achieve this harmonious balance by having researchers, corporations, regulators and users collab-
orate across domains. The aim is not perfect solutions but rather continuous improvement as we
integrate AI across new sectors.

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.





661

63. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• Transparency and Sustainability.

• Sustainability of TinyML.

• Model Cards for Transparency.

https://docs.google.com/presentation/d/1wGKWV-speisH6V-g-u_w8xFwEjZjqp7u2YXs27flmiM/edit#slide=id.ge93ee14fb9_0_0
https://docs.google.com/presentation/d/1rdJ82YlvD66JDATtj-KUQkJ6tkuAfFAs1w6-njvp6zM/edit#slide=id.ge93ee14fb9_0_0
https://docs.google.com/presentation/d/1ndDzSwnSMNwUShW-RyIN29T9KeEoM_I14qsExPehW70/edit#slide=id.ge947b43ef5_0_0
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64. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.
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65. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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66. AI for Good

Figure 66.1. DALL·E 3 Prompt: Illustration of planet Earth wrapped in shimmering neural net-
works, with diverse humans andAI robots working together on various projects like planting trees,
cleaning the oceans, and developing sustainable energy solutions. The positive and hopeful atmo-
sphere represents a united effort to create a better future.

By aligning AI progress with human values, goals, and ethics, the ultimate goal of ML systems (at
any scale) is to be a technology that reflects human principles and aspirations. Initiatives under
“AI for Good” promote the development of AI to tackle the UN Sustainable Development Goals
(SDGs) using embedded AI technologies, expanding access to AI education, amongst other things.
While it is now clear that AIwill be an instrumental part of progress towards the SDGs, its adoption
and impact are limited by the immense power consumption, strong connectivity requirements and
high costs of cloud-based deployments. TinyML, allowing ML models to run on low-cost and low-
power microcontrollers, can circumvent many of these issues.

The “AI for Good” movement plays a critical role in cultivating a future where an AI-
empowered society is more just, sustainable, and prosperous for all of humanity.

https://www.undp.org/sustainable-development-goals
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Learning Objectives

• Understand how TinyML can help advance the UN Sustainable Development Goals in
areas like health, agriculture, education, and the environment.

• Recognize the versatility of TinyML for enabling localized, low-cost solutions tailored
to community needs.

• Consider challenges of adopting TinyML globally such as limited training, data con-
straints, accessibility, and cultural barriers.

• Appreciate the importance of collaborative, ethical approaches to develop and deploy
TinyML to best serve local contexts.

• Recognize the potential of TinyML, if responsibly implemented, to promote equity and
empower underserved populations worldwide.

66.1. Introduction

To give ourselves a framework around which to think about AI for social good, we will be follow-
ing the UN Sustainable Development Goals (SDGs). The UN SDGs are a collection of 17 global
goals, shown in Figure 66.2, adopted by the United Nations in 2015 as part of the 2030 Agenda
for Sustainable Development. The SDGs address global challenges related to poverty, inequality,
climate change, environmental degradation, prosperity, and peace and justice.

What is special about SDGs is that they are a collection of interlinked objectives designed to serve
as a “shared blueprint for peace and prosperity for people and the planet, now and into the future.”.
The SDGs emphasize the interconnected environmental, social and economic aspects of sustainable
development by putting sustainability at their center.

A recent study (Vinuesa et al. 2020) highlights the influence of AI on all aspects of sustainable
development, in particular on the 17 Sustainable Development Goals (SDGs) and 169 targets in-
ternationally defined in the 2030 Agenda for Sustainable Development. The study shows that AI
can act as an enabler for 134 targets through technological improvements, but it also highlights the
challenges of AI on some targets. When considering AI and societal outcomes, the study shows
that AI can benefit 67 targets, but it also warns about the issues related to the implementation of
AI in countries with different cultural values and wealth.

In the context of our book, here is how TinyML could potentially help advance at least some of these
SDG goals.

• Goal 1 - No Poverty: TinyML could help provide low-cost solutions for tasks like crop mon-
itoring to improve agricultural yields in developing countries.

• Goal 2 - Zero Hunger: TinyML could enable localized and precise crop health monitoring
and disease detection to reduce crop losses.

• Goal 3 - GoodHealth andWellbeing: TinyML could help enable low-cost medical diagnosis
tools for early detection and prevention of diseases in remote areas.
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Figure 66.2. United Nations Sustainable Development Goals (SDG). Credit: United Nations.

• Goal 6 - Clean Water and Sanitation: TinyML could monitor water quality and detect con-
taminants to ensure access to clean drinking water.

• Goal 7 - Affordable and Clean Energy: TinyML could optimize energy consumption and
enable predictive maintenance for renewable energy infrastructure.

• Goal 11 - Sustainable Cities and Communities: TinyML could enable intelligent trafÏcman-
agement, air quality monitoring, and optimized resource management in smart cities.

• Goal 13 - ClimateAction: TinyML couldmonitor deforestation and track reforestation efforts.
It could also help predict extreme weather events.

The portability, lower power requirements, and real-time analytics enabled byTinyMLmake itwell-
suited for addressing several sustainability challenges faced by developing regions. Widespread
deployment of power solutions has the potential to provide localized and cost-effectivemonitoring
to help achieve some of the UN SDGs. In the rest of the sections, we will dive into the details of
how TinyML is useful across many of the sectors that have the potential to address the UN SDGs.

66.2. Agriculture

Agriculture is essential to achieving many of the UN Sustainable Development Goals, including
eradicating hunger and malnutrition, promoting economic growth, and using natural resources

https://sdgs.un.org/goals
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sustainably. TinyML can be a valuable tool to help advance sustainable agriculture, especially for
smallholder farmers in developing regions.

TinyML solutions can provide real-time monitoring and data analytics for crop health and grow-
ing conditions - all without reliance on connectivity infrastructure. For example, low-cost camera
modules connected to microcontrollers can monitor for disease, pests, and nutritional deficiencies.
TinyML algorithms can analyze the images to detect issues early before they spread and damage
yields. This kind of precision monitoring can optimize inputs like water, fertilizer, and pesticides
- improving efÏciency and sustainability.

Other sensors like GPS units and accelerometers can track microclimate conditions, soil humidity,
and livestock wellbeing. Local real-time data helps farmers respond and adapt better to changes
in the field. TinyML analytics at the edge avoids lag, network disruptions, and high data costs of
cloud-based systems. And localized systems allow for customization to specific crops, diseases,
and regional issues.

Widespread TinyML applications can help digitize smallholder farms to increase productivity, in-
comes, and resilience. The low cost of hardware and minimal connectivity requirements make
solutions accessible. Projects across the developing world have shown the benefits:

• Microsoft’s FarmBeats project is an end-to-end approach to enable data-driven farming by
using low-cost sensors, drones, and vision and machine learning algorithms. The project
aims to solve the problem of limited adoption of technology in farming due to the lack of
power and internet connectivity in farms and the farmers’ limited technology savviness. The
project’s goal is to increase farm productivity and reduce costs by coupling data with the
farmer’s knowledge and intuition about their farm. The project has been successful in en-
abling actionable insights from data by building artificial intelligence (AI) or machine learn-
ing (ML) models based on fused data sets.

• In Sub-Saharan Africa, off-the-shelf cameras and edge AI cut cassava losses to disease from
40% down to 5%, protecting a staple crop (Ramcharan et al. 2017).

• In Indonesia, sensors monitor microclimates across rice paddies, optimizing water usage
even with erratic rains (Tirtalistyani, Murtiningrum, and Kanwar 2022).

With greater investment and integration into rural advisory services, TinyML could transform
small-scale agriculture and improve livelihoods for farmers worldwide. The technology effectively
brings the benefits of precision agriculture to disconnected regions most in need.

66.3. Healthcare

66.3.1. Expanding Access

Universal health coverage and quality care remain out of reach for millions worldwide. A shortage
of medical professionals severely limits access to even basic diagnosis and treatment in many re-
gions. Additionally, healthcare infrastructure like clinics, hospitals, and utilities to power complex
equipment are lacking. These gaps disproportionately impact marginalized communities, exacer-
bating health disparities.

https://www.microsoft.com/en-us/research/project/farmbeats-iot-agriculture/
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TinyML offers a promising technological solution to help expand access to quality healthcare glob-
ally. TinyML refers to the ability to deploy machine learning algorithms on microcontrollers, tiny
chips with processing power, memory, and connectivity. TinyML enables real-time data analysis
and intelligence in low-powered, compact devices.

This creates opportunities for transformative medical tools that are portable, affordable, and ac-
cessible. TinyML software and hardware can be optimized to run even in resource-constrained
environments. For example, a TinyML system could analyze symptoms or make diagnostic pre-
dictions using minimal computing power, no continuous internet connectivity, and a battery or
solar power source. These capabilities can bring medical-grade screening and monitoring directly
to underserved patients.

66.3.2. Early Diagnosis

Early detection of diseases is one major application. Small sensors paired with TinyML software
can identify symptoms before conditions escalate or visible signs appear. For instance, coughmon-
itors with embedded machine learning can pick up on acoustic patterns indicative of respiratory
illness, malaria, or tuberculosis. Detecting diseases at onset improves outcomes and reduces health-
care costs.

A detailed example could be given for using TinyML to monitor pneumonia in children. Pneu-
monia is a leading cause of death for children under 5, and detecting it early is critical. A startup
called Respira Labs has developed a low-cost wearable audio sensor that uses TinyML algorithms
to analyze coughs and identify symptoms of respiratory illnesses like pneumonia. The device con-
tains amicrophone sensor andmicrocontroller that runs a neural networkmodel trained to classify
respiratory sounds. It can identify features like wheezing, crackling, and stridor that may indicate
pneumonia. The device is designed to be highly accessible - it has a simple strap, requires no
battery or charging, and results are provided through LED lights and audio cues.

Another example involves researchers at UNIFEI in Brazil who have developed a low-cost device
that leverages TinyML to monitor heart rhythms. Their innovative solution addresses a critical
need - atrial fibrillation and other heart rhythm abnormalities often go undiagnosed due to the
prohibitive cost and limited availability of screening tools. The device overcomes these barriers
through its ingenious design. It uses an off-the-shelf microcontroller that costs only a few dollars,
alongwith a basic pulse sensor. Byminimizing complexity, the device becomes accessible to under-
resourced populations. The TinyML algorithm running locally on the microcontroller analyzes
pulse data in real time to detect irregular heart rhythms. This life-saving heart monitoring device
demonstrates how TinyML enables powerful AI capabilities to be deployed in cost-effective, user-
friendly designs.

TinyML’s versatility also shows promise for tackling infectious diseases. Researchers have
proposed applying TinyML to identify malaria-spreading mosquitoes by their wingbeat sounds.
When equipped with microphones, small microcontrollers can run advanced audio classification
models to determine mosquito species. This compact, low-power solution produces results in real
time, suitable for remote field use. By making entomology analytics affordable and accessible,
TinyML could revolutionize monitoring of insects that endanger human health. From heart
disease to malaria, TinyML is expanding healthcare access for vulnerable communities.

https://stradoslabs.com/cough-monitoring-and-respiratory-trial-data-collection-landing
https://stradoslabs.com/cough-monitoring-and-respiratory-trial-data-collection-landing
https://www.samayhealth.com/
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66.3.3. Infectious Disease Control

Mosquitoes remain the most deadly disease vector worldwide, transmitting illnesses that infect
over one billion people annually (“Vector-Borne Diseases,” n.d.). Diseases like malaria, dengue,
and Zika are especially prevalent in resource-limited regions lacking robust infrastructure for
mosquito control. Monitoring local mosquito populations is essential to prevent outbreaks and
properly target interventions.

Traditional monitoring methods are expensive, labor-intensive, and difÏcult to deploy remotely.
The proposed TinyML solution aims to overcome these barriers. Small microphones coupled with
machine learning algorithms can classify mosquitoes by species based on minute differences in
wing oscillations. The TinyML software runs efÏciently on low-cost microcontrollers, eliminating
the need for continuous connectivity.

A collaborative research team from the University of Khartoum and the ICTP is exploring an inno-
vative solution using TinyML. In a recent paper, they presented a low-cost device that can identify
disease-spreading mosquito species through their wing beat sounds (Altayeb, Zennaro, and Rovai
2022).

This portable, self-contained system shows great promise for entomology. The researchers suggest
it could revolutionize insect monitoring and vector control strategies in remote areas. By providing
cheaper, easier mosquito analytics, TinyML could significantly bolster malaria eradication efforts.
Its versatility andminimal power needs make it ideal for field use in isolated, off-grid regions with
scarce resources but high disease burden.

66.3.4. TinyML Design Contest in Healthcare

The first TinyML contest in healthcare, TDC’22 (Zhenge Jia et al. 2023), was held in 2022 to mo-
tivate participating teams to design AI/ML algorithms for detecting life-threatening ventricular
arrhythmias (VAs) and deploy them on Implantable Cardioverter Defibrillators (ICDs). VAs are
the main cause of sudden cardiac death (SCD). People at high risk of SCD rely on the ICD to de-
liver proper and timely defibrillation treatment (i.e., shocking the heart back into normal rhythm)
when experiencing life-threatening VAs.

An on-device algorithm for early and timely life-threatening VAdetectionwill increase the chances
of survival. The proposed AI/ML algorithm needed to be deployed and executed on an extremely
low-power and resource-constrained microcontroller (MCU) (a $10 development board with an
ARM Cortex-M4 core at 80 MHz, 256 kB of flash memory and 64 kB of SRAM). The submitted de-
signs were evaluated bymetrics measured on theMCU for (1) detection performance; (2) inference
latency; and (3) memory occupation by the program of AI/ML algorithms.

The champion, GaTech EIC Lab, obtained 0.972 in 𝐹𝛽 (F1 score with a higher weight to recall),
1.747 ms in latency and 26.39 kB in memory footprint with a deep neural network. An ICD with
an on-device VA detection algorithm was implanted in a clinical trial.

https://youtu.be/vx2gWzAr85A?t=2359
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66.4. Science

In many scientific fields, researchers are limited by the quality and resolution of data they can
collect. They often must infer the true parameters of interest indirectly, using approximate correla-
tions andmodels built on sparse data points. This constrains the accuracy of scientific understand-
ing and predictions.

The emergence of TinyML opens new possibilities for gathering high-fidelity scientific measure-
ments. With embedded machine learning, tiny low-cost sensors can automatically process and
analyze data locally in real time. This creates intelligent sensor networks that capture nuanced
data at much greater scales and frequencies.

For example, monitoring environmental conditions to model climate change remains a challenge
due to the lack of widespread, continuous data. The Ribbit Project fromUC Berkeley is pioneering
a crowdsourced TinyML solution (Rao 2021). They developed an open-source CO2 sensor that
uses an onboard microcontroller to process the gas measurements. By distributing hundreds of
these low-cost sensors, an extensive dataset can be aggregated. The TinyML devices compensate
for environmental factors and provide granular, accurate readings not possible previously.

The potential to massively scale out intelligent sensing via TinyML has profound scientific implica-
tions. From ecology to cosmology, higher resolution data can lead to new discoveries and predic-
tive capabilities. Other applications could include seismic sensors for earthquake early warning
systems, distributedweathermonitors to trackmicroclimate changes, and acoustic sensors to study
animal populations.

As sensors and algorithms continue improving, TinyML networks may generate more detailed
maps of natural systems than ever before. Democratizing the collection of scientific data can ac-
celerate research and understanding across disciplines. But it also raises new challenges around
data quality, privacy, and modeling unknowns. Overall, TinyML signifies a growing convergence
of AI and the natural sciences to answer fundamental questions.

66.5. Conservation and Environment

TinyML is emerging as a powerful tool for environmental conservation and sustainability efforts.
Recent research has highlighted numerous applications of tiny machine learning across domains
like wildlife monitoring, natural resource management, and tracking climate change.

One example is using TinyML for real-time wildlife tracking and protection. Researchers have
developed Smart Wildlife Tracker devices that leverage TinyML algorithms to detect poaching ac-
tivities. The collars contain sensors like cameras, microphones, and GPS to continuously monitor
the surrounding environment. Embedded machine learning models analyze the audio and visual
data to identify threats like nearby humans or gunshots. Early poaching detection gives wildlife
rangers critical information to intervene and take action.

Other projects apply TinyML to study animal behavior through sensors. The smart wildlife collar
uses accelerometers and acoustic monitoring to track elephant movements, communication, and
moods (T. D. S. Verma 2022). The low-power TinyML collar devices transmit rich data on elephant
activities while avoiding burdensome Battery changes. This helps researchers unobtrusively ob-
serve elephant populations to inform conservation strategies.

https://www.hackster.io/dhruvsheth_/eletect-tinyml-and-iot-based-smart-wildlife-tracker-c03e5a
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On a broader scale, distributed TinyML devices are envisioned to create dense sensor networks for
environmental modeling. Hundreds of low-cost air quality monitors could map pollution across
cities. Underwater sensors may detect toxins and give early warning of algal blooms. Such appli-
cations underscore TinyML’s versatility in ecology, climatology, and sustainability.

A survey on how TinyML can be used to solve environmental issues has been published by re-
searchers from Moulay Ismail University of Meknes in Morocco (Bamoumen et al. 2022). How-
ever, thoughtfully assessing benefits, risks, and equitable access will be vital as TinyML expands
environmental research and conservation. With ethical consideration of impacts, TinyML offers
data-driven solutions to protect biodiversity, natural resources, and our planet as a whole.

66.6. Disaster Response

In disaster response, speed and safety are paramount. But rubble and wreckage create hazardous,
confined environments that impede human search efforts. TinyML enables nimble drones to assist
rescue teams in these dangerous scenarios.

When buildings collapse after earthquakes, small drones can prove invaluable. Equipped with
TinyML navigation algorithms, micro-sized drones like the CrazyFlie can traverse cramped voids
and map pathways beyond human reach (Bardienus P. Duisterhof et al. 2019). Obstacle avoidance
allows the drones to weave through unstable debris. This autonomous mobility lets them rapidly
sweep areas humans cannot access.

https://www.youtube.com/watch?v=wmVKbX7MOnU

Crucially, onboard sensors and TinyML processors analyze real-time data to identify signs of sur-
vivors. Thermal cameras detect body heat, microphones pick up calls for help, and gas sensors
warn of leaks (Bardienus P. Duisterhof et al. 2021). Processing data locally using TinyML allows
for quick interpretation to guide rescue efforts. As conditions evolve, the drones can adapt by
adjusting their search patterns and priorities.

https://www.youtube.com/watch?v=hj_SBSpK5qg

Additionally, coordinated swarms of drones unlock new capabilities. By collaborating and sharing
insights, drone teams achieve a comprehensive view of the situation. Blanketing disaster sites
allows TinyML algorithms to fuse and analyze data from multiple vantage points. This amplifies
situational awareness beyond individual drones (Bardienus P. Duisterhof et al. 2021).

Most importantly, initial drone reconnaissance enhances safety for human responders. Keeping
rescue teams at a safe distance until drone surveys assess hazards saves lives. Once secured, drones
can guide precise placement of personnel.

By combining agile mobility, real-time data, and swarm coordination, TinyML-enabled drones
promise to transform disaster response. Their versatility, speed, and safety make them a vital asset
for rescue efforts in dangerous, inaccessible environments. Integrating autonomous drones with
traditional methods can accelerate responses when it matters most.

https://www.bitcraze.io/
https://www.youtube.com/watch?v=wmVKbX7MOnU
https://www.youtube.com/watch?v=hj_SBSpK5qg
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66.7. Education and Outreach

TinyML holds immense potential to help address challenges in developing regions, but realizing
its benefits requires focused education and capacity building. Recognizing this need, academic
researchers have spearheaded outreach initiatives to spread TinyML education globally.

In 2020, Harvard University, Columbia University, the International Centre for Theoretical Physics
(ICTP), and UNIFEI jointly founded the TinyML for Developing Communities (TinyML4D) net-
work (Zennaro, Plancher, and Reddi 2022). This network aims to empower universities and re-
searchers in developing countries to harness TinyML for local impact.

A core focus is expanding access to applied machine learning education. The TinyML4D network
provides training, curricula, and lab resources to members. Hands-on workshops and data collec-
tion projects give students practical experience. Through conferences and academic collaborations,
members can share best practices and build a community.

The network prioritizes enabling locally-relevant TinyML solutions. Projects address challenges
like agriculture, health, and environmental monitoring based on community needs. For example,
a member university in Rwanda developed a low-cost flood monitoring system using TinyML and
sensors.

To date, TinyML4D includes over 50 member institutions across Africa, Asia, and Latin America.
But greater investments and industry partnerships are needed to reach all underserved regions.
The ultimate vision is training new generations to ethically apply TinyML for sustainable develop-
ment. Outreach efforts today lay the foundation to democratize transformative technology for the
future.

66.8. Accessibility

Technology has immense potential to break down barriers faced by people with disabilities and
bridge gaps in accessibility. TinyML specifically opens new possibilities for developing intelligent,
personalized assistive devices.

With machine learning algorithms running locally on microcontrollers, compact accessibility tools
can operate in real-time without reliance on connectivity. The National Institute on Deafness and
OtherCommunicationDisorders (NIDCD) states that 20%of theworld’s population has some form
of hearing loss. Hearing aids leveraging TinyML could recognize multiple speakers and amplify
the voice of a chosen target in crowded rooms. This allows people with hearing impairments to
focus on specific conversations.

Similarly, mobility devices could use on-device vision processing to identify obstacles and terrain
characteristics. This enables enhanced navigation and safety for the visually impaired. Compa-
nies like Envision are developing smart glasses, converting visual information into speech, with
embedded TinyML to guide the blind by detecting objects, text, and trafÏc signals.

https://www.youtube.com/watch?v=oGWinIKDOdc

TinyML could even power responsive prosthetic limbs. By analyzing nerve signals and sensory
data like muscle tension, prosthetics and exoskeletons with embedded ML can move and adjust

https://www.nidcd.nih.gov/health/statistics/quick-statistics-hearing
https://www.nidcd.nih.gov/health/statistics/quick-statistics-hearing
https://www.letsenvision.com/
https://www.youtube.com/watch?v=oGWinIKDOdc
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grip dynamically. This makes control more natural and intuitive. Companies are creating afford-
able, everyday bionic hands using TinyML. And for those with speech difÏculties, voice-enabled
devices with TinyML can generate personalized vocal outputs from non-verbal inputs. Pairs by
Anthropic translates gestures into natural speech tailored for individual users.

By enablingmore customizable assistive tech, TinyMLmakes servicesmore accessible and tailored
to individual needs. And through translation and interpretation applications, TinyML can break
down communication barriers. Apps like Microsoft Translator offer real-time translation powered
by TinyML algorithms.

With thoughtful and inclusive design, TinyML promises more autonomy and dignity for people
with disabilities. But developers should engage communities directly, avoid compromising privacy,
and consider affordability to maximize benefit. Overall, TinyML has huge potential to contribute
to a more just, equitable world.

66.9. Infrastructure and Urban Planning

As urban populations swell, cities face immense challenges in efÏciently managing resources and
infrastructure. TinyML presents a powerful tool for developing intelligent systems to optimize city
operations and sustainability. It could revolutionize energy efÏciency in smart buildings.

Machine learning models can learn to predict and regulate energy usage based on occupancy pat-
terns. Miniaturized sensors placed throughout buildings can provide granular, real-time data on
space utilization, temperature, and more (Seyedzadeh et al. 2018). This visibility allows TinyML
systems to minimize waste by optimizing heating, cooling, lighting, etc.

These examples demonstrate TinyML’s huge potential for efÏcient, sustainable city infrastructure.
But urban planners must consider privacy, security, and accessibility to ensure responsible adop-
tion. With careful implementation, TinyML could profoundly modernize urban life.

66.10. Challenges and Considerations

While TinyMLpresents immense opportunities, thoughtful consideration of challenges and ethical
implications will be critical as adoption spreads globally. Researchers have highlighted key factors
to address, especially in deploying TinyML in developing regions.

A foremost challenge is limited access to training and hardware (Ooko et al. 2021). Few educa-
tional programs exist tailored to TinyML, and emerging economies often lack a robust electronics
supply chain. Thorough training and partnershipswill be needed to nurture expertise and avail de-
vices to underserved communities. Initiatives like the TinyML4D network help provide structured
learning pathways.

Data limitations also pose hurdles. TinyML models require quality localized datasets, but these
are scarce in under-resourced environments. Creating frameworks to ethically crowdsource data
could address this. But data collection should benefit local communities directly, not just extract
value.
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Optimizing power usage and connectivity will be vital for sustainability. TinyML’s low power
needs make it ideal for off-grid use cases. Integrating battery or solar can enable continuous oper-
ation. Adapting devices for low-bandwidth transmission where internet is limited also maximizes
impact.

Cultural and language barriers further complicate adoption. User interfaces and devices should
account for all literacy levels and avoid excluding subgroups. Voice-controllable solutions in local
dialects can enhance accessibility.

Addressing these challenges requires holistic partnerships, funding, and policy support. But inclu-
sively and ethically scaling TinyMLhasmonumental potential to uplift disadvantaged populations
worldwide. With thoughtful implementation, the technology could profoundly democratize op-
portunity.

66.11. Conclusion

TinyML presents a tremendous opportunity to harness the power of artificial intelligence to ad-
vance the UN Sustainable Development Goals and drive social impact globally. As highlighted
through the examples across sectors like healthcare, agriculture, conservation and more, embed-
ded machine learning unlocks new capabilities for low-cost, accessible solutions tailored to local
contexts. TinyML circumvents barriers like poor infrastructure, limited connectivity, and high
costs that often exclude developing communities from emerging technology.

However, realizing TinyML’s full potential requires holistic collaboration. Researchers, policymak-
ers, companies and local stakeholders must work together to provide training, establish ethical
frameworks, co-design solutions, and adapt them to community needs. Only through inclusive
development and deployment can TinyML deliver on its promise to bridge inequities and uplift
vulnerable populations without leaving any behind.

If cultivated responsibly, TinyML could democratize opportunity and accelerate progress on global
priorities from poverty alleviation to climate resilience. The technology represents a new wave of
applied AI to empower societies, promote sustainability, and propel all of humanity collectively to-
wards greater justice, prosperity and peace. TinyML provides a glimpse into an AI-enabled future
that is accessible to all.

Resources

Here is a curated list of resources to support both students and instructors in their learning and
teaching journey. We are continuously working on expanding this collection and will be adding
new exercises in the near future.
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67. Slides

These slides serve as a valuable tool for instructors to deliver lectures and for students to review
thematerial at their own pace. We encourage both students and instructors to leverage these slides
to enhance their understanding and facilitate effective knowledge transfer.

• TinyML for Social Impact.

https://docs.google.com/presentation/d/1gkA6pAPUjPWND9ODgnfhCVzbwVYXdrkTpXsJdZ7hJHY/edit#slide=id.ge94401e7d6_0_81
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68. Exercises

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge
students to apply their knowledge and deepen their understanding.

Coming soon.
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69. Labs

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical
experience with embedded AI technologies. These labs provide step-by-step guidance, enabling
students to develop their skills in a structured and supportive environment. We are excited to
announce that new labs will be available soon, further enriching the learning experience.

Coming soon.
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70. Robust AI

Coming soon!

Learning Objectives

• coming soon.
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71. Generative AI

Coming soon!

Learning Objectives

• coming soon.
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Part IV.

LABS
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The following labs provide a unique opportunity to gain hands-on experience deploying tinyML
models onto real embedded devices. In contrast to working with large models that require data
center-scale resources, these labs allow you to interact directly with the hardware and software,
giving you a tangible understanding of the challenges and opportunities in embedded AI.

From setting up the Nicla Vision board to implementing computer vision, audio processing, and
motion classification tasks using tools like TensorFlow Lite for Microcontrollers and Arduino
firmware, you’ll develop practical skills in deploying efÏcient AI models on resource-constrained
devices. By completing these labs, you’ll appreciate the beauty of tinyML—the ability to hold
cutting-edge AI technology in the palm of your hand. This hands-on perspective is invaluable
for understanding the end-to-end workflow of embedded AI systems and will prepare you for
real-world applications where model efÏciency, robustness, and responsiveness are paramount.
In the future, we plan to add a few other platforms. Please stay tuned!

These lab exercises are the contributions of Marcelo Rovai.

https://store.arduino.cc/products/nicla-vision
https://www.tensorflow.org/lite/microcontrollers
https://github.com/Mjrovai
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Setup Nicla Vision

Figure 71.1. DALL·E 3 Prompt: Illustration reminiscent of a 1950s cartoon where the Arduino
NICLA VISION board, equipped with a variety of sensors including a camera, is the focal point
on an old-fashioned desk. In the background, a computer screen with rounded edges displays the
Arduino IDE. The code seen is related to LED configurations andmachine learning voice command
detection. Outputs on the Serial Monitor explicitly display the words ‘yes’ and ‘no’.
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Introduction

The Arduino Nicla Vision (sometimes called NiclaV) is a development board that includes two pro-
cessors that can run tasks in parallel. It is part of a family of development boards with the same
form factor but designed for specific tasks, such as the Nicla Sense ME and the Nicla Voice. The
Niclas can efÏciently run processes created with TensorFlow Lite. For example, one of the cores
of the NiclaV runs a computer vision algorithm on the fly (inference), while the other executes
low-level operations like controlling a motor and communicating or acting as a user interface. The
onboard wireless module allows the management of WiFi and Bluetooth Low Energy (BLE) con-
nectivity simultaneously.

Hardware

Two Parallel Cores

The central processor is the dual-core STM32H747, including a Cortex M7 at 480 MHz and a Cor-
tex M4 at 240 MHz. The two cores communicate via a Remote Procedure Call mechanism that
seamlessly allows calling functions on the other processor. Both processors share all the on-chip
peripherals and can run:

• Arduino sketches on top of the Arm Mbed OS

• Native Mbed applications

https://docs.arduino.cc/hardware/nicla-vision
https://www.bosch-sensortec.com/software-tools/tools/arduino-nicla-sense-me/
https://store-usa.arduino.cc/products/nicla-voice?_gl=1*l3abc6*_ga*MTQ3NzE4Mjk4Mi4xNjQwMDIwOTk5*_ga_NEXN8H46L5*MTY5NjM0Mzk1My4xMDIuMS4xNjk2MzQ0MjQ1LjAuMC4w
https://content.arduino.cc/assets/Arduino-Portenta-H7_Datasheet_stm32h747xi.pdf?_gl=1*6quciu*_ga*MTQ3NzE4Mjk4Mi4xNjQwMDIwOTk5*_ga_NEXN8H46L5*MTY0NzQ0NTg1My4xMS4xLjE2NDc0NDYzMzkuMA..
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• MicroPython / JavaScript via an interpreter

• TensorFlow Lite

Memory

Memory is crucial for embedded machine learning projects. The NiclaV board can host up to 16
MB of QSPI Flash for storage. However, it is essential to consider that theMCU SRAM is the one to
be used with machine learning inferences; the STM32H747 is only 1MB, shared by both processors.
This MCU also has incorporated 2MB of FLASH, mainly for code storage.
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Sensors

• Camera: A GC2145 2 MP Color CMOS Camera.

• Microphone: The MP34DT05 is an ultra-compact, low-power, omnidirectional, digital MEMS
microphone built with a capacitive sensing element and the IC interface.

• 6-Axis IMU: 3D gyroscope and 3D accelerometer data from the LSM6DSOX 6-axis IMU.

• Time of Flight Sensor: The VL53L1CBV0FY Time-of-Flight sensor adds accurate and low
power-ranging capabilities to the Nicla Vision. The invisible near-infrared VCSEL laser (in-
cluding the analog driver) is encapsulatedwith receiving optics in an all-in-one smallmodule
below the camera.

Arduino IDE Installation

Start connecting the board (microUSB) to your computer:

Install the Mbed OS core for Nicla boards in the Arduino IDE. Having the IDE open, navigate
to Tools > Board > Board Manager, look for Arduino Nicla Vision on the search window, and
install the board.
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Next, go to Tools > Board > Arduino Mbed OS Nicla Boards and select Arduino Nicla
Vision. Having your board connected to the USB, you should see the Nicla on Port and select it.

Open the Blink sketch on Examples/Basic and run it using the IDE Upload button.
You should see the Built-in LED (green RGB) blinking, which means the Nicla board is
correctly installed and functional!

Testing the Microphone

On Arduino IDE, go to Examples > PDM > PDMSerialPlotter, open and run the sketch. Open
the Plotter and see the audio representation from the microphone:
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Vary the frequency of the sound you generate and confirm that the mic is working
correctly.

Testing the IMU

Before testing the IMU, it will be necessary to install the LSM6DSOX library. For that, go to Library
Manager and look for LSM6DSOX. Install the library provided by Arduino:
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Next, go to Examples > Arduino_LSM6DSOX > SimpleAccelerometer and run the accelerometer
test (you can also run Gyro and board temperature):

Testing the ToF (Time of Flight) Sensor

As we did with IMU, it is necessary to install the VL53L1X ToF library. For that, go to Library
Manager and look for VL53L1X. Install the library provided by Pololu:
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Next, run the sketch proximity_detection.ino:

On the Serial Monitor, you will see the distance from the camera to an object in front of it (max of
4m).

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Arduino-IDE/proximity_detection/proximity_detection.ino
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Testing the Camera

We can also test the camera using, for example, the code provided on Examples > Camera >
CameraCaptureRawBytes. We cannot see the image directly, but it is possible to get the raw image
data generated by the camera.

Anyway, the best test with the camera is to see a live image. For that, we will use another IDE, the
OpenMV.

Installing the OpenMV IDE

OpenMV IDE is the premier integrated development environment with OpenMVCameras like the
one on the Nicla Vision. It features a powerful text editor, debug terminal, and frame buffer viewer
with a histogram display. We will use MicroPython to program the camera.

Go to the OpenMV IDE page, download the correct version for your Operating System, and follow
the instructions for its installation on your computer.

https://openmv.io/pages/download
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The IDE should open, defaulting to the helloworld_1.py code on its Code Area. If not, you can
open it from Files > Examples > HelloWord > helloword.py
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Any messages sent through a serial connection (using print() or error messages) will be displayed
on the Serial Terminal during run time. The image captured by a camera will be displayed in the
Camera ViewerArea (or Frame Buffer) and in the Histogram area, immediately below the Camera
Viewer.

Before connecting the Nicla to the OpenMV IDE, ensure you have the latest bootloader
version. Go to your Arduino IDE, select the Nicla board, and open the sketch on
Examples > STM_32H747_System STM32H747_manageBootloader. Upload the code to
your board. The Serial Monitor will guide you.

After updating the bootloader, put the Nicla Vision in bootloader mode by double-pressing the
reset button on the board. The built-in green LED will start fading in and out. Now return to the
OpenMV IDE and click on the connect icon (Left ToolBar):

A pop-up will tell you that a board in DFU mode was detected and ask how you would like to
proceed. First, select Install the latest release firmware (vX.Y.Z). This action will install
the latest OpenMV firmware on the Nicla Vision.
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You can leave the option Erase internal file system unselected and click [OK].

Nicla’s green LED will start flashing while the OpenMV firmware is uploaded to the board, and a
terminal window will then open, showing the flashing progress.

Wait until the green LED stops flashing and fading. When the process ends, youwill see amessage
saying, “DFU firmware update complete!”. Press [OK].
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A green play button appears when the Nicla Vison connects to the Tool Bar.

Also, note that a drive named “NO NAME” will appear on your computer.:
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Every time you press the [RESET] button on the board, it automatically executes the main.py script
stored on it. You can load the main.py code on the IDE (File > Open File...).

This code is the “Blink” code, confirming that the HW is OK.

For testing the camera, let’s run helloword_1.py. For that, select the script on File > Examples >
HelloWorld > helloword.py,

When clicking the green play button, the MicroPython script (hellowolrd.py) on the Code Area will
be uploaded and run on theNicla Vision. On-Camera Viewer, youwill start to see the video stream-
ing. The SerialMonitorwill showus the FPS (Frames per second), which should be around 14fps.

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/main.py
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Here is the helloworld.py script:

# Hello World Example 2
#
# Welcome to the OpenMV IDE! Click on the green run arrow button below to run the script!

import sensor, image, time

sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.skip_frames(time = 2000) # Wait for settings take effect.
clock = time.clock() # Create a clock object to track the FPS.

while(True):
clock.tick() # Update the FPS clock.
img = sensor.snapshot() # Take a picture and return the image.
print(clock.fps())

In GitHub, you can find the Python scripts used here.

The code can be split into two parts:

• Setup: Where the libraries are imported, initialized and the variables are defined and initi-
ated.

http://helloworld.py/
https://github.com/Mjrovai/Arduino_Nicla_Vision
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• Loop: (while loop) part of the code that runs continually. The image (img variable) is cap-
tured (one frame). Each of those frames can be used for inference in Machine Learning Ap-
plications.

To interrupt the program execution, press the red [X] button.

Note: OpenMVCam runs about half as fast when connected to the IDE. The FPS should
increase once disconnected.

In the GitHub, You can find other Python scripts. Try to test the onboard sensors.

Connecting the Nicla Vision to Edge Impulse Studio

We will need the Edge Impulse Studio later in other exercises. Edge Impulse is a leading develop-
ment platform for machine learning on edge devices.

Edge Impulse ofÏcially supports the Nicla Vision. So, for starting, please create a new project on
the Studio and connect the Nicla to it. For that, follow the steps:

• Download the most updated EI Firmware and unzip it.

• Open the zip file on your computer and select the uploader corresponding to your OS:

• Put the Nicla-Vision on Boot Mode, pressing the reset button twice.

• Execute the specific batch code for your OS for uploading the binary arduino-nicla-vision.bin
to your board.

Go to your project on the Studio, and on the Data Acquisition tab, select WebUSB (1). A window
will pop up; choose the option that shows that the Nicla is paired (2) and press [Connect] (3).

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Micropython
https://www.edgeimpulse.com/
https://cdn.edgeimpulse.com/firmware/arduino-nicla-vision.zip
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In the Collect Data section on the Data Acquisition tab, you can choose which sensor data to
pick.
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For example. IMU data:
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Or Image (Camera):
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And so on. You can also test an external sensor connected to the ADC (Nicla pin 0) and the other
onboard sensors, such as the microphone and the ToF.

Expanding the Nicla Vision Board (optional)

A last item to be explored is that sometimes, during prototyping, it is essential to experiment with
external sensors and devices, and an excellent expansion to the Nicla is the ArduinoMKR Connec-
tor Carrier (Grove compatible).

The shield has 14 Grove connectors: five single analog inputs (A0-A5), one double analog input
(A5/A6), five single digital I/Os (D0-D4), one double digital I/O (D5/D6), one I2C (TWI), and one
UART (Serial). All connectors are 5V compatible.

Note that all 17 Nicla Vision pins will be connected to the Shield Groves, but some
Grove connections remain disconnected.

https://store-usa.arduino.cc/products/arduino-mkr-connector-carrier-grove-compatible
https://store-usa.arduino.cc/products/arduino-mkr-connector-carrier-grove-compatible
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This shield is MKR compatible and can be used with the Nicla Vision and Portenta.



Setup Nicla Vision 747

For example, suppose that on a TinyML project, you want to send inference results using a Lo-
RaWAN device and add information about local luminosity. Often, with ofÒine operations, a local
low-power display such as an OLED is advised. This setup can be seen here:
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The Grove Light Sensor would be connected to one of the single Analog pins (A0/PC4), the Lo-
RaWAN device to the UART, and the OLED to the I2C connector.

The Nicla Pins 3 (Tx) and 4 (Rx) are connected with the Serial Shield connector. The UART com-
munication is used with the LoRaWan device. Here is a simple code to use the UART:

# UART Test - By: marcelo_rovai - Sat Sep 23 2023

import time
from pyb import UART
from pyb import LED

redLED = LED(1) # built-in red LED

# Init UART object.
# Nicla Vision's UART (TX/RX pins) is on "LP1"
uart = UART("LP1", 9600)

while(True):
uart.write("Hello World!\r\n")
redLED.toggle()
time.sleep_ms(1000)

https://wiki.seeedstudio.com/Grove-Light_Sensor/
https://wiki.seeedstudio.com/Grove_LoRa_E5_New_Version/
https://wiki.seeedstudio.com/Grove_LoRa_E5_New_Version/
https://arduino.cl/producto/display-oled-grove/
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To verify that theUART isworking, you should, for example, connect another device as theArduino
UNO, displaying “Hello Word” on the Serial Monitor. Here is the code.

Below is the Hello World code to be used with the I2C OLED. The MicroPython SSD1306 OLED
driver (ssd1306.py), created by Adafruit, should also be uploaded to the Nicla (the ssd1306.py
script can be found in GitHub).

# Nicla_OLED_Hello_World - By: marcelo_rovai - Sat Sep 30 2023

#Save on device: MicroPython SSD1306 OLED driver, I2C and SPI interfaces created by Adafruit
import ssd1306

from machine import I2C
i2c = I2C(1)

oled_width = 128
oled_height = 64
oled = ssd1306.SSD1306_I2C(oled_width, oled_height, i2c)

oled.text('Hello, World', 10, 10)
oled.show()

Finally, here is a simple script to read the ADC value on pin “PC4” (Nicla pin A0):

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Arduino-IDE/teste_uart_UNO/teste_uart_UNO.ino
https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/ssd1306.py
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# Light Sensor (A0) - By: marcelo_rovai - Wed Oct 4 2023

import pyb
from time import sleep

adc = pyb.ADC(pyb.Pin("PC4")) # create an analog object from a pin
val = adc.read() # read an analog value

while (True):

val = adc.read()
print ("Light={}".format (val))
sleep (1)

The ADC can be used for other sensor variables, such as Temperature.

Note that the above scripts (downloaded from Github) introduce only how to connect
external devices with the Nicla Vision board using MicroPython.

Conclusion

The Arduino Nicla Vision is an excellent tiny device for industrial and professional uses! However,
it is powerful, trustworthy, low power, and has suitable sensors for the most common embedded
machine learning applications such as vision, movement, sensor fusion, and sound.

On the GitHub repository, you will find the last version of all the codes used or com-
mented on in this hands-on exercise.

https://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Micropython
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main
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Figure 71.2. DALL·E 3 Prompt: Cartoon in a 1950s style featuring a compact electronic device with
a camera module placed on a wooden table. The screen displays blue robots on one side and green
periquitos on the other. LED lights on the device indicate classifications, while characters in retro
clothing observe with interest.
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Introduction

As we initiate our studies into embedded machine learning or TinyML, it’s impossible to overlook
the transformative impact of Computer Vision (CV) and Artificial Intelligence (AI) in our lives.
These two intertwined disciplines redefine what machines can perceive and accomplish, from au-
tonomous vehicles and robotics to healthcare and surveillance.

More and more, we are facing an artificial intelligence (AI) revolution where, as stated by Gartner,
Edge AI has a very high impact potential, and it is for now!

In the “bullseye” of the Radar is the Edge Computer Vision, and when we talk about Machine Learn-
ing (ML) applied to vision, the first thing that comes to mind is Image Classification, a kind of ML
“Hello World”!

This exercise will explore a computer vision project utilizing Convolutional Neural Networks
(CNNs) for real-time image classification. Leveraging TensorFlow’s robust ecosystem, we’ll
implement a pre-trained MobileNet model and adapt it for edge deployment. The focus will be
on optimizing the model to run efÏciently on resource-constrained hardware without sacrificing
accuracy.



CV on Nicla Vision 753

We’ll employ techniques like quantization and pruning to reduce the computational load. By the
end of this tutorial, you’ll have a working prototype capable of classifying images in real-time, all
running on a low-power embedded system based on the Arduino Nicla Vision board.

Computer Vision

At its core, computer vision aims to enable machines to interpret and make decisions based on vi-
sual data from the world, essentially mimicking the capability of the human optical system. Con-
versely, AI is a broader field encompassing machine learning, natural language processing, and
robotics, among other technologies. When you bring AI algorithms into computer vision projects,
you supercharge the system’s ability to understand, interpret, and react to visual stimuli.

When discussing Computer Vision projects applied to embedded devices, the most common ap-
plications that come to mind are Image Classification and Object Detection.

Both models can be implemented on tiny devices like the Arduino Nicla Vision and used on real
projects. In this chapter, we will cover Image Classification.

Image Classification Project Goal

The first step in any ML project is to define the goal. In this case, it is to detect and classify two
specific objects present in one image. For this project, we will use two small toys: a robot and a
small Brazilian parrot (named Periquito). Also, we will collect images of a background where those
two objects are absent.
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Data Collection

Once you have defined your Machine Learning project goal, the next and most crucial step is the
dataset collection. You can use the Edge Impulse Studio, the OpenMV IDE we installed, or even
your phone for the image capture. Here, we will use the OpenMV IDE for that.

Collecting Dataset with OpenMV IDE

First, create in your computer a folder where your data will be saved, for example, “data.” Next,
on the OpenMV IDE, go to Tools > Dataset Editor and select New Dataset to start the dataset
collection:
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The IDE will ask you to open the file where your data will be saved and choose the “data” folder
that was created. Note that new icons will appear on the Left panel.

Using the upper icon (1), enter with the first class name, for example, “periquito”:
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Running the dataset_capture_script.py and clicking on the camera icon (2), will start capturing
images:

Repeat the same procedure with the other classes
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We suggest around 60 images from each category. Try to capture different angles, back-
grounds, and light conditions.

The stored images use a QVGA frame size of 320x240 and the RGB565 (color pixel format).

After capturing your dataset, close the Dataset Editor Tool on the Tools > Dataset Editor.

On your computer, you will end with a dataset that contains three classes: periquito, robot, and
background.

You should return to Edge Impulse Studio and upload the dataset to your project.

Training the model with Edge Impulse Studio

We will use the Edge Impulse Studio for training our model. Enter your account credentials and
create a new project:
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Here, you can clone a similar project: NICLA-Vision_Image_Classification.

Dataset

Using the EI Studio (or Studio), we will go over four main steps to have our model ready for use on
the Nicla Vision board: Dataset, Impulse, Tests, and Deploy (on the Edge Device, in this case, the
NiclaV).

https://studio.edgeimpulse.com/public/273858/latest
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Regarding the Dataset, it is essential to point out that our Original Dataset, captured with the
OpenMV IDE, will be split into Training, Validation, and Test. The Test Set will be divided from the
beginning, and a part will reserved to be used only in the Test phase after training. The Validation
Set will be used during training.
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On Studio, go to the Data acquisition tab, and on the UPLOAD DATA section, upload the chosen
categories files from your computer:
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Leave to the Studio the splitting of the original dataset into train and test and choose the label about
that specific data:
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Repeat the procedure for all three classes. At the end, you should see your “raw data” in the
Studio:
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The Studio allows you to explore your data, showing a complete view of all the data in your project.
You can clear, inspect, or change labels by clicking on individual data items. In our case, a very
simple project, the data seems OK.
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The Impulse Design

In this phase, we should define how to:

• Pre-process our data, which consists of resizing the individual images and determining the
color depth to use (be it RGB or Grayscale) and

• Specify a Model, in this case, it will be the Transfer Learning (Images) to fine-tune a pre-
trained MobileNet V2 image classification model on our data. This method performs well
even with relatively small image datasets (around 150 images in our case).
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Transfer Learning with MobileNet offers a streamlined approach to model training, which is es-
pecially beneficial for resource-constrained environments and projects with limited labeled data.
MobileNet, known for its lightweight architecture, is a pre-trained model that has already learned
valuable features from a large dataset (ImageNet).

By leveraging these learned features, you can train a new model for your specific task with fewer
data and computational resources and yet achieve competitive accuracy.
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This approach significantly reduces training time and computational cost, making it ideal for quick
prototyping and deployment on embedded devices where efÏciency is paramount.

Go to the ImpulseDesign Tab and create the impulse, defining an image size of 96x96 and squashing
them (squared form, without cropping). Select Image and Transfer Learning blocks. Save the
Impulse.
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Image Pre-Processing

All the input QVGA/RGB565 images will be converted to 27,640 features (96x96x3).

Press [Save parameters] and Generate all features:
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Model Design

In 2007, Google introduced MobileNetV1, a family of general-purpose computer vision neural net-
works designed with mobile devices in mind to support classification, detection, and more. Mo-
bileNets are small, low-latency, low-power models parameterized to meet the resource constraints
of various use cases. in 2018, Google launched MobileNetV2: Inverted Residuals and Linear Bot-
tlenecks.

MobileNet V1 and MobileNet V2 aim at mobile efÏciency and embedded vision applications but
differ in architectural complexity and performance. While both use depthwise separable convo-
lutions to reduce the computational cost, MobileNet V2 introduces Inverted Residual Blocks and
Linear Bottlenecks to enhance performance. These new features allowV2 to capturemore complex
features using fewer parameters, making it computationally more efÏcient and generally more ac-
curate than its predecessor. Additionally, V2 employs a non-linear activation in the intermediate
expansion layer. It still uses a linear activation for the bottleneck layer, a design choice found to pre-
serve important information through the network. MobileNet V2 offers an optimized architecture
for higher accuracy and efÏciency and will be used in this project.

Although the base MobileNet architecture is already tiny and has low latency, many times, a spe-
cific use case or application may require the model to be even smaller and faster. MobileNets in-
troduces a straightforward parameter α (alpha) called width multiplier to construct these smaller,
less computationally expensive models. The role of the width multiplier α is that of thinning a
network uniformly at each layer.

https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
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Edge Impulse Studio can use both MobileNetV1 (96x96 images) and V2 (96x96 or 160x160 images),
with several different α values (from 0.05 to 1.0). For example, you will get the highest accuracy
with V2, 160x160 images, and α=1.0. Of course, there is a trade-off. The higher the accuracy, the
more memory (around 1.3MB RAM and 2.6MB ROM) will be needed to run the model, implying
more latency. The smaller footprint will be obtained at the other extreme with MobileNetV1 and
α=0.10 (around 53.2K RAM and 101K ROM).

We will use MobileNetV2 96x96 0.1 for this project, with an estimated memory cost of 265.3 KB in
RAM. This model should be OK for the Nicla Vision with 1MB of SRAM. On the Transfer Learning
Tab, select this model:
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Model Training

Another valuable technique to be used with Deep Learning is Data Augmentation. Data augmen-
tation is a method to improve the accuracy of machine learning models by creating additional
artificial data. A data augmentation system makes small, random changes to your training data
during the training process (such as flipping, cropping, or rotating the images).

Looking under the hood, here you can see how Edge Impulse implements a data Augmentation
policy on your data:

# Implements the data augmentation policy
def augment_image(image, label):

# Flips the image randomly
image = tf.image.random_flip_left_right(image)

# Increase the image size, then randomly crop it down to
# the original dimensions
resize_factor = random.uniform(1, 1.2)
new_height = math.floor(resize_factor * INPUT_SHAPE[0])
new_width = math.floor(resize_factor * INPUT_SHAPE[1])
image = tf.image.resize_with_crop_or_pad(image, new_height, new_width)
image = tf.image.random_crop(image, size=INPUT_SHAPE)
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# Vary the brightness of the image
image = tf.image.random_brightness(image, max_delta=0.2)

return image, label

Exposure to these variations during training can help prevent your model from taking shortcuts
by “memorizing” superficial clues in your training data, meaning it may better reflect the deep
underlying patterns in your dataset.

The final layer of our model will have 12 neurons with a 15% dropout for overfitting prevention.
Here is the Training result:

The result is excellent, with 77ms of latency, which should result in 13fps (frames per second)
during inference.
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Model Testing

Now, you should take the data set aside at the start of the project and run the trained model using
it as input:

The result is, again, excellent.
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Deploying the model

At this point, we can deploy the trained model as.tflite and use the OpenMV IDE to run it using
MicroPython, or we can deploy it as a C/C++ or an Arduino library.
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Arduino Library

First, Let’s deploy it as an Arduino Library:
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You should install the library as.zip on the Arduino IDE and run the sketch nicla_vision_camera.ino
available in Examples under your library name.

Note that Arduino Nicla Vision has, by default, 512KB of RAM allocated for the M7
core and an additional 244KB on the M4 address space. In the code, this allocation
was changed to 288 kB to guarantee that the model will run on the device (malloc_-
addblock((void*)0x30000000, 288 * 1024);).

The result is good, with 86ms of measured latency.
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Here is a short video showing the inference results: https://youtu.be/bZPZZJblU-o

OpenMV

It is possible to deploy the trained model to be used with OpenMV in two ways: as a library and
as a firmware.

Three files are generated as a library: the trained.tflite model, a list with labels, and a simple Mi-
croPython script that can make inferences using the model.

Running thismodel as a .tflite directly in theNicla was impossible. So, we can sacrifice the accuracy
using a smaller model or deploy the model as an OpenMV Firmware (FW). Choosing FW, the
Edge Impulse Studio generates optimized models, libraries, and frameworks needed to make the
inference. Let’s explore this option.

Select OpenMV Firmware on the Deploy Tab and press [Build].

https://youtu.be/bZPZZJblU-o
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On your computer, you will find a ZIP file. Open it:

Use the Bootloader tool on the OpenMV IDE to load the FW on your board:
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Select the appropriate file (.bin for Nicla-Vision):

After the download is finished, press OK:
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If a message says that the FW is outdated, DO NOT UPGRADE. Select [NO].
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Now, open the script ei_image_classification.py that was downloaded from the Studio and the.bin
file for the Nicla.

Run it. Pointing the camera to the objects we want to classify, the inference result will be displayed
on the Serial Terminal.



CV on Nicla Vision 781

Changing the Code to add labels

The code provided by Edge Impulse can be modified so that we can see, for test reasons, the infer-
ence result directly on the image displayed on the OpenMV IDE.

Upload the code from GitHub, or modify it as below:

# Marcelo Rovai - NICLA Vision - Image Classification
# Adapted from Edge Impulse - OpenMV Image Classification Example
# @24Aug23

import sensor, image, time, os, tf, uos, gc

sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pxl fmt to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.

net = None
labels = None

try:
# Load built in model
labels, net = tf.load_builtin_model('trained')

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/nicla_image_classification.py
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except Exception as e:
raise Exception(e)

clock = time.clock()
while(True):

clock.tick() # Starts tracking elapsed time.

img = sensor.snapshot()

# default settings just do one detection
for obj in net.classify(img,

min_scale=1.0,
scale_mul=0.8,
x_overlap=0.5,
y_overlap=0.5):

fps = clock.fps()
lat = clock.avg()

print("**********\nPrediction:")
img.draw_rectangle(obj.rect())
# This combines the labels and confidence values into a list of tuples
predictions_list = list(zip(labels, obj.output()))

max_val = predictions_list[0][1]
max_lbl = 'background'
for i in range(len(predictions_list)):

val = predictions_list[i][1]
lbl = predictions_list[i][0]

if val > max_val:
max_val = val
max_lbl = lbl

# Print label with the highest probability
if max_val < 0.5:

max_lbl = 'uncertain'
print("{} with a prob of {:.2f}".format(max_lbl, max_val))
print("FPS: {:.2f} fps ==> latency: {:.0f} ms".format(fps, lat))

# Draw label with highest probability to image viewer
img.draw_string(

10, 10,
max_lbl + "\n{:.2f}".format(max_val),
mono_space = False,
scale=2
)



CV on Nicla Vision 783

Here you can see the result:

Note that the latency (136 ms) is almost double of what we got directly with the Arduino IDE. This
is because we are using the IDE as an interface and also the time to wait for the camera to be ready.
If we start the clock just before the inference:

The latency will drop to only 71 ms.
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The NiclaV runs about half as fast when connected to the IDE. The FPS should increase
once disconnected.

Post-Processing with LEDs

When working with embedded machine learning, we are looking for devices that can continually
proceed with the inference and result, taking some action directly on the physical world and not
displaying the result on a connected computer. To simulate this, we will light up a different LED
for each possible inference result.

To accomplish that, we should upload the code from GitHub or change the last code to include the
LEDs:

# Marcelo Rovai - NICLA Vision - Image Classification with LEDs
# Adapted from Edge Impulse - OpenMV Image Classification Example
# @24Aug23

import sensor, image, time, os, tf, uos, gc, pyb

ledRed = pyb.LED(1)
ledGre = pyb.LED(2)
ledBlu = pyb.LED(3)

sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixl fmt to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/nicla_image_classification_LED.py
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sensor.skip_frames(time=2000) # Let the camera adjust.

net = None
labels = None

ledRed.off()
ledGre.off()
ledBlu.off()

try:
# Load built in model
labels, net = tf.load_builtin_model('trained')

except Exception as e:
raise Exception(e)

clock = time.clock()

def setLEDs(max_lbl):

if max_lbl == 'uncertain':
ledRed.on()
ledGre.off()
ledBlu.off()

if max_lbl == 'periquito':
ledRed.off()
ledGre.on()
ledBlu.off()

if max_lbl == 'robot':
ledRed.off()
ledGre.off()
ledBlu.on()

if max_lbl == 'background':
ledRed.off()
ledGre.off()
ledBlu.off()

while(True):
img = sensor.snapshot()
clock.tick() # Starts tracking elapsed time.

# default settings just do one detection.
for obj in net.classify(img,
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min_scale=1.0,
scale_mul=0.8,
x_overlap=0.5,
y_overlap=0.5):

fps = clock.fps()
lat = clock.avg()

print("**********\nPrediction:")
img.draw_rectangle(obj.rect())
# This combines the labels and confidence values into a list of tuples
predictions_list = list(zip(labels, obj.output()))

max_val = predictions_list[0][1]
max_lbl = 'background'
for i in range(len(predictions_list)):

val = predictions_list[i][1]
lbl = predictions_list[i][0]

if val > max_val:
max_val = val
max_lbl = lbl

# Print label and turn on LED with the highest probability
if max_val < 0.8:

max_lbl = 'uncertain'

setLEDs(max_lbl)

print("{} with a prob of {:.2f}".format(max_lbl, max_val))
print("FPS: {:.2f} fps ==> latency: {:.0f} ms".format(fps, lat))

# Draw label with highest probability to image viewer
img.draw_string(

10, 10,
max_lbl + "\n{:.2f}".format(max_val),
mono_space = False,
scale=2
)

Now, each time that a class scores a result greater than 0.8, the correspondent LED will be lit:

• Led Red 0n: Uncertain (no class is over 0.8)

• Led Green 0n: Periquito > 0.8

• Led Blue 0n: Robot > 0.8

• All LEDs Off: Background > 0.8
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Here is the result:

In more detail

Image Classification (non-ofÏcial) Benchmark

Several development boards can be used for embedded machine learning (TinyML), and the most
common ones for Computer Vision applications (consuming low energy), are the ESP32 CAM, the
Seeed XIAO ESP32S3 Sense, the Arduino Nicla Vison, and the Arduino Portenta.
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Catching the opportunity, the same trained model was deployed on the ESP-CAM, the XIAO, and
the Portenta (in this one, the model was trained again, using grayscaled images to be compatible
with its camera). Here is the result, deploying the models as Arduino’s Library:
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Conclusion

Beforewe finish, consider that Computer Vision ismore than just image classification. For example,
you can develop Edge Machine Learning projects around vision in several areas, such as:

• Autonomous Vehicles: Use sensor fusion, lidar data, and computer vision algorithms to
navigate and make decisions.

• Healthcare: Automated diagnosis of diseases through MRI, X-ray, and CT scan image analy-
sis

• Retail: Automated checkout systems that identify products as they pass through a scanner.

• Security and Surveillance: Facial recognition, anomaly detection, and object tracking in real-
time video feeds.

• Augmented Reality: Object detection and classification to overlay digital information in the
real world.

• Industrial Automation: Visual inspection of products, predictive maintenance, and robot
and drone guidance.

• Agriculture: Drone-based crop monitoring and automated harvesting.

• Natural Language Processing: Image captioning and visual question answering.

• Gesture Recognition: For gaming, sign language translation, and human-machine interac-
tion.

• Content Recommendation: Image-based recommendation systems in e-commerce.
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Object Detection

Figure 71.3. DALL·E 3 Prompt: Cartoon in the style of the 1940s or 1950s showcasing a spacious
industrial warehouse interior. A conveyor belt is prominently featured, carrying a mixture of toy
wheels and boxes. The wheels are distinguishable with their bright yellow centers and black tires.
The boxes are white cubes painted with alternating black and white patterns. At the end of the
moving conveyor stands a retro-styled robot, equipped with tools and sensors, diligently classify-
ing and counting the arrivingwheels and boxes. The overall aesthetic is reminiscent ofmid-century
animation with bold lines and a classic color palette.
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Introduction

This is a continuation of CV on Nicla Vision, now exploring Object Detection on microcon-
trollers.

Object Detection versus Image Classification

The main task with Image Classification models is to produce a list of the most probable object
categories present on an image, for example, to identify a tabby cat just after his dinner:
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But what happens when the cat jumps near the wine glass? The model still only recognizes the
predominant category on the image, the tabby cat:
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And what happens if there is not a dominant category on the image?
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The model identifies the above image completely wrong as an “ashcan,” possibly due to the color
tonalities.

The model used in all previous examples is the MobileNet, trained with a large dataset,
the ImageNet.

To solve this issue, we need another type of model, where not only multiple categories (or labels)
can be found but also where the objects are located on a given image.

As we can imagine, such models are much more complicated and bigger, for example, the Mo-
bileNetV2 SSD FPN-Lite 320x320, trained with the COCO dataset. This pre-trained object detec-
tion model is designed to locate up to 10 objects within an image, outputting a bounding box for
each object detected. The below image is the result of such a model running on a Raspberry Pi:
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Those models used for Object detection (such as theMobileNet SSD or YOLO) usually have several
MB in size, which is OK for use with Raspberry Pi but unsuitable for use with embedded devices,
where the RAM usually is lower than 1M Bytes.

An innovative solution for Object Detection: FOMO

Edge Impulse launched in 2022, FOMO (Faster Objects, More Objects), a novel solution to perform
object detection on embedded devices, not only on the Nicla Vision (CortexM7) but also on Cortex
M4F CPUs (Arduino Nano33 and OpenMV M4 series) as well the Espressif ESP32 devices (ESP-
CAM and XIAO ESP32S3 Sense).

In this Hands-On exercise, we will explore using FOMO with Object Detection, not entering many
details about the model itself. To understand more about how the model works, you can go into
the ofÏcial FOMO announcement by Edge Impulse, where Louis Moreau and Mat Kelcey explain
in detail how it works.

The Object Detection Project Goal

All Machine Learning projects need to start with a detailed goal. Let’s assume we are in an indus-
trial facility and must sort and count wheels and special boxes.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects
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In other words, we should perform a multi-label classification, where each image can have three
classes:

• Background (No objects)

• Box

• Wheel

Here are some not labeled image samples that we should use to detect the objects (wheels and
boxes):

We are interested in which object is in the image, its location (centroid), and howmanywe can find
on it. The object’s size is not detected with FOMO, as with MobileNet SSD or YOLO, where the
Bounding Box is one of the model outputs.
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Wewill develop the project using the Nicla Vision for image capture andmodel inference. TheML
project will be developed using the Edge Impulse Studio. But before starting the object detection
project in the Studio, let’s create a raw dataset (not labeled) with images that contain the objects to
be detected.

Data Collection

We can use the Edge Impulse Studio, the OpenMV IDE, your phone, or other devices for the image
capture. Here, we will use again the OpenMV IDE for our purpose.

Collecting Dataset with OpenMV IDE

First, create in your computer a folder where your data will be saved, for example, “data.” Next,
on the OpenMV IDE, go to Tools > Dataset Editor and select New Dataset to start the dataset
collection:

Edge impulse suggests that the objects should be of similar size and not overlapping for better
performance. This is OK in an industrial facility, where the camera should be fixed, keeping the
same distance from the objects to be detected. Despite that, we will also try with mixed sizes and
positions to see the result.

Wewill not create separate folders for our images because each containsmultiple labels.

Connect the Nicla Vision to the OpenMV IDE and run the dataset_capture_script.py. Clicking
on the Capture Image button will start capturing images:
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We suggest around 50 images mixing the objects and varying the number of each appearing on the
scene. Try to capture different angles, backgrounds, and light conditions.

The stored images use a QVGA frame size 320x240 and RGB565 (color pixel format).

After capturing your dataset, close the Dataset Editor Tool on the Tools > Dataset Editor.

Edge Impulse Studio

Setup the project

Go to Edge Impulse Studio, enter your credentials at Login (or create an account), and start a new
project.

https://www.edgeimpulse.com/
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Here, you can clone the project developed for this hands-on: NICLA_Vision_Object_-
Detection.

On your Project Dashboard, go down and on Project info and select Bounding boxes (object de-
tection) and Nicla Vision as your Target Device:

https://studio.edgeimpulse.com/public/292737/latest
https://studio.edgeimpulse.com/public/292737/latest
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Uploading the unlabeled data

On Studio, go to the Data acquisition tab, and on the UPLOAD DATA section, upload from your
computer files captured.
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You can leave for the Studio to split your data automatically between Train and Test or
do it manually.
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All the not labeled images (51) were uploaded but they still need to be labeled appropriately before
using them as a dataset in the project. The Studio has a tool for that purpose, which you can find
in the link Labeling queue (51).

There are two ways you can use to perform AI-assisted labeling on the Edge Impulse Studio (free
version):

• Using yolov5
• Tracking objects between frames

Edge Impulse launched an auto-labeling feature for Enterprise customers, easing label-
ing tasks in object detection projects.

Ordinary objects can quickly be identified and labeled using an existing library of pre-trained ob-
ject detection models from YOLOv5 (trained with the COCO dataset). But since, in our case, the
objects are not part of COCO datasets, we should select the option of tracking objects. With
this option, once you draw bounding boxes and label the images in one frame, the objects will be
tracked automatically from frame to frame, partially labeling the new ones (not all are correctly
labeled).

You can use the EI uploader to import your data if you already have a labeled dataset
containing bounding boxes.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/auto-labeler
https://docs.edgeimpulse.com/docs/tools/edge-impulse-cli/cli-uploader#bounding-boxes
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Labeling the Dataset

Startingwith the first image of your unlabeled data, use yourmouse to drag a box around an object
to add a label. Then click Save labels to advance to the next item.

Continue with this process until the queue is empty. At the end, all images should have the objects
labeled as those samples below:

Next, review the labeled samples on the Data acquisition tab. If one of the labels was wrong,
you can edit it using the three dots menu after the sample name:
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You will be guided to replace the wrong label, correcting the dataset.

The Impulse Design

In this phase, you should define how to:

• Pre-processing consists of resizing the individual images from 320 x 240 to 96 x 96 and
squashing them (squared form, without cropping). Afterwards, the images are converted
from RGB to Grayscale.
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• Design a Model, in this case, “Object Detection.”

Preprocessing all dataset

In this section, select Color depth as Grayscale, which is suitable for use with FOMO models and
Save parameters.
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The Studio moves automatically to the next section, Generate features, where all samples will
be pre-processed, resulting in a dataset with individual 96x96x1 images or 9,216 features.
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The feature explorer shows that all samples evidence a good separation after the feature genera-
tion.

One of the samples (46) apparently is in the wrong space, but clicking on it can confirm
that the labeling is correct.

Model Design, Training, and Test

We will use FOMO, an object detection model based on MobileNetV2 (alpha 0.35) designed to
coarsely segment an image into a grid of background vs objects of interest (here, boxes and
wheels).

FOMO is an innovative machine learning model for object detection, which can use up to 30 times
less energy and memory than traditional models like Mobilenet SSD and YOLOv5. FOMO can
operate on microcontrollers with less than 200 KB of RAM. The main reason this is possible is that
while othermodels calculate the object’s size by drawing a square around it (bounding box), FOMO
ignores the size of the image, providing only the information about where the object is located in
the image, by means of its centroid coordinates.

How FOMO works?
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FOMO takes the image in grayscale and divides it into blocks of pixels using a factor of 8. For
the input of 96x96, the grid would be 12x12 (96/8=12). Next, FOMO will run a classifier through
each pixel block to calculate the probability that there is a box or a wheel in each of them and,
subsequently, determine the regions which have the highest probability of containing the object
(If a pixel block has no objects, it will be classified as background). From the overlap of the final
region, the FOMO provides the coordinates (related to the image dimensions) of the centroid of
this region.

For training, we should select a pre-trained model. Let’s use the FOMO (Faster Objects, More
Objects) MobileNetV2 0.35‘. This model uses around 250KB RAM and 80KB of ROM (Flash),
which suits well with our board since it has 1MB of RAM and ROM.
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Regarding the training hyper-parameters, the model will be trained with:

• Epochs: 60,
• Batch size: 32
• Learning Rate: 0.001.

For validation during training, 20% of the dataset (validation_dataset) will be spared. For the re-
maining 80% (train_dataset), we will apply Data Augmentation, which will randomly flip, change
the size and brightness of the image, and crop them, artificially increasing the number of samples
on the dataset for training.

As a result, the model ends with practically 1.00 in the F1 score, with a similar result when using
the Test data.

Note that FOMO automatically added a 3rd label background to the two previously
defined (box and wheel).
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In object detection tasks, accuracy is generally not the primary evaluation metric. Ob-
ject detection involves classifying objects and providing bounding boxes around them,
making it a more complex problem than simple classification. The issue is that we do
not have the bounding box, only the centroids. In short, using accuracy as a metric
could be misleading and may not provide a complete understanding of how well the
model is performing. Because of that, we will use the F1 score.

Test model with “Live Classification”

Since Edge Impulse ofÏcially supports the Nicla Vision, let’s connect it to the Studio. For that,
follow the steps:

• Download the last EI Firmware and unzip it.

• Open the zip file on your computer and select the uploader related to your OS:

https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/
https://cdn.edgeimpulse.com/firmware/arduino-nicla-vision.zip
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• Put the Nicla-Vision on Boot Mode, pressing the reset button twice.

• Execute the specific batch code for yourOS for uploading the binary (arduino-nicla-vision.bin)
to your board.

Go to Live classification section at EI Studio, and using webUSB, connect your Nicla Vision:

Once connected, you can use the Nicla to capture actual images to be tested by the trained model
on Edge Impulse Studio.
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One thing to be noted is that the model can produce false positives and negatives. This can be
minimized by defining a proper Confidence Threshold (use the Three dotsmenu for the set-up).
Try with 0.8 or more.

Deploying the Model

Select OpenMV Firmware on the Deploy Tab and press [Build].
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When you try to connect theNicla with the OpenMV IDE again, it will try to update its FW. Choose
the option Load a specific firmware instead.

You will find a ZIP file on your computer from the Studio. Open it:
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Load the .bin file to your board:

After the download is finished, a pop-upmessage will be displayed. Press OK, and open the script
ei_object_detection.py downloaded from the Studio.

Before running the script, let’s change a few lines. Note that you can leave the window definition
as 240 x 240 and the camera capturing images as QVGA/RGB. The captured image will be pre-
processed by the FW deployed from Edge Impulse

# Edge Impulse - OpenMV Object Detection Example

import sensor, image, time, os, tf, math, uos, gc

sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.
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net = None
labels = None

Redefine the minimum confidence, for example, to 0.8 to minimize false positives and negatives.

min_confidence = 0.8

Change if necessary, the color of the circles thatwill be used to display the detected object’s centroid
for a better contrast.

try:
# Load built in model
labels, net = tf.load_builtin_model('trained')

except Exception as e:
raise Exception(e)

colors = [ # Add more colors if you are detecting more than 7 types of classes at once.
(255, 255, 0), # background: yellow (not used)
( 0, 255, 0), # cube: green
(255, 0, 0), # wheel: red
( 0, 0, 255), # not used
(255, 0, 255), # not used
( 0, 255, 255), # not used
(255, 255, 255), # not used

]

Keep the remaining code as it is and press the green Play button to run the code:
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On the camera view, we can see the objects with their centroids marked with 12 pixel-fixed circles
(each circle has a distinct color, depending on its class). On the Serial Terminal, the model shows
the labels detected and their position on the image window (240X240).

Be ware that the coordinate origin is in the upper left corner.
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Note that the frames per second rate is around 8 fps (similar to what we got with the Image Clas-
sification project). This happens because FOMO is cleverly built over a CNN model, not with an
object detection model like the SSD MobileNet. For example, when running a MobileNetV2 SSD
FPN-Lite 320x320 model on a Raspberry Pi 4, the latency is around 5 times higher (around 1.5
fps)

Here is a short video showing the inference results: https://youtu.be/JbpoqRp3BbM

Conclusion

FOMO is a significant leap in the image processing space, as Louis Moreau and Mat Kelcey put it
during its launch in 2022:

FOMO is a ground-breaking algorithm that brings real-time object detection, tracking,
and counting to microcontrollers for the first time.

Multiple possibilities exist for exploring object detection (and, more precisely, counting them) on
embedded devices, for example, to explore the Nicla doing sensor fusion (camera + microphone)
and object detection. This can be very useful on projects involving bees, for example.

https://youtu.be/JbpoqRp3BbM
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Audio Feature Engineering

Figure 71.4. DALL·E 3 Prompt: 1950s style cartoon scene set in an audio research room. Two
scientists, one holding a magnifying glass and the other taking notes, examine large charts pinned
to the wall. These charts depict FFT graphs and time curves related to audio data analysis. The
room has a retro ambiance, with wooden tables, vintage lamps, and classic audio analysis tools.
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Introduction

In this hands-on tutorial, the emphasis is on the critical role that feature engineering plays in op-
timizing the performance of machine learning models applied to audio classification tasks, such
as speech recognition. It is essential to be aware that the performance of any machine learning
model relies heavily on the quality of features used, and we will deal with “under-the-hood” me-
chanics of feature extraction, mainly focusing on Mel-frequency Cepstral CoefÏcients (MFCCs), a
cornerstone in the field of audio signal processing.

Machine learning models, especially traditional algorithms, don’t understand audio waves. They
understand numbers arranged in some meaningful way, i.e., features. These features encapsulate
the characteristics of the audio signal, making it easier for models to distinguish between different
sounds.

This tutorial will deal with generating features specifically for audio classification. This
can be particularly interesting for applying machine learning to a variety of audio data,
whether for speech recognition, music categorization, insect classification based on
wingbeat sounds, or other sound analysis tasks

The KWS

The most common TinyML application is Keyword Spotting (KWS), a subset of the broader field
of speech recognition. While general speech recognition aims to transcribe all spoken words into
text, Keyword Spotting focuses on detecting specific “keywords” or “wake words” in a continuous
audio stream. The system is trained to recognize these keywords as predefined phrases or words,
such as yes or no. In short, KWS is a specialized form of speech recognition with its own set of
challenges and requirements.

Here a typical KWS Process using MFCC Feature Converter:
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Applications of KWS:

• Voice Assistants: In devices like Amazon’s Alexa or Google Home, KWS is used to detect
the wake word (“Alexa” or “Hey Google”) to activate the device.

• Voice-Activated Controls: In automotive or industrial settings, KWS can be used to initiate
specific commands like “Start engine” or “Turn off lights.”

• Security Systems: Voice-activated security systemsmayuseKWS to authenticate users based
on a spoken passphrase.

• Telecommunication Services: Customer service lines may use KWS to route calls based on
spoken keywords.

Differences from General Speech Recognition:

• Computational EfÏciency: KWS is usually designed to be less computationally intensive
than full speech recognition, as it only needs to recognize a small set of phrases.

• Real-time Processing: KWS often operates in real-time and is optimized for low-latency de-
tection of keywords.

• Resource Constraints: KWSmodels are often designed to be lightweight, so they can run on
devices with limited computational resources, like microcontrollers or mobile phones.

• Focused Task: While general speech recognition models are trained to handle a broad range
of vocabulary and accents, KWS models are fine-tuned to recognize specific keywords, often
in noisy environments accurately.
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Introduction to Audio Signals

Understanding the basic properties of audio signals is crucial for effective feature extraction and,
ultimately, for successfully applyingmachine learning algorithms in audio classification tasks. Au-
dio signals are complex waveforms that capture fluctuations in air pressure over time. These sig-
nals can be characterized by several fundamental attributes: sampling rate, frequency, and ampli-
tude.

• Frequency and Amplitude: Frequency refers to the number of oscillations a waveform un-
dergoes per unit time and is also measured in Hz. In the context of audio signals, different
frequencies correspond to different pitches. Amplitude, on the other hand, measures the
magnitude of the oscillations and correlates with the loudness of the sound. Both frequency
and amplitude are essential features that capture audio signals’ tonal and rhythmic qualities.

• Sampling Rate: The sampling rate, often denoted in Hertz (Hz), defines the number of sam-
ples taken per second when digitizing an analog signal. A higher sampling rate allows for
a more accurate digital representation of the signal but also demands more computational
resources for processing. Typical sampling rates include 44.1 kHz for CD-quality audio and
16 kHz or 8 kHz for speech recognition tasks. Understanding the trade-offs in selecting an
appropriate sampling rate is essential for balancing accuracy and computational efÏciency.
In general, with TinyML projects, we work with 16KHz. Altough music tones can be heard
at frequencies up to 20 kHz, voice maxes out at 8 kHz. Traditional telephone systems use an
8 kHz sampling frequency.

For an accurate representation of the signal, the sampling rate must be at least twice
the highest frequency present in the signal.

• Time Domain vs. Frequency Domain: Audio signals can be analyzed in the time and fre-
quency domains. In the time domain, a signal is represented as a waveform where the am-
plitude is plotted against time. This representation helps to observe temporal features like
onset and duration but the signal’s tonal characteristics are not well evidenced. Conversely,
a frequency domain representation provides a view of the signal’s constituent frequencies
and their respective amplitudes, typically obtained via a Fourier Transform. This is invalu-
able for tasks that require understanding the signal’s spectral content, such as identifying
musical notes or speech phonemes (our case).

The image below shows thewords YES and NOwith typical representations in the Time (RawAudio)
and Frequency domains:

https://en.wikipedia.org/wiki/Audio_frequency
https://en.wikipedia.org/wiki/Amplitude
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
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Why Not Raw Audio?

While using raw audio data directly for machine learning tasks may seem tempting, this approach
presents several challenges that make it less suitable for building robust and efÏcient models.

Using raw audio data for Keyword Spotting (KWS), for example, on TinyML devices poses chal-
lenges due to its high dimensionality (using a 16 kHz sampling rate), computational complexity for
capturing temporal features, susceptibility to noise, and lack of semantically meaningful features,
making feature extraction techniques like MFCCs a more practical choice for resource-constrained
applications.

Here are some additional details of the critical issues associated with using raw audio:

• High Dimensionality: Audio signals, especially those sampled at high rates, result in large
amounts of data. For example, a 1-second audio clip sampled at 16 kHz will have 16,000
individual data points. High-dimensional data increases computational complexity, leading
to longer training times and higher computational costs, making it impractical for resource-
constrained environments. Furthermore, the wide dynamic range of audio signals requires
a significant amount of bits per sample, while conveying little useful information.

• Temporal Dependencies: Raw audio signals have temporal structures that simple machine
learning models may find hard to capture. While recurrent neural networks like LSTMs can
model such dependencies, they are computationally intensive and tricky to train on tiny de-
vices.

• Noise and Variability: Raw audio signals often contain background noise and other non-
essential elements affecting model performance. Additionally, the same sound can have dif-
ferent characteristics based on various factors such as distance from the microphone, the

https://annals-csis.org/Volume_18/drp/pdf/185.pdf
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orientation of the sound source, and acoustic properties of the environment, adding to the
complexity of the data.

• Lack of Semantic Meaning: Raw audio doesn’t inherently contain semantically meaningful
features for classification tasks. Features like pitch, tempo, and spectral characteristics, which
can be crucial for speech recognition, are not directly accessible from raw waveform data.

• Signal Redundancy: Audio signals often contain redundant information, with certain por-
tions of the signal contributing little to no value to the task at hand. This redundancy can
make learning inefÏcient and potentially lead to overfitting.

For these reasons, feature extraction techniques such as Mel-frequency Cepstral CoefÏcients
(MFCCs), Mel-Frequency Energies (MFEs), and simple Spectograms are commonly used to trans-
form raw audio data into a more manageable and informative format. These features capture the
essential characteristics of the audio signal while reducing dimensionality and noise, facilitating
more effective machine learning.

Introduction to MFCCs

What are MFCCs?

Mel-frequency Cepstral CoefÏcients (MFCCs) are a set of features derived from the spectral con-
tent of an audio signal. They are based on human auditory perceptions and are commonly used
to capture the phonetic characteristics of an audio signal. The MFCCs are computed through a
multi-step process that includes pre-emphasis, framing, windowing, applying the Fast Fourier
Transform (FFT) to convert the signal to the frequency domain, and finally, applying the Discrete
Cosine Transform (DCT). The result is a compact representation of the original audio signal’s spec-
tral characteristics.

The image below shows the words YES and NO in their MFCC representation:

This video explains the Mel Frequency Cepstral CoefÏcients (MFCC) and how to com-
pute them.

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://youtu.be/SJo7vPgRlBQ?si=KSgzmDg8DtSVqzXp
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Why are MFCCs important?

MFCCs are crucial for several reasons, particularly in the context of Keyword Spotting (KWS) and
TinyML:

• DimensionalityReduction: MFCCs capture essential spectral characteristics of the audio sig-
nal while significantly reducing the dimensionality of the data, making it ideal for resource-
constrained TinyML applications.

• Robustness: MFCCs are less susceptible to noise and variations in pitch and amplitude, pro-
viding a more stable and robust feature set for audio classification tasks.

• Human Auditory System Modeling: The Mel scale in MFCCs approximates the human
ear’s response to different frequencies, making them practical for speech recognition where
human-like perception is desired.

• Computational EfÏciency: The process of calculating MFCCs is computationally efÏcient,
making it well-suited for real-time applications on hardware with limited computational re-
sources.

In summary, MFCCs offer a balance of information richness and computational efÏciency,
making them popular for audio classification tasks, particularly in constrained environments like
TinyML.

Computing MFCCs

The computation of Mel-frequency Cepstral CoefÏcients (MFCCs) involves several key steps.
Let’s walk through these, which are particularly important for Keyword Spotting (KWS) tasks on
TinyML devices.

• Pre-emphasis: The first step is pre-emphasis, which is applied to accentuate the high-
frequency components of the audio signal and balance the frequency spectrum. This is
achieved by applying a filter that amplifies the difference between consecutive samples.
The formula for pre-emphasis is: y(t) = x(t) - 𝛼 x(t-1) , where 𝛼 is the pre-emphasis factor,
typically around 0.97.

• Framing: Audio signals are divided into short frames (the frame length), usually 20 to 40
milliseconds. This is based on the assumption that frequencies in a signal are stationary over
a short period. Framing helps in analyzing the signal in such small time slots. The frame
stride (or step) will displace one frame and the adjacent. Those steps could be sequential or
overlapped.

• Windowing: Each frame is then windowed to minimize the discontinuities at the frame
boundaries. A commonly used window function is the Hamming window. Windowing
prepares the signal for a Fourier transform by minimizing the edge effects. The image be-
low shows three frames (10, 20, and 30) and the time samples after windowing (note that the
frame length and frame stride are 20 ms):
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• Fast Fourier Transform (FFT) The Fast Fourier Transform (FFT) is applied to each windowed
frame to convert it from the time domain to the frequency domain. The FFT gives us a
complex-valued representation that includes both magnitude and phase information. How-
ever, for MFCCs, only the magnitude is used to calculate the Power Spectrum. The power
spectrum is the square of the magnitude spectrum and measures the energy present at each
frequency component.

The power spectrum 𝑃(𝑓) of a signal 𝑥(𝑡) is defined as 𝑃(𝑓) = |𝑋(𝑓)|2, where 𝑋(𝑓)
is the Fourier Transform of 𝑥(𝑡). By squaring the magnitude of the Fourier Transform,
we emphasize stronger frequencies over weaker ones, thereby capturing more relevant
spectral characteristics of the audio signal. This is important in applications like audio
classification, speech recognition, and Keyword Spotting (KWS), where the focus is on
identifying distinct frequency patterns that characterize different classes of audio or
phonemes in speech.
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• Mel Filter Banks: The frequency domain is then mapped to the Mel scale, which approxi-
mates the human ear’s response to different frequencies. The idea is to extract more features
(more filter banks) in the lower frequencies and less in the high frequencies. Thus, it per-
forms well on sounds distinguished by the human ear. Typically, 20 to 40 triangular filters
extract the Mel-frequency energies. These energies are then log-transformed to convert mul-
tiplicative factors into additive ones, making them more suitable for further processing.

• Discrete Cosine Transform (DCT): The last step is to apply the Discrete Cosine Transform
(DCT) to the log Mel energies. The DCT helps to decorrelate the energies, effectively com-
pressing the data and retaining only the most discriminative features. Usually, the first 12-13
DCT coefÏcients are retained, forming the final MFCC feature vector.

https://en.wikipedia.org/wiki/Mel_scale
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
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Hands-On using Python

Let’s apply what we discussed while working on an actual audio sample. Open the notebook on
Google CoLab and extract the MLCC features on your audio samples: [Open In Colab]

Conclusion

What Feature Extraction technique should we use?

Mel-frequency Cepstral CoefÏcients (MFCCs), Mel-Frequency Energies (MFEs), or Spectrogram
are techniques for representing audio data, which are often helpful in different contexts.

In general, MFCCs are more focused on capturing the envelope of the power spectrum, which
makes them less sensitive to fine-grained spectral details but more robust to noise. This is often de-
sirable for speech-related tasks. On the other hand, spectrograms or MFEs preserve more detailed
frequency information, which can be advantageous in tasks that require discrimination based on
fine-grained spectral content.

MFCCs are particularly strong for:

1. Speech Recognition: MFCCs are excellent for identifying phonetic content in speech signals.
2. Speaker Identification: They can be used to distinguish between different speakers based on

voice characteristics.
3. Emotion Recognition: MFCCs can capture the nuanced variations in speech indicative of

emotional states.

https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/Audio_Data_Analysis.ipynb
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4. Keyword Spotting: Especially in TinyML, where low computational complexity and small
feature size are crucial.

Spectrograms or MFEs are often more suitable for:

1. Music Analysis: Spectrograms can capture harmonic and timbral structures inmusic, which
is essential for tasks like genre classification, instrument recognition, or music transcription.

2. Environmental Sound Classification: In recognizing non-speech, environmental sounds
(e.g., rain, wind, trafÏc), the full spectrogram can provide more discriminative features.

3. Birdsong Identification: The intricate details of bird calls are often better captured using
spectrograms.

4. Bioacoustic Signal Processing: In applications like dolphin or bat call analysis, the fine-
grained frequency information in a spectrogram can be essential.

5. Audio Quality Assurance: Spectrograms are often used in professional audio analysis to
identify unwanted noises, clicks, or other artifacts.
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Keyword Spotting (KWS)

Figure 71.5. DALL·E 3 Prompt: 1950s style cartoon scene set in a vintage audio research room. Two
Afro-American female scientists are at the center. One holds amagnifying glass, closely examining
ancient circuitry, while the other takes notes. On theirwooden table, there aremultiple boardswith
sensors, notably featuring a microphone. Behind these boards, a computer with a large, rounded
back displays the Arduino IDE. The IDE showcases code for LED pin assignments and machine
learning inference for voice command detection. A distinct window in the IDE, the Serial Monitor,
reveals outputs indicating the spoken commands ‘yes’ and ‘no’. The room ambiance is nostalgic
with vintage lamps, classic audio analysis tools, and charts depicting FFT graphs and time-domain
curves.
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Introduction

Having already explored the Nicla Vision board in the Image Classification and Object Detection ap-
plications, we are now shifting our focus to voice-activated applications with a project on Keyword
Spotting (KWS).

As introduced in the Feature Engineering for Audio Classification Hands-On tutorial, Keyword Spot-
ting (KWS) is integrated into many voice recognition systems, enabling devices to respond to spe-
cific words or phrases. While this technology underpins popular devices like Google Assistant or
Amazon Alexa, it’s equally applicable and feasible on smaller, low-power devices. This tutorial
will guide you through implementing a KWS system using TinyML on the Nicla Vision develop-
ment board equipped with a digital microphone.

Our model will be designed to recognize keywords that can trigger device wake-up or specific
actions, bringing them to life with voice-activated commands.

How does a voice assistant work?

As said, voice assistants on the market, like Google Home or Amazon Echo-Dot, only react to hu-
mans when they are “waked up” by particular keywords such as ” Hey Google” on the first one
and “Alexa” on the second.
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In other words, recognizing voice commands is based on a multi-stage model or Cascade Detec-
tion.

Stage 1: A smallmicroprocessor inside the EchoDot or GoogleHome continuously listens, waiting
for the keyword to be spotted, using a TinyML model at the edge (KWS application).

Stage 2: Only when triggered by the KWS application on Stage 1 is the data sent to the cloud and
processed on a larger model.

The video below shows an example of a Google Assistant being programmed on a Raspberry Pi
(Stage 2), with an Arduino Nano 33 BLE as the TinyML device (Stage 1).

https://youtu.be/e_OPgcnsyvM

To explore the above Google Assistant project, please see the tutorial: Building an In-
telligent Voice Assistant From Scratch.

In this KWS project, we will focus on Stage 1 (KWS or Keyword Spotting), where we will use the
Nicla Vision, which has a digital microphone that will be used to spot the keyword.

The KWS Hands-On Project

The diagram below gives an idea of how the final KWS application should work (during infer-
ence):

https://youtu.be/e_OPgcnsyvM
https://www.hackster.io/mjrobot/building-an-intelligent-voice-assistant-from-scratch-2199c3
https://www.hackster.io/mjrobot/building-an-intelligent-voice-assistant-from-scratch-2199c3
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Our KWS application will recognize four classes of sound:

• YES (Keyword 1)
• NO (Keyword 2)
• NOISE (no words spoken; only background noise is present)
• UNKNOW (a mix of different words than YES and NO)

For real-world projects, it is always advisable to include other sounds besides the key-
words, such as “Noise” (or Background) and “Unknown.”

The Machine Learning workflow

Themain component of the KWS application is its model. So, wemust train such a model with our
specific keywords, noise, and other words (the “unknown”):
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Dataset

The critical component of any Machine Learning Workflow is the dataset. Once we have decided
on specific keywords, in our case (YES andNO), we can take advantage of the dataset developed by
Pete Warden, “Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition.” This
dataset has 35 keywords (with +1,000 samples each), such as yes, no, stop, and go. In words such
as yes and no, we can get 1,500 samples.

You can download a small portion of the dataset from Edge Studio (Keyword spotting pre-built
dataset), which includes samples from the four classes we will use in this project: yes, no, noise,
and background. For this, follow the steps below:

• Download the keywords dataset.
• Unzip the file to a location of your choice.

Uploading the dataset to the Edge Impulse Studio

Initiate a new project at Edge Impulse Studio (EIS) and select the Upload Existing Data tool in
the Data Acquisition section. Choose the files to be uploaded:

Define the Label, select Automatically split between train and test, and Upload data to
the EIS. Repeat for all classes.

https://arxiv.org/pdf/1804.03209.pdf
https://docs.edgeimpulse.com/docs/pre-built-datasets/keyword-spotting
https://docs.edgeimpulse.com/docs/pre-built-datasets/keyword-spotting
https://cdn.edgeimpulse.com/datasets/keywords2.zip
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The dataset will now appear in the Data acquisition section. Note that the approximately 6,000
samples (1,500 for each class) are split into Train (4,800) and Test (1,200) sets.
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Capturing additional Audio Data

Although we have a lot of data from Pete’s dataset, collecting some words spoken by us is advised.
When working with accelerometers, creating a dataset with data captured by the same type of
sensor is essential. In the case of sound, this is optional because what we will classify is, in reality,
audio data.

The key difference between sound and audio is the type of energy. Sound is mechanical
perturbation (longitudinal sound waves) that propagate through a medium, causing
variations of pressure in it. Audio is an electrical (analog or digital) signal representing
sound.

When we pronounce a keyword, the sound waves should be converted to audio data. The conver-
sion should be done by sampling the signal generated by the microphone at a 16KHz frequency
with 16-bit per sample amplitude.

So, any device that can generate audio data with this basic specification (16KHz/16bits) will work
fine. As a device, we can use the NiclaV, a computer, or even your mobile phone.
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Using the NiclaV and the Edge Impulse Studio

As we learned in the chapter Setup Nicla Vision, EIS ofÏcially supports the Nicla Vision, which
simplifies the capture of the data from its sensors, including the microphone. So, please create a
new project on EIS and connect the Nicla to it, following these steps:

• Download the last updated EIS Firmware and unzip it.

• Open the zip file on your computer and select the uploader corresponding to your OS:

• Put the NiclaV in Boot Mode by pressing the reset button twice.

• Upload the binary arduino-nicla-vision.bin to your board by running the batch code corre-
sponding to your OS.

Go to your project on EIS, and on the Data Acquisition tab, select WebUSB. A window will pop
up; choose the option that shows that the Nicla is paired and press [Connect].

You can choose which sensor data to pick in the Collect Data section on the Data Acquisition
tab. Select: Built-in microphone, define your label (for example, yes), the sampling
Frequency[16000Hz], and the Sample length (in milliseconds), for example [10s]. Start
sampling.

https://cdn.edgeimpulse.com/firmware/arduino-nicla-vision.zip
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Data on Pete’s dataset have a length of 1s, but the recorded samples are 10s long and must be split
into 1s samples. Click on three dots after the sample name and select Split sample.

A window will pop up with the Split tool.
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Once inside the tool, split the data into 1-second (1000 ms) records. If necessary, add or remove
segments. This procedure should be repeated for all new samples.

Using a smartphone and the EI Studio

You can also use your PC or smartphone to capture audio data, using a sampling frequency of
16KHz and a bit depth of 16.

Go to Devices, scan the QR Codeusing your phone, and click on the link. Adata Collection appwill
appear in your browser. Select Collecting Audio, and define your Label, data capture Length,
and Category.
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Repeat the same procedure used with the NiclaV.

Note that any app, such as Audacity, can be used for audio recording, provided you
use 16KHz/16-bit depth samples.

Creating Impulse (Pre-Process / Model definition)

An impulse takes raw data, uses signal processing to extract features, and then uses a learning block to
classify new data.

https://www.audacityteam.org/
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Impulse Design

First, we will take the data points with a 1-second window, augmenting the data and sliding that
window in 500ms intervals. Note that the option zero-pad data is set. It is essential to fill with
‘zeros’ samples smaller than 1 second (in some cases, some samples can result smaller than the
1000 ms window on the split tool to avoid noise and spikes).

Each 1-second audio sample should be pre-processed and converted to an image (for example, 13
x 49 x 1). As discussed in the Feature Engineering for Audio Classification Hands-On tutorial, we
will use Audio (MFCC), which extracts features from audio signals using Mel Frequency Cepstral
CoefÏcients, which are well suited for the human voice, our case here.

Next, we select the Classification block to build our model from scratch using a Convolution
Neural Network (CNN).

Alternatively, you can use the Transfer Learning (Keyword Spotting) block, which
fine-tunes a pre-trained keyword spottingmodel on your data. This approach has good
performance with relatively small keyword datasets.

Pre-Processing (MFCC)

The following step is to create the features to be trained in the next phase:

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
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We could keep the default parameter values, but we will use the DSP Autotune parameters op-
tion.

We will take the Raw features (our 1-second, 16KHz sampled audio data) and use the MFCC
processing block to calculate the Processed features. For every 16,000 raw features (16,000 x 1
second), we will get 637 processed features (13 x 49).
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The result shows that we only used a small amount of memory to pre-process data (16KB) and a
latency of 34ms, which is excellent. For example, on an Arduino Nano (Cortex-M4f @ 64MHz), the
same pre-process will take around 480ms. The parameters chosen, such as the FFT length [512],
will significantly impact the latency.

Now, let’s Save parameters and move to the Generated features tab, where the actual features
will be generated. Using UMAP, a dimension reduction technique, the Feature explorer shows
how the features are distributed on a two-dimensional plot.

https://umap-learn.readthedocs.io/en/latest/
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The result seems OK, with a visually clear separation between yes features (in red) and no features
(in blue). The unknown features seem nearer to the no space than the yes. This suggests that the
keyword no has more propensity to false positives.

Going under the hood

To understand better how the raw sound is preprocessed, look at the Feature Engineering for Au-
dio Classification chapter. You can play with the MFCC features generation by downloading this
notebook from GitHub or [Opening it In Colab]

Model Design and Training

We will use a simple Convolution Neural Network (CNN) model, tested with 1D and 2D convo-
lutions. The basic architecture has two blocks of Convolution + MaxPooling ([8] and [16] filters,
respectively) and a Dropout of [0.25] for the 1D and [0.5] for the 2D. For the last layer, after Flatten-
ing, we have [4] neurons, one for each class:

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb
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As hyper-parameters, wewill have a Learning Rate of [0.005] and amodel trained by [100] epochs.
We will also include a data augmentation method based on SpecAugment. We trained the 1D and
the 2D models with the same hyperparameters. The 1D architecture had a better overall result
(90.5% accuracy when compared with 88% of the 2D, so we will use the 1D.

https://arxiv.org/abs/1904.08779
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Using 1D convolutions is more efÏcient because it requires fewer parameters than 2D
convolutions, making them more suitable for resource-constrained environments.

It is also interesting to pay attention to the 1D Confusion Matrix. The F1 Score for yes is 95%, and
for no, 91%. That was expected by what we sawwith the Feature Explorer (no and unknown at close
distance). In trying to improve the result, you can inspect closely the results of the samples with
an error.
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Listen to the samples that went wrong. For example, for yes, most of the mistakes were related to
a yes pronounced as “yeh”. You can acquire additional samples and then retrain your model.

Going under the hood

If you want to understand what is happening “under the hood,” you can download the pre-
processed dataset (MFCC training data) from the Dashboard tab and run this Jupyter Notebook,
playing with the code or [Opening it In Colab]. For example, you can analyze the accuracy by
each epoch:

Testing

Testing the model with the data reserved for training (Test Data), we got an accuracy of approxi-
mately 76%.

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_CNN_training.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_CNN_training.ipynb
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Inspecting the F1 score, we can see that for YES, we got 0.90, an excellent result since we expect
to use this keyword as the primary “trigger” for our KWS project. The worst result (0.70) is for
UNKNOWN, which is OK.

For NO, we got 0.72, which was expected, but to improve this result, we can move the samples that
were not correctly classified to the training dataset and then repeat the training process.

Live Classification

We can proceed to the project’s next step but also consider that it is possible to perform Live
Classification using the NiclaV or a smartphone to capture live samples, testing the trained
model before deployment on our device.

Deploy and Inference

The EIS will package all the needed libraries, preprocessing functions, and trained models, down-
loading them to your computer. Go to the Deployment section, select Arduino Library, and at the
bottom, choose Quantized (Int8) and press Build.
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When the Build button is selected, a zip file will be created and downloaded to your computer.
On your Arduino IDE, go to the Sketch tab, select the option Add .ZIP Library, and Choose the
.zip file downloaded by EIS:
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Now, it is time for a real test. We will make inferences while completely disconnected from the EIS.
Let’s use the NiclaV code example created when we deployed the Arduino Library.

In yourArduino IDE, go to the File/Examples tab, look for your project, and select nicla-vision/nicla-vision_-
microphone (or nicla-vision_microphone_continuous)

Press the reset button twice to put the NiclaV in boot mode, upload the sketch to your board, and
test some real inferences:
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Post-processing

Now that we know the model is working since it detects our keywords, let’s modify the code to see
the result with the NiclaV completely ofÒine (disconnected from the PC and powered by a battery,
a power bank, or an independent 5V power supply).

The idea is that whenever the keyword YES is detected, the Green LED will light; if a NO is heard,
the Red LED will light, if it is a UNKNOW, the Blue LED will light; and in the presence of noise
(No Keyword), the LEDs will be OFF.

We shouldmodify one of the code examples. Let’s do it nowwith the nicla-vision_microphone_-
continuous.

Start with initializing the LEDs:

...
void setup()
{

// Once you finish debugging your code, you can comment or delete the Serial part of the code
Serial.begin(115200);
while (!Serial);
Serial.println("Inferencing - Nicla Vision KWS with LEDs");

// Pins for the built-in RGB LEDs on the Arduino NiclaV
pinMode(LEDR, OUTPUT);
pinMode(LEDG, OUTPUT);
pinMode(LEDB, OUTPUT);

// Ensure the LEDs are OFF by default.
// Note: The RGB LEDs on the Arduino Nicla Vision
// are ON when the pin is LOW, OFF when HIGH.
digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, HIGH);
digitalWrite(LEDB, HIGH);

...
}

Create two functions, turn_off_leds() function , to turn off all RGB LEDs
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**
* @brief turn_off_leds function - turn-off all RGB LEDs
*/
void turn_off_leds(){

digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, HIGH);
digitalWrite(LEDB, HIGH);

}

Another turn_on_led() function is used to turn on the RGB LEDs according to the most probable
result of the classifier.

/**
* @brief turn_on_leds function used to turn on the RGB LEDs
* @param[in] pred_index
* no: [0] ==> Red ON
* noise: [1] ==> ALL OFF
* unknown: [2] ==> Blue ON
* Yes: [3] ==> Green ON
*/
void turn_on_leds(int pred_index) {

switch (pred_index)
{
case 0:

turn_off_leds();
digitalWrite(LEDR, LOW);
break;

case 1:
turn_off_leds();
break;

case 2:
turn_off_leds();
digitalWrite(LEDB, LOW);
break;

case 3:
turn_off_leds();
digitalWrite(LEDG, LOW);
break;

}
}

And change the // print the predictions portion of the code on loop():
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...

if (++print_results >= (EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW)) {
// print the predictions
ei_printf("Predictions ");
ei_printf("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)",

result.timing.dsp, result.timing.classification, result.timing.anomaly);
ei_printf(": \n");

int pred_index = 0; // Initialize pred_index
float pred_value = 0; // Initialize pred_value

for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
if (result.classification[ix].value > pred_value){

pred_index = ix;
pred_value = result.classification[ix].value;

}
// ei_printf(" %s: ", result.classification[ix].label);
// ei_printf_float(result.classification[ix].value);
// ei_printf("\n");

}
ei_printf(" PREDICTION: ==> %s with probability %.2f\n",

result.classification[pred_index].label, pred_value);
turn_on_leds (pred_index);

#if EI_CLASSIFIER_HAS_ANOMALY == 1
ei_printf(" anomaly score: ");
ei_printf_float(result.anomaly);
ei_printf("\n");

#endif

print_results = 0;
}

}

...

You can find the complete code on the project’s GitHub.

Upload the sketch to your board and test some real inferences. The idea is that the Green LED
will be ON whenever the keyword YES is detected, the Red will lit for a NO, and any other word
will turn on the Blue LED. All the LEDs should be off if silence or background noise is present.
Remember that the same procedure can “trigger” an external device to perform a desired action
instead of turning on an LED, as we saw in the introduction.

https://youtu.be/25Rd76OTXLY

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/KWS/nicla_vision_microphone_continuous_LED
https://youtu.be/25Rd76OTXLY
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Conclusion

You will find the notebooks and codes used in this hands-on tutorial on the GitHub
repository.

Before we finish, consider that Sound Classification is more than just voice. For example, you can
develop TinyML projects around sound in several areas, such as:

• Security (Broken Glass detection, Gunshot)
• Industry (Anomaly Detection)
• Medical (Snore, Cough, Pulmonary diseases)
• Nature (Beehive control, insect sound, pouching mitigation)

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/KWS
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DSP - Spectral Features

Figure 71.6. DALL·E 3 Prompt: 1950s style cartoon illustration of a Latin male and female scientist
in a vibration research room. The man is using a calculus ruler to examine ancient circuitry. The
woman is at a computerwith complex vibration graphs. Thewooden table has boardswith sensors,
prominently an accelerometer. A classic, rounded-back computer shows the Arduino IDE with
code for LED pin assignments and machine learning algorithms for movement detection. The
Serial Monitor displays FFT, classification, wavelets, and DSPs. Vintage lamps, tools, and charts
with FFT and Wavelets graphs complete the scene.
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Introduction

TinyML projects related to motion (or vibration) involve data from IMUs (usually accelerometers
and Gyroscopes). These time-series type datasets should be preprocessed before inputting them
into a Machine Learning model training, which is a challenging area for embedded machine learn-
ing. Still, Edge Impulse helps overcome this complexity with its digital signal processing (DSP)
preprocessing step and, more specifically, the Spectral Features Block for Inertial sensors.

But how does it work under the hood? Let’s dig into it.

Extracting Features Review

Extracting features from a dataset captured with inertial sensors, such as accelerometers, involves
processing and analyzing the raw data. Accelerometersmeasure the acceleration of an object along
one or more axes (typically three, denoted as X, Y, and Z). These measurements can be used to un-
derstand various aspects of the object’s motion, such as movement patterns and vibrations. Here’s
a high-level overview of the process:

Data collection: First, we need to gather data from the accelerometers. Depending on the applica-
tion, datamay be collected at different sampling rates. It’s essential to ensure that the sampling rate
is high enough to capture the relevant dynamics of the studied motion (the sampling rate should
be at least double the maximum relevant frequency present in the signal).

Data preprocessing: Raw accelerometer data can be noisy and contain errors or irrelevant infor-
mation. Preprocessing steps, such as filtering and normalization, can help clean and standardize
the data, making it more suitable for feature extraction.

The Studio does not perform normalization or standardization, so sometimes, when
workingwith Sensor Fusion, it could be necessary to perform this step before uploading
data to the Studio. This is particularly crucial in sensor fusion projects, as seen in this
tutorial, Sensor Data Fusion with Spresense and CommonSense.

Segmentation: Depending on the nature of the data and the application, dividing the data into
smaller segments orwindowsmay be necessary. This can help focus on specific events or activities
within the dataset, making feature extractionmoremanageable andmeaningful. Thewindow size
and overlap (window span) choice depend on the application and the frequency of the events of
interest. As a rule of thumb, we should try to capture a couple of “data cycles.”

Feature extraction: Once the data is preprocessed and segmented, you can extract features that
describe the motion’s characteristics. Some typical features extracted from accelerometer data in-
clude:

• Time-domain features describe the data’s statistical properties within each segment, such as
mean, median, standard deviation, skewness, kurtosis, and zero-crossing rate.

• Frequency-domain features are obtained by transforming the data into the frequencydomain
using techniques like the Fast Fourier Transform (FFT). Some typical frequency-domain fea-
tures include the power spectrum, spectral energy, dominant frequencies (amplitude and
frequency), and spectral entropy.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://docs.edgeimpulse.com/experts/air-quality-and-environmental-projects/environmental-sensor-fusion-commonsense
https://www.mdpi.com/1424-8220/22/5/2012
https://en.wikipedia.org/wiki/Fast_Fourier_transform
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• Time-frequency domain features combine the time and frequency domain information, such
as the Short-Time Fourier Transform (STFT) or the Discrete Wavelet Transform (DWT). They
can provide a more detailed understanding of how the signal’s frequency content changes
over time.

In many cases, the number of extracted features can be large, which may lead to overfitting or
increased computational complexity. Feature selection techniques, such as mutual information,
correlation-based methods, or principal component analysis (PCA), can help identify the most
relevant features for a given application and reduce the dimensionality of the dataset. The Studio
can help with such feature-relevant calculations.

Let’s explore in more detail a typical TinyML Motion Classification project covered in this series
of Hands-Ons.

A TinyML Motion Classification project

In the hands-on project, Motion Classification and Anomaly Detection, we simulated mechanical
stresses in transport, where our problem was to classify four classes of movement:

• Maritime (pallets in boats)
• Terrestrial (pallets in a Truck or Train)
• Lift (pallets being handled by Fork-Lift)
• Idle (pallets in Storage houses)

The accelerometers provided the data on the pallet (or container).

https://en.wikipedia.org/wiki/Short-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_wavelet_transform
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Below is one sample (raw data) of 10 seconds, captured with a sampling frequency of 50Hz:

The result is similar when this analysis is done over another dataset with the same
principle, using a different sampling frequency, 62.5Hz instead of 50Hz.
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Data Pre-Processing

The raw data captured by the accelerometer (a “time series” data) should be converted to “tabular
data” using one of the typical Feature Extraction methods described in the last section.

We should segment the data using a sliding window over the sample data for feature extraction.
The project captured accelerometer data every 10 seconds with a sample rate of 62.5 Hz. A 2-
second window captures 375 data points (3 axis x 2 seconds x 62.5 samples). The window is slid
every 80ms, creating a larger dataset where each instance has 375 “raw features.”

On the Studio, the previous version (V1) of the Spectral Analysis Block extracted as time-domain
features only the RMS, and for the frequency-domain, the peaks and frequency (using FFT) and
the power characteristics (PSD) of the signal over time resulting in a fixed tabular dataset of 33
features (11 per each axis),
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Those 33 features were the Input tensor of a Neural Network Classifier.

In 2022, Edge Impulse released version 2 of the Spectral Analysis block, which we will explore
here.

Edge Impulse - Spectral Analysis Block V.2 under the hood

In Version 2, Time Domain Statistical features per axis/channel are:

• RMS
• Skewness
• Kurtosis

And the Frequency Domain Spectral features per axis/channel are:

• Spectral Power
• Skewness (in the next version)
• Kurtosis (in the next version)

In this link, we can have more details about the feature extraction.

Clone the public project. You can also follow the explanation, playing with the code
using my Google CoLab Notebook: Edge Impulse Spectral Analysis Block Notebook.

Start importing the libraries:

https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://studio.edgeimpulse.com/public/198358/latest
https://colab.research.google.com/github/Mjrovai/TinyML4D/blob/main/SciTinyM-2023/Edge_Impulse-Spectral_Analysis_Block/Edge_Impulse_Spectral_Analysis_Block_V3.ipynb
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import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import math
from scipy.stats import skew, kurtosis
from scipy import signal
from scipy.signal import welch
from scipy.stats import entropy
from sklearn import preprocessing
import pywt

plt.rcParams['figure.figsize'] = (12, 6)
plt.rcParams['lines.linewidth'] = 3

From the studied project, let’s choose a data sample from accelerometers as below:

• Window size of 2 seconds: [2,000] ms
• Sample frequency: [62.5] Hz
• We will choose the [None] filter (for simplicity) and a
• FFT length: [16].

f = 62.5 # Hertz
wind_sec = 2 # seconds
FFT_Lenght = 16
axis = ['accX', 'accY', 'accZ']
n_sensors = len(axis)
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Selecting the Raw Features on the Studio Spectral Analysis tab, we can copy all 375 data points of a
particular 2-second window to the clipboard.
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Paste the data points to a new variable data:

data=[-5.6330, 0.2376, 9.8701, -5.9442, 0.4830, 9.8701, -5.4217, ...]
No_raw_features = len(data)
N = int(No_raw_features/n_sensors)

The total raw features are 375, but wewill workwith each axis individually, whereN= 125 (number
of samples per axis).

We aim to understand how Edge Impulse gets the processed features.

So, you should also past the processed features on a variable (to compare the calculated features
in Python with the ones provided by the Studio) :

features = [2.7322, -0.0978, -0.3813, 2.3980, 3.8924, 24.6841, 9.6303, ...]
N_feat = len(features)
N_feat_axis = int(N_feat/n_sensors)
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The total number of processed features is 39, which means 13 features/axis.

Looking at those 13 features closely, we will find 3 for the time domain (RMS, Skewness, and
Kurtosis):

• [rms] [skew] [kurtosis]

and 10 for the frequency domain (we will return to this later).

• [spectral skew][spectral kurtosis][Spectral Power 1] ... [Spectral Power 8]

Splitting raw data per sensor

The data has samples from all axes; let’s split and plot them separately:

def plot_data(sensors, axis, title):
[plt.plot(x, label=y) for x,y in zip(sensors, axis)]
plt.legend(loc='lower right')
plt.title(title)
plt.xlabel('#Sample')
plt.ylabel('Value')
plt.box(False)
plt.grid()
plt.show()

accX = data[0::3]
accY = data[1::3]
accZ = data[2::3]
sensors = [accX, accY, accZ]
plot_data(sensors, axis, 'Raw Features')
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Subtracting the mean

Next, we should subtract themean from the data. Subtracting themean from a data set is a common
data pre-processing step in statistics and machine learning. The purpose of subtracting the mean
from the data is to center the data around zero. This is important because it can reveal patterns
and relationships that might be hidden if the data is not centered.

Here are some specific reasons why subtracting the mean can be helpful:

• It simplifies analysis: By centering the data, the mean becomes zero, making some calcula-
tions simpler and easier to interpret.

• It removes bias: If the data is biased, subtracting themean can remove it and allow for amore
accurate analysis.

• It can reveal patterns: Centering the data can help uncover patterns that might be hidden if
the data is not centered. For example, centering the data can help you identify trends over
time if you analyze a time series dataset.

• It can improve performance: In some machine learning algorithms, centering the data can
improve performance by reducing the influence of outliers and making the data more easily
comparable. Overall, subtracting the mean is a simple but powerful technique that can be
used to improve the analysis and interpretation of data.

dtmean = [(sum(x)/len(x)) for x in sensors]
[print('mean_'+x+'= ', round(y, 4)) for x,y in zip(axis, dtmean)][0]

accX = [(x - dtmean[0]) for x in accX]
accY = [(x - dtmean[1]) for x in accY]
accZ = [(x - dtmean[2]) for x in accZ]
sensors = [accX, accY, accZ]

plot_data(sensors, axis, 'Raw Features - Subctract the Mean')
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Time Domain Statistical features

RMS Calculation

The RMS value of a set of values (or a continuous-time waveform) is the square root of the arith-
metic mean of the squares of the values or the square of the function that defines the continuous
waveform. In physics, the RMS value of an electrical current is defined as the “value of the direct
current that dissipates the same power in a resistor.”

In the case of a set of n values {�1, �2, …, ��}, the RMS is:

NOTE that the RMS value is different for the original raw data, and after subtracting
the mean

# Using numpy and standartized data (subtracting mean)
rms = [np.sqrt(np.mean(np.square(x))) for x in sensors]

We can compare the calculated RMS values here with the ones presented by Edge Impulse:
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[print('rms_'+x+'= ', round(y, 4)) for x,y in zip(axis, rms)][0]
print("\nCompare with Edge Impulse result features")
print(features[0:N_feat:N_feat_axis])

rms_accX= 2.7322

rms_accY= 0.7833

rms_accZ= 0.1383

Compared with Edge Impulse result features:

[2.7322, 0.7833, 0.1383]

Skewness and kurtosis calculation

In statistics, skewness and kurtosis are two ways to measure the shape of a distribution.

Here, we can see the sensor values distribution:

fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(13, 4))
sns.kdeplot(accX, fill=True, ax=axes[0])
sns.kdeplot(accY, fill=True, ax=axes[1])
sns.kdeplot(accZ, fill=True, ax=axes[2])
axes[0].set_title('accX')
axes[1].set_title('accY')
axes[2].set_title('accZ')
plt.suptitle('IMU Sensors distribution', fontsize=16, y=1.02)
plt.show()

Skewness is ameasure of the asymmetry of a distribution. This value can be positive or negative.

https://en.wikipedia.org/wiki/Skewness
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• A negative skew indicates that the tail is on the left side of the distribution, which extends
towards more negative values.

• A positive skew indicates that the tail is on the right side of the distribution, which extends
towards more positive values.

• A zero value indicates no skewness in the distribution at all, meaning the distribution is
perfectly symmetrical.

skew = [skew(x, bias=False) for x in sensors]
[print('skew_'+x+'= ', round(y, 4)) for x,y in zip(axis, skew)][0]
print("\nCompare with Edge Impulse result features")
features[1:N_feat:N_feat_axis]

skew_accX= -0.099

skew_accY= 0.1756

skew_accZ= 6.9463

Compared with Edge Impulse result features:

[-0.0978, 0.1735, 6.8629]

Kurtosis is a measure of whether or not a distribution is heavy-tailed or light-tailed relative to a
normal distribution.

https://en.wikipedia.org/wiki/Kurtosis


874 DSP - Spectral Features

• The kurtosis of a normal distribution is zero.
• If a given distribution has a negative kurtosis, it is said to be playkurtic, whichmeans it tends

to produce fewer and less extreme outliers than the normal distribution.
• If a given distribution has a positive kurtosis , it is said to be leptokurtic, whichmeans it tends

to produce more outliers than the normal distribution.

kurt = [kurtosis(x, bias=False) for x in sensors]
[print('kurt_'+x+'= ', round(y, 4)) for x,y in zip(axis, kurt)][0]
print("\nCompare with Edge Impulse result features")
features[2:N_feat:N_feat_axis]

kurt_accX= -0.3475

kurt_accY= 1.2673

kurt_accZ= 68.1123

Compared with Edge Impulse result features:

[-0.3813, 1.1696, 65.3726]

Spectral features

The filtered signal is passed to the Spectral power section, which computes the FFT to generate the
spectral features.

Since the sampled window is usually larger than the FFT size, the window will be broken into
frames (or “sub-windows”), and the FFT is calculated over each frame.

FFT length - The FFT size. This determines the number of FFT bins and the resolution of frequency
peaks that can be separated. A low number means more signals will average together in the same
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FFT bin, but it also reduces the number of features and model size. A high number will separate
more signals into separate bins, generating a larger model.

• The total number of Spectral Power features will vary depending on how you set the filter
and FFT parameters. With No filtering, the number of features is 1/2 of the FFT Length.

Spectral Power - Welch’s method

We should useWelch’smethod to split the signal on the frequency domain in bins and calculate the
power spectrum for each bin. This method divides the signal into overlapping segments, applies
a window function to each segment, computes the periodogram of each segment using DFT, and
averages them to obtain a smoother estimate of the power spectrum.

# Function used by Edge Impulse instead of scipy.signal.welch().
def welch_max_hold(fx, sampling_freq, nfft, n_overlap):

n_overlap = int(n_overlap)
spec_powers = [0 for _ in range(nfft//2+1)]
ix = 0
while ix <= len(fx):

# Slicing truncates if end_idx > len, and rfft will auto-zero pad
fft_out = np.abs(np.fft.rfft(fx[ix:ix+nfft], nfft))
spec_powers = np.maximum(spec_powers, fft_out**2/nfft)
ix = ix + (nfft-n_overlap)

return np.fft.rfftfreq(nfft, 1/sampling_freq), spec_powers

Applying the above function to 3 signals:

fax,Pax = welch_max_hold(accX, fs, FFT_Lenght, 0)
fay,Pay = welch_max_hold(accY, fs, FFT_Lenght, 0)
faz,Paz = welch_max_hold(accZ, fs, FFT_Lenght, 0)
specs = [Pax, Pay, Paz ]

We can plot the Power Spectrum P(f):

plt.plot(fax,Pax, label='accX')
plt.plot(fay,Pay, label='accY')
plt.plot(faz,Paz, label='accZ')
plt.legend(loc='upper right')
plt.xlabel('Frequency (Hz)')
#plt.ylabel('PSD [V**2/Hz]')
plt.ylabel('Power')
plt.title('Power spectrum P(f) using Welch\'s method')
plt.grid()
plt.box(False)
plt.show()

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html
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Besides the Power Spectrum, we can also include the skewness and kurtosis of the features in the
frequency domain (should be available on a new version):

spec_skew = [skew(x, bias=False) for x in specs]
spec_kurtosis = [kurtosis(x, bias=False) for x in specs]

Let’s now list all Spectral features per axis and compare them with EI:

print("EI Processed Spectral features (accX): ")
print(features[3:N_feat_axis][0:])
print("\nCalculated features:")
print (round(spec_skew[0],4))
print (round(spec_kurtosis[0],4))
[print(round(x, 4)) for x in Pax[1:]][0]

EI Processed Spectral features (accX):

2.398, 3.8924, 24.6841, 9.6303, 8.4867, 7.7793, 2.9963, 5.6242, 3.4198, 4.2735

Calculated features:

2.9069 8.5569 24.6844 9.6304 8.4865 7.7794 2.9964 5.6242 3.4198 4.2736

print("EI Processed Spectral features (accY): ")
print(features[16:26][0:]) #13: 3+N_feat_axis; 26 = 2x N_feat_axis
print("\nCalculated features:")
print (round(spec_skew[1],4))
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print (round(spec_kurtosis[1],4))
[print(round(x, 4)) for x in Pay[1:]][0]

EI Processed Spectral features (accY):

0.9426, -0.8039, 5.429, 0.999, 1.0315, 0.9459, 1.8117, 0.9088, 1.3302, 3.112

Calculated features:

1.1426 -0.3886 5.4289 0.999 1.0315 0.9458 1.8116 0.9088 1.3301 3.1121

print("EI Processed Spectral features (accZ): ")
print(features[29:][0:]) #29: 3+(2*N_feat_axis);
print("\nCalculated features:")
print (round(spec_skew[2],4))
print (round(spec_kurtosis[2],4))
[print(round(x, 4)) for x in Paz[1:]][0]

EI Processed Spectral features (accZ):

0.3117, -1.3812, 0.0606, 0.057, 0.0567, 0.0976, 0.194, 0.2574, 0.2083, 0.166

Calculated features:

0.3781 -1.4874 0.0606 0.057 0.0567 0.0976 0.194 0.2574 0.2083 0.166

Time-frequency domain

Wavelets

Wavelet is a powerful technique for analyzing signals with transient features or abrupt changes,
such as spikes or edges, which are difÏcult to interpret with traditional Fourier-based methods.

Wavelet transforms work by breaking down a signal into different frequency components and ana-
lyzing them individually. The transformation is achieved by convolving the signal with a wavelet
function, a small waveform centered at a specific time and frequency. This process effectively de-
composes the signal into different frequency bands, each of which can be analyzed separately.

One of the critical benefits of wavelet transforms is that they allow for time-frequency analysis,
which means that they can reveal the frequency content of a signal as it changes over time. This
makes them particularly useful for analyzing non-stationary signals, which vary over time.

Wavelets have many practical applications, including signal and image compression, denoising,
feature extraction, and image processing.

Let’s select Wavelet on the Spectral Features block in the same project:

• Type: Wavelet
• Wavelet Decomposition Level: 1
• Wavelet: bior1.3

https://en.wikipedia.org/wiki/Wavelet
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The Wavelet Function

wavelet_name='bior1.3'
num_layer = 1
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wavelet = pywt.Wavelet(wavelet_name)
[phi_d,psi_d,phi_r,psi_r,x] = wavelet.wavefun(level=5)
plt.plot(x, psi_d, color='red')
plt.title('Wavelet Function')
plt.ylabel('Value')
plt.xlabel('Time')
plt.grid()
plt.box(False)
plt.show()

As we did before, let’s copy and past the Processed Features:

features = [3.6251, 0.0615, 0.0615, -7.3517, -2.7641, 2.8462, 5.0924, ...]
N_feat = len(features)
N_feat_axis = int(N_feat/n_sensors)
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Edge Impulse computes the Discrete Wavelet Transform (DWT) for each one of the Wavelet De-
composition levels selected. After that, the features will be extracted.

In the case of Wavelets, the extracted features are basic statistical values, crossing values, and entropy.
There are, in total, 14 features per layer as below:

• [11] Statiscal Features: n5, n25, n75, n95, mean, median, standard deviation (std), variance
(var) root mean square (rms), kurtosis, and skewness (skew).

• [2] Crossing Features: Zero crossing rate (zcross) and mean crossing rate (mcross) are the
times that the signal passes through the baseline (y = 0) and the average level (y = u) per unit
of time, respectively

• [1] Complexity Feature: Entropy is a characteristic measure of the complexity of the signal

All the above 14 values are calculated for each Layer (including L0, the original signal)

• The total number of features varies depending on how you set the filter and the number of
layers. For example, with [None] filtering and Level[1], the number of features per axis will
be 14 x 2 (L0 and L1) = 28. For the three axes, we will have a total of 84 features.

Wavelet Analysis

Wavelet analysis decomposes the signal (accX, accY, and accZ) into different frequency components
using a set of filters, which separate these components into low-frequency (slowly varying parts of
the signal containing long-term patterns), such as accX_l1, accY_l1, accZ_l1 and, high-frequency
(rapidly varying parts of the signal containing short-term patterns) components, such as accX_d1,
accY_d1, accZ_d1, permitting the extraction of features for further analysis or classification.

Only the low-frequency components (approximation coefÏcients, or cA) will be used. In this exam-
ple, we assume only one level (Single-level Discrete Wavelet Transform), where the function will
return a tuple. With a multilevel decomposition, the “Multilevel 1D Discrete Wavelet Transform”,
the result will be a list (for detail, please see: Discrete Wavelet Transform (DWT) )

(accX_l1, accX_d1) = pywt.dwt(accX, wavelet_name)
(accY_l1, accY_d1) = pywt.dwt(accY, wavelet_name)
(accZ_l1, accZ_d1) = pywt.dwt(accZ, wavelet_name)
sensors_l1 = [accX_l1, accY_l1, accZ_l1]

# Plot power spectrum versus frequency
plt.plot(accX_l1, label='accX')
plt.plot(accY_l1, label='accY')
plt.plot(accZ_l1, label='accZ')
plt.legend(loc='lower right')
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Wavelet Approximation')
plt.grid()
plt.box(False)
plt.show()

https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html
https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html
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Feature Extraction

Let’s start with the basic statistical features. Note that we apply the function for both the original
signals and the resultant cAs from the DWT:

def calculate_statistics(signal):
n5 = np.percentile(signal, 5)
n25 = np.percentile(signal, 25)
n75 = np.percentile(signal, 75)
n95 = np.percentile(signal, 95)
median = np.percentile(signal, 50)
mean = np.mean(signal)
std = np.std(signal)
var = np.var(signal)
rms = np.sqrt(np.mean(np.square(signal)))
return [n5, n25, n75, n95, median, mean, std, var, rms]

stat_feat_l0 = [calculate_statistics(x) for x in sensors]
stat_feat_l1 = [calculate_statistics(x) for x in sensors_l1]

The Skelness and Kurtosis:

skew_l0 = [skew(x, bias=False) for x in sensors]
skew_l1 = [skew(x, bias=False) for x in sensors_l1]
kurtosis_l0 = [kurtosis(x, bias=False) for x in sensors]
kurtosis_l1 = [kurtosis(x, bias=False) for x in sensors_l1]
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Zero crossing (zcross) is the number of times the wavelet coefÏcient crosses the zero axis. It can
be used to measure the signal’s frequency content since high-frequency signals tend to have more
zero crossings than low-frequency signals.

Mean crossing (mcross), on the other hand, is the number of times the wavelet coefÏcient crosses
the mean of the signal. It can be used to measure the amplitude since high-amplitude signals tend
to have more mean crossings than low-amplitude signals.

def getZeroCrossingRate(arr):
my_array = np.array(arr)
zcross = float("{0:.2f}".format((((my_array[:-1] * my_array[1:]) < 0).su m())/len(arr)))
return zcross

def getMeanCrossingRate(arr):
mcross = getZeroCrossingRate(np.array(arr) - np.mean(arr))
return mcross

def calculate_crossings(list):
zcross=[]
mcross=[]
for i in range(len(list)):

zcross_i = getZeroCrossingRate(list[i])
zcross.append(zcross_i)
mcross_i = getMeanCrossingRate(list[i])
mcross.append(mcross_i)

return zcross, mcross

cross_l0 = calculate_crossings(sensors)
cross_l1 = calculate_crossings(sensors_l1)

In wavelet analysis, entropy refers to the degree of disorder or randomness in the distribution
of wavelet coefÏcients. Here, we used Shannon entropy, which measures a signal’s uncertainty
or randomness. It is calculated as the negative sum of the probabilities of the different possible
outcomes of the signal multiplied by their base 2 logarithm. In the context of wavelet analysis,
Shannon entropy can beused tomeasure the complexity of the signal, with higher values indicating
greater complexity.

def calculate_entropy(signal, base=None):
value, counts = np.unique(signal, return_counts=True)
return entropy(counts, base=base)

entropy_l0 = [calculate_entropy(x) for x in sensors]
entropy_l1 = [calculate_entropy(x) for x in sensors_l1]

Let’s now list all the wavelet features and create a list by layers.
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L1_features_names = ["L1-n5", "L1-n25", "L1-n75", "L1-n95", "L1-median", "L1-mean", "L1-std", "L1-var", "L1-rms", "L1-skew", "L1-Kurtosis", "L1-zcross", "L1-mcross", "L1-entropy"]

L0_features_names = ["L0-n5", "L0-n25", "L0-n75", "L0-n95", "L0-median", "L0-mean", "L0-std", "L0-var", "L0-rms", "L0-skew", "L0-Kurtosis", "L0-zcross", "L0-mcross", "L0-entropy"]

all_feat_l0 = []
for i in range(len(axis)):

feat_l0 = stat_feat_l0[i]+[skew_l0[i]]+[kurtosis_l0[i]]+[cross_l0[0][i]]+[cross_l0[1][i]]+[entropy_l0[i]]
[print(axis[i]+' '+x+'= ', round(y, 4)) for x,y in zip(L0_features_names, feat_l0)][0]
all_feat_l0.append(feat_l0)

all_feat_l0 = [item for sublist in all_feat_l0 for item in sublist]
print(f"\nAll L0 Features = {len(all_feat_l0)}")

all_feat_l1 = []
for i in range(len(axis)):
feat_l1 = stat_feat_l1[i]+[skew_l1[i]]+[kurtosis_l1[i]]+[cross_l1[0][i]]+[cross_l1[1][i]]+[entropy_l1[i]]
[print(axis[i]+' '+x+'= ', round(y, 4)) for x,y in zip(L1_features_names, feat_l1)][0]
all_feat_l1.append(feat_l1)
all_feat_l1 = [item for sublist in all_feat_l1 for item in sublist]
print(f"\nAll L1 Features = {len(all_feat_l1)}")
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Conclusion

Edge Impulse Studio is a powerful online platform that can handle the pre-processing task for us.
Still, given our engineering perspective, wewant to understandwhat is happening under the hood.
This knowledge will help us find the best options and hyper-parameters for tuning our projects.

Daniel Situnayake wrote in his blog: “Raw sensor data is highly dimensional and noisy. Digital
signal processing algorithms help us sift the signal from the noise. DSP is an essential part of
embedded engineering, and many edge processors have on-board acceleration for DSP. As an ML
engineer, learning basic DSP gives you superpowers for handling high-frequency time series data
in your models.” I recommend you read Dan’s excellent post in its totality: nn to cpp: What you
need to know about porting deep learning models to the edge.

https://situnayake.com/
https://situnayake.com/2023/03/21/nn-to-cpp.html
https://situnayake.com/2023/03/21/nn-to-cpp.html
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Motion Classification and Anomaly Detection

Figure 71.7. DALL·E 3 Prompt: 1950s style cartoon illustration depicting a movement research
room. In the center of the room, there’s a simulated container used for transporting goods on
trucks, boats, and forklifts. The container is detailed with rivets and markings typical of industrial
cargo boxes. Around the container, the room is filled with vintage equipment, including an oscil-
loscope, various sensor arrays, and large paper rolls of recorded data. The walls are adorned with
educational posters about transportation safety and logistics. The overall ambiance of the room is
nostalgic and scientific, with a hint of industrial flair.
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Introduction

Transportation is the backbone of global commerce. Millions of containers are transported daily
via variousmeans, such as ships, trucks, and trains, to destinationsworldwide. Ensuring these con-
tainers’ safe and efÏcient transit is a monumental task that requires leveragingmodern technology,
and TinyML is undoubtedly one of them.

In this hands-on tutorial, we will work to solve real-world problems related to transportation. We
will develop a Motion Classification and Anomaly Detection system using the Arduino Nicla Vi-
sion board, the Arduino IDE, and the Edge Impulse Studio. This project will help us understand
how containers experience different forces and motions during various phases of transportation,
such as terrestrial and maritime transit, vertical movement via forklifts, and stationary periods in
warehouses.

Learning Objectives

• Setting up the Arduino Nicla Vision Board
• Data Collection and Preprocessing
• Building the Motion Classification Model
• Implementing Anomaly Detection
• Real-world Testing and Analysis

By the end of this tutorial, you’ll have a working prototype that can classify different types of
motion and detect anomalies during the transportation of containers. This knowledge can be a
stepping stone to more advanced projects in the burgeoning field of TinyML involving vibration.

IMU Installation and testing

For this project, we will use an accelerometer. As discussed in the Hands-On Tutorial, Setup Nicla
Vision, the Nicla Vision Board has an onboard 6-axis IMU: 3D gyroscope and 3D accelerometer,
the LSM6DSOX. Let’s verify if the LSM6DSOX IMU library is installed. If not, install it.

https://www.st.com/resource/en/datasheet/lsm6dsox.pdf
https://github.com/arduino-libraries/Arduino_LSM6DSOX
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Next, go to Examples > Arduino_LSM6DSOX > SimpleAccelerometer and run the accelerometer
test. You can check if it works by opening the IDE Serial Monitor or Plotter. The values are in g
(earth gravity), with a default range of +/- 4g:
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Defining the Sampling frequency:

Choosing an appropriate sampling frequency is crucial for capturing the motion characteristics
you’re interested in studying. The Nyquist-Shannon sampling theorem states that the sampling
rate should be at least twice the highest frequency component in the signal to reconstruct it prop-
erly. In the context of motion classification and anomaly detection for transportation, the choice of
sampling frequency would depend on several factors:

1. Nature of the Motion: Different types of transportation (terrestrial, maritime, etc.) may in-
volve different ranges ofmotion frequencies. Fastermovementsmay require higher sampling
frequencies.

2. Hardware Limitations: The Arduino Nicla Vision board and any associated sensors may
have limitations on how fast they can sample data.

3. Computational Resources: Higher sampling rates will generate more data, which might be
computationally intensive, especially critical in a TinyML environment.

4. Battery Life: A higher sampling rate will consume more power. If the system is battery-
operated, this is an important consideration.

5. Data Storage: More frequent sampling will require more storage space, another crucial con-
sideration for embedded systems with limited memory.

In many human activity recognition tasks, sampling rates of around 50 Hz to 100 Hz are com-
monly used. Given that we are simulating transportation scenarios, which are generally not high-
frequency events, a sampling rate in that range (50-100 Hz) might be a reasonable starting point.
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Let’s define a sketch that will allow us to capture our data with a defined sampling frequency (for
example, 50Hz):

/*
* Based on Edge Impulse Data Forwarder Example (Arduino)
- https://docs.edgeimpulse.com/docs/cli-data-forwarder

* Developed by M.Rovai @11May23
*/

/* Include ----------------------------------------------------------------- */
#include <Arduino_LSM6DSOX.h>

/* Constant defines -------------------------------------------------------- */
#define CONVERT_G_TO_MS2 9.80665f
#define FREQUENCY_HZ 50
#define INTERVAL_MS (1000 / (FREQUENCY_HZ + 1))

static unsigned long last_interval_ms = 0;
float x, y, z;

void setup() {
Serial.begin(9600);
while (!Serial);

if (!IMU.begin()) {
Serial.println("Failed to initialize IMU!");
while (1);

}
}

void loop() {
if (millis() > last_interval_ms + INTERVAL_MS) {
last_interval_ms = millis();

if (IMU.accelerationAvailable()) {
// Read raw acceleration measurements from the device
IMU.readAcceleration(x, y, z);

// converting to m/s2
float ax_m_s2 = x * CONVERT_G_TO_MS2;
float ay_m_s2 = y * CONVERT_G_TO_MS2;
float az_m_s2 = z * CONVERT_G_TO_MS2;

Serial.print(ax_m_s2);
Serial.print("\t");
Serial.print(ay_m_s2);
Serial.print("\t");
Serial.println(az_m_s2);
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}
}

}

Uploading the sketch and inspecting the Serial Monitor, we can see that we are capturing 50 sam-
ples per second.

Note that with the Nicla board resting on a table (with the camera facing down), the
z-axis measures around 9.8m/s2, the expected earth acceleration.

The Case Study: Simulated Container Transportation

We will simulate container (or better package) transportation through different scenarios to make
this tutorial more relatable and practical. Using the built-in accelerometer of the Arduino Nicla
Vision board, we’ll capture motion data by manually simulating the conditions of:

1. Terrestrial Transportation (by road or train)
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2. Maritime-associated Transportation
3. Vertical Movement via Fork-Lift
4. Stationary (Idle) period in a Warehouse

From the above images, we can define for our simulation that primarily horizontal movements (x
or y axis) should be associated with the “Terrestrial class,” Vertical movements (z-axis) with the
“Lift Class,” no activity with the “Idle class,” and movement on all three axes to Maritime class.

Data Collection

For data collection, we can have several options. In a real case, we can have our device, for example,
connected directly to one container, and the data collected on a file (for example .CSV) and stored
on an SD card (Via SPI connection) or an ofÒine repo in your computer. Data can also be sent
remotely to a nearby repository, such as a mobile phone, using Bluetooth (as done in this project:
Sensor DataLogger). Once your dataset is collected and stored as a .CSV file, it can be uploaded to
the Studio using the CSV Wizard tool.

https://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_02_03_03.htm
https://www.hackster.io/mjrobot/sensor-datalogger-50e44d
https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/csv-wizard
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In this video, you can learn alternative ways to send data to the Edge Impulse Studio.

Connecting the device to Edge Impulse

We will connect the Nicla directly to the Edge Impulse Studio, which will also be used for data
pre-processing, model training, testing, and deployment. For that, you have two options:

1. Download the latest firmware and connect it directly to the Data Collection section.
2. Use the CLI Data Forwarder tool to capture sensor data from the sensor and send it to the

Studio.

Option 1 is more straightforward, as we saw in the Setup Nicla Vision hands-on, but option 2 will
give you more flexibility regarding capturing your data, such as sampling frequency definition.
Let’s do it with the last one.

Please create a new project on the Edge Impulse Studio (EIS) and connect the Nicla to it, following
these steps:

1. Install the Edge Impulse CLI and the Node.js into your computer.
2. Upload a sketch for data capture (the one discussed previously in this tutorial).
3. Use the CLI Data Forwarder to capture data from the Nicla’s accelerometer and send it to the

Studio, as shown in this diagram:

https://youtu.be/2KBPq_826WM
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-installation
https://nodejs.org/en/
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder
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Start the CLI Data Forwarder on your terminal, entering (if it is the first time) the following com-
mand:

$ edge-impulse-data-forwarder --clean

Next, enter your EI credentials and choose your project, variables (for example, accX, accY, and
accZ), and device name (for example, NiclaV:

https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder
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Go to the Devices section on your EI Project and verify if the device is connected (the dot should
be green):
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You can clone the project developed for this hands-on: NICLA Vision Movement Clas-
sification.

Data Collection

On the Data Acquisition section, you should see that your board [NiclaV] is connected. The
sensor is available: [sensor with 3 axes (accX, accY, accZ)] with a sampling frequency of
[50Hz]. The Studio suggests a sample length of [10000] ms (10s). The last thing left is defining
the sample label. Let’s start with[terrestrial]:

Terrestrial (palettes in a Truck or Train), moving horizontally. Press [Start Sample]and move
your device horizontally, keeping one direction over your table. After 10 s, your data will be up-
loaded to the studio. Here is how the sample was collected:

https://studio.edgeimpulse.com/public/302078/latest
https://studio.edgeimpulse.com/public/302078/latest


Motion Classification and Anomaly Detection 897

As expected, the movement was captured mainly in the Y-axis (green). In the blue, we see the Z
axis, around -10 m/s2 (the Nicla has the camera facing up).

As discussed before, we should capture data from all four Transportation Classes. So, imagine that
you have a container with a built-in accelerometer facing the following situations:

Maritime (pallets in boats into an angry ocean). The movement is captured on all three axes:

Lift (Palettes being handled vertically by a Forklift). Movement captured only in the Z-axis:
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Idle (Paletts in a warehouse). No movement detected by the accelerometer:

You can capture, for example, 2 minutes (twelve samples of 10 seconds) for each of the four classes
(a total of 8 minutes of data). Using the three dotsmenu after each one of the samples, select 2 of
them, reserving them for the Test set. Alternatively, you can use the automatic Train/Test Split
tool on the Danger Zone of Dashboard tab. Below, you can see the resulting dataset:
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Once you have captured your dataset, you can explore it in more detail using the Data Explorer, a
visual tool to find outliers or mislabeled data (helping to correct them). The data explorer first tries
to extract meaningful features from your data (by applying signal processing and neural network
embeddings) and then uses a dimensionality reduction algorithm such as PCA or t-SNE to map
these features to a 2D space. This gives you a one-look overview of your complete dataset.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/data-explorer
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
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In our case, the dataset seems OK (good separation). But the PCA shows we can have issues be-
tween maritime (green) and lift (orange). This is expected, once on a boat, sometimes the move-
ment can be only “vertical”.

Impulse Design

The next step is the definition of our Impulse, which takes the raw data and uses signal processing
to extract features, passing them as the input tensor of a learning block to classify new data. Go to
Impulse Design and Create Impulse. The Studio will suggest the basic design. Let’s also add a
second Learning Block for Anomaly Detection.
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This second model uses a K-means model. If we imagine that we could have our known classes as
clusters, any sample that could not fit on that could be an outlier, an anomaly such as a container
rolling out of a ship on the ocean or falling from a Forklift.
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The sampling frequency should be automatically captured, if not, enter it: [50]Hz. The Studio
suggests a Window Size of 2 seconds ([2000] ms) with a sliding window of [20]ms. What we are
defining in this step is that we will pre-process the captured data (Time-Seres data), creating a
tabular dataset features) that will be the input for a Neural Networks Classifier (DNN) and an
Anomaly Detection model (K-Means), as shown below:

Let’s dig into those steps and parameters to understand better what we are doing here.
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Data Pre-Processing Overview

Data pre-processing is extracting features from the dataset capturedwith the accelerometer, which
involves processing and analyzing the raw data. Accelerometers measure the acceleration of an ob-
ject along one or more axes (typically three, denoted as X, Y, and Z). These measurements can be
used to understand various aspects of the object’s motion, such as movement patterns and vibra-
tions.

Raw accelerometer data can be noisy and contain errors or irrelevant information. Preprocessing
steps, such as filtering and normalization, can clean and standardize the data, making it more
suitable for feature extraction. In our case, we should divide the data into smaller segments or
windows. This can help focus on specific events or activities within the dataset, making feature
extraction more manageable and meaningful. The window size and overlap (window increase)
choice depend on the application and the frequency of the events of interest. As a thumb rule, we
should try to capture a couple of “cycles of data”.

With a sampling rate (SR) of 50Hz and a window size of 2 seconds, we will get 100 sam-
ples per axis, or 300 in total (3 axis x 2 seconds x 50 samples). Wewill slide this window
every 200ms, creating a larger dataset where each instance has 300 raw features.

Once the data is preprocessed and segmented, you can extract features that describe the motion’s
characteristics. Some typical features extracted from accelerometer data include:

• Time-domain features describe the data’s statistical properties within each segment, such as
mean, median, standard deviation, skewness, kurtosis, and zero-crossing rate.

• Frequency-domain features are obtained by transforming the data into the frequencydomain
using techniques like the Fast Fourier Transform (FFT). Some typical frequency-domain fea-
tures include the power spectrum, spectral energy, dominant frequencies (amplitude and
frequency), and spectral entropy.
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• Time-frequency domain features combine the time and frequency domain information, such
as the Short-Time Fourier Transform (STFT) or the Discrete Wavelet Transform (DWT). They
can provide a more detailed understanding of how the signal’s frequency content changes
over time.

In many cases, the number of extracted features can be large, which may lead to overfitting or
increased computational complexity. Feature selection techniques, such as mutual information,
correlation-based methods, or principal component analysis (PCA), can help identify the most
relevant features for a given application and reduce the dimensionality of the dataset. The Studio
can help with such feature importance calculations.

EI Studio Spectral Features

Data preprocessing is a challenging area for embeddedmachine learning, still, Edge Impulse helps
overcome thiswith its digital signal processing (DSP) preprocessing step and,more specifically, the
Spectral Features Block.

On the Studio, the collected raw dataset will be the input of a Spectral Analysis block, which is
excellent for analyzing repetitivemotion, such as data fromaccelerometers. This blockwill perform
a DSP (Digital Signal Processing), extracting features such as FFT or Wavelets.

For our project, once the time signal is continuous, we should use FFT with, for example, a length
of [32].

The per axis/channel Time Domain Statistical features are:

• RMS: 1 feature
• Skewness: 1 feature
• Kurtosis: 1 feature

The per axis/channel Frequency Domain Spectral features are:

• Spectral Power: 16 features (FFT Length/2)
• Skewness: 1 feature
• Kurtosis: 1 feature

So, for an FFT length of 32 points, the resulting output of the Spectral Analysis Block will be 21
features per axis (a total of 63 features).

You can learn more about how each feature is calculated by downloading the notebook
Edge Impulse - Spectral Features BlockAnalysis TinyMLunder the hood: SpectralAnal-
ysis or opening it directly on Google CoLab.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Digital_signal_processing#Wavelet
https://en.wikipedia.org/wiki/Root_mean_square
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSkewness
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKurtosis
https://en.wikipedia.org/wiki/Spectral_density
https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://www.hackster.io/mjrobot/tinyml-under-the-hood-spectral-analysis-94676c
https://www.hackster.io/mjrobot/tinyml-under-the-hood-spectral-analysis-94676c
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
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Generating features

Once we understand what the pre-processing does, it is time to finish the job. So, let’s take the
raw data (time-series type) and convert it to tabular data. For that, go to the Spectral Features
section on the Parameters tab, define the main parameters as discussed in the previous section
([FFT] with [32] points), and select[Save Parameters]:

At the top menu, select the Generate Features option and the Generate Features button. Each
2-second window data will be converted into one data point of 63 features.

The Feature Explorer will show those data in 2D using UMAP. Uniform Manifold Ap-
proximation and Projection (UMAP) is a dimension reduction technique that can be
used for visualization similarly to t-SNE but is also applicable for general non-linear
dimension reduction.

The visualization makes it possible to verify that after the feature generation, the classes present
keep their excellent separation, which indicates that the classifier should work well. Optionally,
you can analyze how important each one of the features is for one class compared with others.

https://umap-learn.readthedocs.io/en/latest/
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Models Training

Our classifier will be a Dense Neural Network (DNN) that will have 63 neurons on its input layer,
two hidden layers with 20 and 10 neurons, and an output layer with four neurons (one per each
class), as shown here:

As hyperparameters, we will use a Learning Rate of [0.005], a Batch size of [32], and [20]% of
data for validation for [30] epochs. After training, we can see that the accuracy is 98.5%. The cost
of memory and latency is meager.
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ForAnomalyDetection, wewill choose the suggested features that are precisely themost important
ones in the Feature Extraction, plus the accZRMS. The number of clusterswill be [32], as suggested
by the Studio:
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Testing

We can verify how our model will behave with unknown data using 20% of the data left behind
during the data capture phase. The result was almost 95%, which is good. You can always work to
improve the results, for example, to understand what went wrong with one of the wrong results.
If it is a unique situation, you can add it to the training dataset and then repeat it.

The default minimum threshold for a considered uncertain result is [0.6] for classification and
[0.3] for anomaly. Once we have four classes (their output sum should be 1.0), you can also set
up a lower threshold for a class to be considered valid (for example, 0.4). You can Set confidence
thresholds on the three dots menu, besides the Classy all button.

You can also perform Live Classification with your device (which should still be connected to the
Studio).

Be aware that here, you will capture real data with your device and upload it to the
Studio, where an inference will be taken using the trained model (But the model is
NOT in your device).
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Deploy

It is time to deploy the preprocessing block and the trained model to the Nicla. The Studio will
package all the needed libraries, preprocessing functions, and trained models, downloading them
to your computer. You should select the option Arduino Library, and at the bottom, you can
choose Quantized (Int8) or Unoptimized (float32) and [Build]. A Zip file will be created
and downloaded to your computer.

On yourArduino IDE, go to the Sketch tab, select Add.ZIP Library, and Choose the.zip file down-
loaded by the Studio. A message will appear in the IDE Terminal: Library installed.

Inference

Now, it is time for a real test. We will make inferences wholly disconnected from the Studio. Let’s
change one of the code examples created when you deploy the Arduino Library.

In your Arduino IDE, go to the File/Examples tab and look for your project, and on examples,
select Nicla_vision_fusion:



910 Motion Classification and Anomaly Detection

Note that the code created by Edge Impulse considers a sensor fusion approach where the IMU
(Accelerometer and Gyroscope) and the ToF are used. At the beginning of the code, you have the
libraries related to our project, IMU and ToF:

/* Includes ---------------------------------------------------------------- */
#include <NICLA_Vision_Movement_Classification_inferencing.h>
#include <Arduino_LSM6DSOX.h> //IMU
#include "VL53L1X.h" // ToF

You can keep the code this way for testing because the trained model will use only
features pre-processed from the accelerometer. But consider that you will write your
code only with the needed libraries for a real project.

And that is it!

You can now upload the code to your device and proceed with the inferences. Press the Nicla
[RESET] button twice to put it on boot mode (disconnect from the Studio if it is still connected),
and upload the sketch to your board.

Now you should try different movements with your board (similar to those done during data cap-
ture), observing the inference result of each class on the Serial Monitor:

• Idle and lift classes:
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• maritime and terrestrial:

Note that in all situations above, the value of the anomaly score was smaller than 0.0. Try a new
movement that was not part of the original dataset, for example, “rolling” the Nicla, facing the
camera upside-down, as a container falling from a boat or even a boat accident:

• anomaly detection:
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In this case, the anomaly is much bigger, over 1.00

Post-processing

Now that we know the model is working since it detects the movements, we suggest that you
modify the code to see the result with the NiclaV completely ofÒine (disconnected from the PC
and powered by a battery, a power bank, or an independent 5V power supply).

The idea is to do the same as with the KWS project: if one specific movement is detected, a specific
LED could be lit. For example, if terrestrial is detected, the Green LEDwill light; if maritime, the Red
LED will light, if it is a lift, the Blue LED will light; and if no movement is detected (idle), the LEDs
will be OFF. You can also add a condition when an anomaly is detected, in this case, for example,
a white color can be used (all e LEDs light simultaneously).

Conclusion

The notebooks and codes used in this hands-on tutorial will be found on the GitHub
repository.

Before we finish, consider that Movement Classification and Object Detection can be utilized in
many applications across various domains. Here are some of the potential applications:

Case Applications

Industrial and Manufacturing

• PredictiveMaintenance: Detecting anomalies inmachinerymotion to predict failures before
they occur.

• Quality Control: Monitoring the motion of assembly lines or robotic arms for precision as-
sessment and deviation detection from the standard motion pattern.

• Warehouse Logistics: Managing and tracking the movement of goods with automated sys-
tems that classify different types of motion and detect anomalies in handling.

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Motion_Classification
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Healthcare

• Patient Monitoring: Detecting falls or abnormal movements in the elderly or those with
mobility issues.

• Rehabilitation: Monitoring the progress of patients recovering from injuries by classifying
motion patterns during physical therapy sessions.

• Activity Recognition: Classifying types of physical activity for fitness applications or patient
monitoring.

Consumer Electronics

• Gesture Control: Interpreting specific motions to control devices, such as turning on lights
with a hand wave.

• Gaming: Enhancing gaming experiences with motion-controlled inputs.

Transportation and Logistics

• Vehicle Telematics: Monitoring vehicle motion for unusual behavior such as hard braking,
sharp turns, or accidents.

• Cargo Monitoring: Ensuring the integrity of goods during transport by detecting unusual
movements that could indicate tampering or mishandling.

Smart Cities and Infrastructure

• Structural Health Monitoring: Detecting vibrations or movements within structures that
could indicate potential failures or maintenance needs.

• TrafÏc Management: Analyzing the flow of pedestrians or vehicles to improve urban mobil-
ity and safety.

Security and Surveillance

• Intruder Detection: Detecting motion patterns typical of unauthorized access or other secu-
rity breaches.

• WildlifeMonitoring: Detecting poachers or abnormal animalmovements in protected areas.

Agriculture

• Equipment Monitoring: Tracking the performance and usage of agricultural machinery.
• Animal Behavior Analysis: Monitoring livestock movements to detect behaviors indicating

health issues or stress.
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Environmental Monitoring

• Seismic Activity: Detecting irregular motion patterns that precede earthquakes or other ge-
ologically relevant events.

• Oceanography: Studying wave patterns or marine movements for research and safety pur-
poses.

Nicla 3D case

For real applications, as some described before, we can add a case to our device, and Eoin Jordan,
from Edge Impulse, developed a great wearable and machine health case for the Nicla range of
boards. It works with a 10mm magnet, 2M screws, and a 16mm strap for human and machine
health use case scenarios. Here is the link: Arduino Nicla Voice and Vision Wearable Case.

The applications for motion classification and anomaly detection are extensive, and the Arduino
Nicla Vision is well-suited for scenarios where low power consumption and edge processing are
advantageous. Its small form factor and efÏciency in processing make it an ideal choice for deploy-
ing portable and remote applications where real-time processing is crucial and connectivity may
be limited.

https://www.thingiverse.com/thing:5923305
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A. Tools

This is a non-exhaustive list of tools and frameworks that are available for embedded AI develop-
ment.

A.1. Hardware Kits

A.1.1. Microcontrollers and Development Boards

No Hardware Processor Features TinyML Compatibility

1 Arduino Nano
33 BLE Sense

ARM
Cortex-M4

Onboard sensors, Bluetooth
connectivity

TensorFlow Lite Micro

2 Raspberry Pi
Pico

Dual-core Arm
Cortex-M0+

Low-cost, large community
support

TensorFlow Lite Micro

3 SparkFun
Edge

Ambiq Apollo3
Blue

Ultra-low power
consumption, onboard
microphone

TensorFlow Lite Micro

4 Adafruit
EdgeBadge

ATSAMD51
32-bit Cortex
M4

Compact size, integrated
display and microphone

TensorFlow Lite Micro

5 Google Coral
Development
Board

NXP i.MX 8M
SOC (quad
Cortex-A53,
Cortex-M4F)

Edge TPU, Wi-Fi, Bluetooth TensorFlow Lite for
Coral

6 STM32
Discovery Kits

Various (e.g.,
STM32F7,
STM32H7)

Different configurations,
Cube.AI software support

STM32Cube.AI

7 Arduino Nicla
Vision

STM32H747AII6
Dual Arm
Cortex M7/M4

Integrated camera, low
power, compact design

TensorFlow Lite Micro

8 Arduino Nicla
Sense ME

64 MHz Arm
Cortex M4
(nRF52832)

Multi-sensor platform,
environment sensing, BLE,
Wi-Fi

TensorFlow Lite Micro

A.2. Software Tools

A.2.1. Machine Learning Frameworks
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No

Machine
Learning
Framework Description Use Cases

1 TensorFlow
Lite

Lightweight library for running machine
learning models on constrained devices

Image recognition, voice
commands, anomaly
detection

2 Edge Impulse A platform providing tools for creating
machine learning models optimized for edge
devices

Data collection, model
training, deployment on
tiny devices

3 ONNX
Runtime

A performance-optimized engine for running
ONNX models, fine-tuned for edge devices

Cross-platform
deployment of machine
learning models

A.2.2. Libraries and APIs

No Library/APIDescription Use Cases

1 CMSIS-
NN

A collection of efÏcient neural network kernels
optimized for Cortex-M processors

Embedded vision and
AI applications

2 ARM
NN

An inference engine for CPUs, GPUs, and NPUs,
enabling the translation of neural network frameworks

Accelerating machine
learning model
inference on
ARM-based devices

A.3. IDEs and Development Environments

No
IDE/Development
Environment Description Features

1 PlatformIO An open-source ecosystem for IoT
development catering to various boards &
platforms

Cross-platform build
system, continuous testing,
firmware updates

2 Eclipse
Embedded
CDT

A plugin for Eclipse facilitating embedded
systems development

Supports various compilers
and debuggers, integrates
with popular build tools

3 Arduino IDE OfÏcial development environment for
Arduino supporting various boards &
languages

User-friendly interface,
large community support,
extensive library collection

4 Mbed Studio ARM’s IDE for developing robust
embedded software with Mbed OS

Integrated debugger, Mbed
OS integration, version
control support

5 Segger
Embedded
Studio

A powerful IDE for ARM microcontrollers
supporting a wide range of development
boards

Advanced code editor,
project management,
debugging capabilities
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B. Datasets

1. Google Speech Commands Dataset

• Description: A set of one-second .wav audio files, each containing a single spoken En-
glish word.

• Link to the Dataset

2. VisualWakeWords Dataset

• Description: A dataset tailored for TinyML vision applications, consisting of binary la-
beled images indicating whether a person is in the image or not.

• Link to the Dataset

3. EMNIST Dataset

• Description: A dataset containing 28x28 pixel images of handwritten characters and
digits, which is an extension of the MNIST dataset but includes letters.

• Link to the Dataset

4. UCI Machine Learning Repository: Human Activity Recognition Using Smartphones

• Description: A dataset with the recordings of 30 study participants performing activi-
ties of daily living (ADL) while carrying a waist-mounted smartphone with embedded
inertial sensors.

• Link to the Dataset

5. PlantVillage Dataset

• Description: A dataset comprising of images of healthy and diseased crop leaves cat-
egorized based on the crop type and disease type, which could be used in a TinyML
agricultural project.

• Link to the Dataset

6. Gesture Recognition using 3D Motion Sensing (3D Gesture Database)

• Description: This dataset contains 3D gesture data recorded using a Leap Motion Con-
troller, which might be useful for gesture recognition projects.

• Link to the Dataset

7. Multilingual Spoken Words Corpus

• Description: A dataset containing recordings of common spoken words in various lan-
guages, useful for speech recognition projects targeting multiple languages.

• Link to the Dataset

Remember to verify the dataset’s license or terms of use to ensure it can be used for your intended
purpose.

https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html
https://github.com/tensorflow/models/tree/master/research/slim#preparing-the-visualwakewords-dataset
https://www.nist.gov/itl/products-and-services/emnist-dataset
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://github.com/spMohanty/PlantVillage-Dataset
https://lttm.dei.unipd.it/downloads/gesture/
https://mlcommons.org/en/multilingual-spoken-words/
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C. Model Zoo
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D. Resources

Embarking on your TinyML journey has never been easier with the curated resources to pave your
path to expertise. There are coding platforms and communities where you can immerse yourself
in hands-on TinyML projects, sharing or seeking advice on GitHub and Stack Overflow. Mean-
while, there are gateways to structured learning featuring courses that provide a comprehensive
education in the field.

While this page serves as a solid starting point, stay tuned as we continually expand our resource
pool, with the aim to foster a rich learning and collaborative environment for TinyML enthusiasts
of all levels.

D.1. Books

Here is a list of recommended books for learning about TinyML or embedded AI:

1. TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Micro-
controllers by Pete Warden and Daniel Situnayake

2. AI at the Edge: Solving Real-World Problems with Embedded Machine Learning by Daniel
Situnayake and Jenny Plunkett

3. TinyML Cookbook: Combine artificial intelligence and ultra-low-power embedded devices
to make the world smarter by Gian Marco Iodice

4. Introduction to TinyML by Rohit Sharma

These books cover a range of topics related to TinyML and embedded AI, including:

• The fundamentals of machine learning and TinyML
• How to choose the right hardware and software for your project
• How to train and deploy TinyML models on embedded devices
• Real-world examples of TinyML applications

In addition to the above books, there are a number of other resources available for learning about
TinyML and embedded AI, including online courses, tutorials, and blog posts. Some of these are
listed below. Another great way to learn is by joining the community of embedded AI develop-
ers.

https://www.amazon.com/TinyML-Learning-TensorFlow-Ultra-Low-Power-Microcontrollers/dp/1492052043
https://www.amazon.com/TinyML-Learning-TensorFlow-Ultra-Low-Power-Microcontrollers/dp/1492052043
https://www.oreilly.com/library/view/ai-at-the/9781098120191/
https://www.amazon.com/TinyML-Cookbook-artificial-intelligence-ultra-low-power/dp/180181497X
https://www.amazon.com/TinyML-Cookbook-artificial-intelligence-ultra-low-power/dp/180181497X
https://www.amazon.com/Introduction-TinyML-Rohit-Sharma/dp/B0B5Q281L9
./community.qmd
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D.2. Tutorials

D.3. Frameworks

1. GitHubDescription: There are various GitHub repositories dedicated to TinyMLwhere you
can contribute or learn from existing projects. Some popular organizations/repos to check
out are:

• TensorFlow Lite Micro: GitHub Repository
• TinyML4D: GitHub Repository
• Edge Impulse Expert Network: Repository

2. Stack Overflow Tags: tinyml Description: Use the “tinyml” tag on Stack Overflow to ask
technical questions and find answers from the community.

D.4. Courses and Learning Platforms

1. Coursera Course: Introduction to Embedded Machine Learning Description: A dedicated
course on Coursera to learn the basics and advances of TinyML.

2. EdX Course: Intro to TinyML Description: Learn about TinyML with this HarvardX course.

https://github.com/tensorflow/tflite-micro
https://tinyml.seas.harvard.edu/4D/
https://docs.edgeimpulse.com/experts/
https://stackoverflow.com/questions/tagged/tinyml
https://www.coursera.org/learn/introduction-to-embedded-machine-learning
https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning


923

E. Communities

Welcome to our dedicated hub for TinyML enthusiasts. Whether you are a seasoned developer,
a researcher, or a curious hobbyist looking to dive into the world of TinyML, this page is a non-
exhaustive list of community resources and forums to help you get started and thrive in this do-
main. From vibrant online communities and educational platforms to blogs and social media
groups, discover a world brimming with knowledge, collaboration, and innovation. Begin your
TinyML journey here, where opportunities for learning and networking are just a click away!

E.1. Online Forums

1. TinyML Forum Website: TinyML Forum Description: A dedicated forum for discussions,
news, and updates on TinyML.

2. Reddit Subreddits: r/TinyML Description: Reddit community discussing various topics re-
lated to TinyML.

E.2. Blogs and Websites

1. TinyML Foundation Website: TinyML Foundation Description: The ofÏcial website offers a
wealth of information including research, news, and events.

2. Edge Impulse Blog Website: Blog Description: Contains several articles, tutorials, and re-
sources on TinyML.

3. Tiny Machine Learning Open Education Initiative (TinyMLedu) Website: TinyML Open
Education InitiativeDescription: Thewebsite offers links to educationalmaterials on TinyML,
training events and research papers.

E.3. Social Media Groups

1. LinkedIn Groups Description: Join TinyML groups on LinkedIn to connect with profession-
als and enthusiasts in the field.

2. Twitter Description: Follow TinyML enthusiasts, organizations, and experts on Twitter for
the latest news and updates. Example handles to follow:

• Twitter
• EdgeImpulse

https://forums.tinyml.org/
https://tinyml.org/
https://www.edgeimpulse.com/blog
https://tinymledu.org/
https://tinymledu.org/
https://twitter.com/tinymlf
https://twitter.com/EdgeImpulse
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E.4. Conferences and Meetups

1. TinyML Summit Website: TinyML Summit Description: Annual event where professionals
and enthusiasts gather to discuss the latest developments in TinyML.

2. Meetup Website: Meetup Description: Search for TinyML groups on Meetup to find local or
virtual gatherings.

Remember to always check the credibility and activity level of the platforms and groups before
diving in to ensure a productive experience.

https://www.tinyml.org/
https://www.meetup.com/pro/tinyml
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F. Case Studies

Learning Objectives

• Coming soon.
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